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Abstract In response to the growing burden of obesity,

public primary prevention programs against obesity have

been widely recommended. Several studies have estimated

the cost-effectiveness of diabetes-prevention trials for dif-

ferent countries. Nevertheless, it is still controversial if

prevention conducted in more real-world settings and

among people with increased risk but not yet exhibiting

increased glucose tolerance can be a cost-saving strategy to

cope with the obesity epidemic. We examine this question

in a simulation model based on the results of the

M.O.B.I.L.I.S program, a German lifestyle intervention to

reduce obesity, which is directed on the high-risk group of

people who are already obese. The contribution of this

paper is the use of 4-year follow-up data on the interven-

tion group and a comparison with a control group formed

by SOEP respondents as inputs in a Markov model of the

long-term cost savings through this intervention due to the

prevention of type 2 diabetes. We show that from the point

of view of a health insurer, these programs can pay for

themselves.

Keywords Diabetes prevention � Cost analysis � Markov

modeling � Obesity
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Introduction

One of the main challenges for population health in the

developed world is the steady increase in obesity. In the

US, in 2009/2010, 35.7 % of the adult population was

obese [29], and in several European countries such as Spain

and Germany, the corresponding percentages were between

14.7 and 23 % [5, 27]. The reasons for this trend are a

combination of increased intake of calories and reduced

physical activity [9] and the resulting energy imbalance not

only leads to a continuous weight gain but also to severe

chronic conditions such as type 2 diabetes. Globally, it is

estimated that 438 million people (7.8 % of the adult

population) will have developed type 2 diabetes by 2030

unless effective prevention programs are implemented

[18]. Diabetes and other diseases emerging as conse-

quences of excessive weight will also cause a sizable

economic burden [15] through direct medical costs of

treatment as well as indirect costs of illness such as dis-

ability and early retirement [21, 10].

In response to this growing burden of obesity, public

primary prevention programs against obesity have been

widely recommended [34]. The European guideline for the

prevention of type 2 diabetes focuses on obesity and

sedentary lifestyle as these are the main modifiable risk

factors of the disease [30]. Several studies [26, 7, 17, 3]

have estimated the cost-effectiveness of diabetes-preven-

tion trials for different countries. Thus, the aim of these

studies was to measure either the costs per T2D case pre-

vented or per QALY gained (see reviews by [30, 20]).

Furthermore, [25] found that among all different inter-

ventions recommended by the American Diabetes Asso-

ciation (ADA), evidence was strongest for the cost-

effectiveness of intensive lifestyle modification among

persons with impaired glucose tolerance (IGT).
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Nevertheless, it is still controversial if prevention programs

conducted in more real-world settings and among people

with increased risk but not yet exhibiting IGT really pay for

themselves from the perspective of the health care system.

We examine this question in a simulation model based on

the results of the M.O.B.I.L.I.S program, a German life-

style intervention to reduce obesity, which is directed on

the high-risk group of people who are already obese. The

contribution of this paper is the use of a Markov model to

measure long-term cost savings of this intervention due to

prevention of type 2 diabetes.

This paper is organized as follows. ‘‘Data and methods’’

is devoted to a description of data and methods and first

presents an overview of the M.O.B.I.L.I.S. intervention

program and the analyzed data, followed by a charac-

terization of the Markov model framework and the analysis

of cost savings. ‘‘Results’’ presents the results of the

medium-term simulation and some sensitivity analyses. In

the ‘‘Discussion’’, we discuss our findings. Concluding

remarks are offered in ‘‘Conclusions’’.

Data and methods

Overview of the M.O.B.I.L.I.S. intervention

The M.O.B.I.L.I.S. program is a lifestyle intervention to

reduce obesity. The program has been implemented in

more than 100 sites throughout Germany since 2004, and

with by now over 6000 participants [24]. The program

addresses obese adults (BMI 30–40 kg/m2) who have at

least one additional obesity-related risk factor such as type

2 diabetes, high blood pressure, or orthopedic problems,

but who are still capable of light exercise. Individuals with

type-1 diabetes or several other conditions (such as eating

disorders, consumption of psychotropic drugs, or cancer

treatment in the last 5 years) are not allowed to participate.

The intervention takes place in a group setting (with 15–18

participants per group) and consists of a total of 60 group

sessions over a time period of 12 months, with a higher

frequency in the first 8 weeks. Forty of the sessions are

devoted to light physical activity such as walking, aerobic,

yoga, and, if possible, jogging, and the remaining 20

sessions to nutritional and behavioral counseling. Par-

ticipants are also encouraged to utilize sports facilities

offered in their communities.

What makes the M.O.B.I.L.I.S. intervention particularly

interesting for a health economic evaluation is the fact that

participation fees are to a large extent reimbursed by public

health insurance. The participants have to pay participation

fees of €785 (before 2008: €685) in advance but upon

completion of the program all but a co-payment of €100 is

returned by the sickness fund provided the person has

participated in at least 75 % of all sessions. Thus, besides

their intrinsic motivation to improve their health status, the

participants have an additional monetary incentive to at-

tend the program sessions regularly once they have started

the program. In fact, of the first 5025 starters, 4336 (or

87 %) participated in the check-up scheduled at the end of

the program and 3985 (or 92 %) of those or 79 % of all

starters had fulfilled the condition of a 75 % participation

rate.

The effectiveness of the intervention in reducing weight

and enhancing the physical activity of the participants over

the intervention period has been documented in the studies

by [2, 24]. Frey et al. [11] also show that the intervention

effects are persistent 1 year after program termination.

Compared to the initial levels, average weight was reduced

by 6.8 kg (±7.8) and weekly physical activity was sig-

nificantly higher. Besides that, [14] find that compared to a

quasi-experimental control group, the participants show

significantly enhanced psychological variables (self-effi-

cacy, strength of goal intention) at a 2-year follow-up.

4-Year follow-up

The present follow-up study conducted in 2011 and 2012

allows the evaluation of long-term effects of the

M.O.B.I.L.I.S. program. With special focus on the pre-

vention of type 2 diabetes as a crucial public health con-

sequence of obesity, the follow-up study and the present

evaluation only consider the subgroup of participants with

no type 2 diabetes at the beginning of the intervention

(86.5 %) [24]. The follow-up periods after completion of

the intervention vary between 3 and 6 years with an av-

erage follow-up period of about 4 years after the

Table 1 Number of

participants by year of

intervention and follow-up

Start intervention Completion intervention 2011 Follow-up 2012 Follow-up

2005 2006 27 11

2006 2007 51 100

2007 2008 34 93

2008 2009 0 85

Overall, 401 participants with a resulting average follow-up period of 4.08 years and a total observational

period of 5.08 years
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completion of the program. To rule out seasonal effects, the

participants were contacted in the same calendar month in

which they had completed the program. A total of

N0 = 958 individuals that had completed the program had

taken part in the 1-year follow-up and fulfilled the inclu-

sion criteria (before the intervention: age 40–60 years,

BMI 30–40 kg/m2, no type 2 diabetes) were asked by mail

and additional personal phone calls to participate in the

study. A response rate of 42 % results in a study sample of

N = 401 individuals, with an average age 49.8 years

(±5.7), average BMI 34.9 kg/m2 (±2.7), and a female

share of 82.5 %. M.O.B.I.L.I.S. participants from the years

2005 (10 %), 2006 (38 %), 2007 (31 %), and 2008 (21 %).

An overview of the respective follow-up lengths can be

found in Table 1. All medical and anthropometric values of

the sample are reliable, as they were measured and

documented by physicians. Additional lifestyle-related

items (physical activity, nutrition) were raised on the basis

of a questionnaire.

The descriptive statistics in Table 2 provide an overview

of the sample characteristics before and after the inter-

vention, as well as for the 4-year follow-up. The obesity

measures [BMI, waist-to-hip ratio (WHR)] and reported

physical activity have a common pattern over time. Com-

pared to the baseline, the intervention still has a positive

effect at the follow-up, though there is a clear rebound

effect when we regard the development after completion of

the program. However, looking at the other medical risk

indicators, the interpretation is not as clear. For blood

pressure, LDL cholesterol, and fasting blood sugar, the

initial improvements after the intervention vanish, as the

follow-up levels meet the baseline values. HDL cholesterol

and HbA1c show a rising time trend, which might be due to

general age effects [6] overlapping with possible effects of

the intervention.

In order to check for possible self-selection effects in the

follow-up sample, we compare the responders to the non-

responders with respect to their initial weight loss during

the program. The differences are not very striking, though

we cannot exclude a self-selection bias for participation in

the study. Among responders, 61.4 % had experienced a

weight loss of more than 5 % while participating in the

program, whereas the respective number among the non-

responders was only 49.9 % (see Fig. 1 for details). The

response rate of those with an initial weight loss of less

than 5 % was 35.7 %, compared to 46.9 % for those who

lost more than 5 % during the program.

Control group

For an informative evaluation of the economic benefits of

the intervention based on the development of the risk

factors, we need to account for the general age-related

Fig. 1 Influence of initial program success

Table 2 Descriptive statistics

of the M.O.B.I.L.I.S. sample

development

Variable Baseline Completion Follow-up

Weight (kg) 98.603 (12.246) 91.305 (13.046) 95.683 (14.299)

BMI (kg/m2) 34.887 (2.692) 32.317 (3.509) 33.850 (3.862)

WHR 0.926 (0.078) 0.909 (0.078) 0.917 (0.082)

Heart rate (bpm) 78.005 (12.269) 73.990 (11.036) 70.972 (9.478)

Blood pressure (mmHg)a 132.5/85.8 (15.9/9.1) 126.1/82.3 (15.3/10.6) 132.1/82.5 (15.0/9.4)

HDL (mg/dl) 57.197 (13.666) 59.784 (14.322) 61.714 (15.742)

LDL (mg/dl) 133.418 (33.015) 131.811 (32.639) 133.952 (33.798)

Fasting blood sugar (mg/dl) 92.970 (13.152) 91.636 (12.737) 93.870 (16.490)

HbA1c (in %) 5.625 (0.341) 5.637 (0.281) 5.649 (0.435)

Physical activityb 22.879 (21.416) 37.031 (27.352) 34.305 (27.269)

N = 401, standard errors in parenthesis
a Systolic/diastolic
b Measured as MET per week, based on the evaluation of the physical activity questionnaire developed by

[12]
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trend in the population, which is achieved by including a

control group. Due to the real-world implementation of the

M.O.B.I.L.I.S. program and the retrospective study design,

we are lacking an original randomized control group. We

overcome this problem with the aid of an artificial control

group, formed from a subgroup of N0 = 1308 individuals

from the German socio-economic panel (SOEP) in 2006

who meet the same inclusion criteria at the beginning of

the intervention. We choose 2006 as baseline for the

matching and further modeling as the largest share of

M.O.B.I.L.I.S. participants started the intervention in this

year (see Table 1) and besides the SOEP data for weight

are also available. The SOEP sample [33] is representative

of the German population so that comparability for socio-

economic and other background variables should be rea-

sonably high. We performed propensity score matching

estimated on the baseline covariates BMI, age, and gender

for the two nearest neighbors in the SOEP sample to build

our artificial control group.

Unfortunately, the SOEP data only contain information

on weight and BMI as risk factors for diabetes, so we lose

the information on the additional risk indicators included in

the M.O.B.I.L.I.S. dataset in the control group. As data on

weight is only available in the SOEP sample every 2 years,

we compute the annual BMI development in the missing

years between 2007 and 2011 through linear interpolation

of the known values in 2006, 2008, and 2012. Thus, we are

able to adjust the control group to the 1-year period of the

intervention and the average 4-year follow-up length.

Figure 2 depicts the interpolated BMI values for the in-

tervention group and the control group.

The average development in the matched control group

in comparison to the measured intervention group values

can be found in the first column of Table 3. Being matched

on the baseline BMI, the control group shows no significant

change in BMI in the period until completion of the pro-

gram. Over the 4 years of the follow-up period, the average

BMI in the control group grows at a low rate from 34.458

to 35.088 kg/m2, and compared to the baseline value of

34.887 kg/m2, the overall rise in weight in the control

group is not significantly different from zero. Thus, the

average BMI in the control group is more or less constant

over the observed period, while the intervention group

shows the pattern of initial weight loss and a rebound in the

following 4 years as described before.

The observed reduction in BMI from the start to the end

of the intervention is 7.4 %, while the estimated average

treatment effect (ATE) of BMI development is a 5.9 %

reduction for the intervention group, compared to the

control group. In the period between completion and 4-year

follow-up, the observed BMI in the intervention group

grows by 4.6 %, whereas the ATE in this period only

shows a 2.8 % rise in BMI for the intervention group. As

the ATE is significantly below the observed rebound effect

in the intervention group, we can state that the effects of

regaining weight in the intervention group at the follow-up

are on average lower when we take the representative

control into account. The differences in distribution over

Fig. 2 BMI development in

M.O.B.I.L.I.S. and the SOEP

group. Average BMI values

reported for the intervention

group (adjusted for 2006, 2007,

2011). Computed values for the

matched control-group (2006,

2007, 2011) and the reported

SOEP values (2006, 2008, 2010,

2012)

382 J. Häußler, F. Breyer

123



the three obesity subgroups overweight, obese, and

severely obese (BMI\ 30, 30 B BMI B 35, BMI[ 35)

in the M.O.B.I.L.I.S. population and the control group are

presented in Table 3. All statistical analyses were per-

formed using Stata 12.

Simulation framework

Evaluating the long-term effects of the M.O.B.I.L.I.S. in-

tervention requires information on the development of

obesity-related diseases beyond the data of the 4-year fol-

low-up. Abstracting from other diseases such as myocar-

dial infarction and stroke, our analyses focus on the

development of diabetes based on the individual obesity

level. Using a Markov cohort simulation we estimate the

long-term effects of the M.O.B.I.L.I.S. intervention on the

prevalence of type 2 diabetes in the control and the inter-

vention group. The Markov model is a variation of the

model used in a previous study to evaluate the Finnish

GOAL Intervention [16].

The state-transition Markov model consists of five

mutually exclusive (disease) states and discrete 1-year

intervals. The model structure depicted in Fig. 3 allows us

to follow the starting population over a 20-year time

horizon, using the annual forecasts for every state of in-

terest. We limit the time horizon of the Markov model to

20 years because we think that any weight differences

observed between the groups at a later time can no longer

be traced back to the intervention. This is in line with

findings of previous follow-up studies [8]. Members of

the intervention and control groups move between the

Markov states according to given transition probabilities

(see Table 4 for an overview). Both groups enter the

model at stage zero according to the observed (estimated)

distributions over the model states at the 1-year follow-

up. The five Markov states are: (1) no diagnosed diabetes

and BMI\ 30, (2) no diagnosed diabetes and

30\BMI\ 35, (3) no diagnosed diabetes and BMI[ 35

(afterwards we will refer to all three of these states as

‘‘non-diabetes’’), (4) diagnosed diabetes, and (5) the ab-

sorbing Markov state death. The initial average age of the

individuals entering the Markov model is 54 years, which

is consistent with the average age at the follow-up in both

groups. With respect to the gender shares, we simulate the

model according to the mixed composition in the follow-

up sample and in a separate subgroup analysis for females

only. We do not run a separate subgroup for males, as the

low number of male participants makes a sound analysis

impossible.

The annual transition probabilities between the three

non-diabetes states are computed from the analysis of the

BMI development between the end of the M.O.B.I.L.I.S.

Fig. 3 States of the Markov

model

Table 3 BMI means and

subgroup development
BMIa BMI\ 30 30 B BMI\ 35 35 B BMI

Baseline interventionb 34.887 (2.692) 0.0 0.5287 0.4713

Completion intervention 32.317 (3.509) 0.2718 0.5037 0.2244

Completion control 34.458 (2.792) 0.0698 0.4589 0.4713

Follow-up intervention 33.850 (3.862) 0.1621 0.4514 0.3865

Follow-up control 35.088 (3.277) 0.0474 0.4638 0.4888

N = 401
a Measured in kg/m2

b Control matched on BMI at the baseline before the intervention
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intervention and the follow-up,1 and the respective changes

in the control group. We do not further consider the BMI

progress within the year of the program for the computa-

tion of the transition probabilities, as this would implicitly

assume regular repetition of the intervention. However, the

singular 1-year intervention effect is captured by the

composition of the intervention group and control group

with respect to the Markov states at the start of the

simulation. To account for a further equalization in weight

development of the intervention group to the general time

trend reflected by the control group, we assume a linear

adjustment of the non-diabetes transition probabilities

starting after the 4-year follow-up to the control group

values over 10 years. This assumption is in line with pre-

vious findings on long-term effects of weight reduction [8,

28].2 In line with the data for the development in the in-

tervention group and the control group, we assume that

annual weight changes are not big enough to jump from the

lowest to the highest non-diabetes state (or vice versa) in

one step.

All other annual transition probabilities are based on the

results of other studies and German epidemiological data:

non-diabetes to diabetes [31, 4], non-diabetes to death and

diabetes to death (Statistisches Bundesamt 2010; GBE

2006; [1]), are all one way. The transition probabilities to

the state of death are adjusted to the gender composition of

the samples and they are age-dependent in 5-year steps.

Due to missing data, the transition from non-diabetes to

death does not differ by BMI category. All of the people

who die remain in this state forever and we only regard

diagnosed cases of type 2 diabetes mellitus where no cure

is feasible. Those probabilities are assumed to be equal for

the two groups of individuals, but they vary by age and are

adjusted to the gender composition of the groups. All

simulations were performed using TreeAge Pro Healthcare

(Release 1.0 b1 2001; TreeAge Software Inc.).

Cost analysis

The results of the Markov simulation are the foundation of

the subsequent analysis of expected cost savings. The cost

analysis (CA) adopts the perspective of the health insur-

ance system and abstracts from effects on human capital,

work loss, etc. Also, subjective utility from the health state

does not enter the CA. We measure the direct costs of

diabetes by monetizing the simulation outcomes for dia-

betes prevalence in each year and in both groups.

The diabetes costs in year i are defined by the following

equation:

Costs i group ¼ Costs w=ocomplications + Rate i complications

�

�Costs withcomp

�
� Prevalence i group:

Discounted overall costs of diabetes for each group are

respectively:

COSTSgroup ¼
X20

i¼0

1

ð1þ rÞi
Costsi group

Based on the results by [15], we assume no complications

for the first 5 years after the diagnosis of diabetes. Starting

from year 6 on, we assume a linear increase of the average

complication rate by 5 % annually until year 10 after the

diagnosis of diabetes. Subsequently, we assume that the

average complication rate remains constant at 25 %. Re-

garding the treatment costs of diabetes in Germany, we use

direct costs of €850 for the disease without complications

(medications, physicians’ outpatient services) and €8830

Table 4 Annual transition

probabilities in the Markov

model

Transition to from BMI\ 30 30 B BMI\ 35 35 B BMI Diabetesb Deathb

BMI\ 30 0.80298a 0.18302a 0 0.00834 0.00566

0.63606 0.34994

30 B BMI\ 35 0.02467a 0.83391a 0.11256a 0.02320 0.00566

0.01526 0.89981 0.05607

35 B BMI 0 0.04142a 0.90911a 0.04381 0.00566

0.03502 0.91551

Diabetesb 0 0 0 0.99425 0.00575

Upper line intervention group, lower line control group
a Depending on the assumed further weight development in the intervention group, the values adjust to the

control group over time
b Values for the age group 55–60. Age-dependent in 5-year steps

1 We account for the actual length of the follow-up (between 3 and

6 years) and afterwards linearly adjust the annual transition

probabilities to the average follow-up period of 4 years in both

groups.
2 Since after the end of the program members of the intervention

group on average gain weight faster than members of the control

group due to the rebound effect, this assumption also prevents the

implausible outcome that after a number of years the former are on

average heavier than the latter.
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with complications3 accounting for further direct costs

from impatient care, medical devices, transportation, and

long-term care [22, 23]. The intervention costs—for a

sickness fund—are €685 (€585 before 2009), resulting in

average intervention costs according to the sample com-

position of €673. The intervention costs per individual are

based on the accounting of the provider and those are also

the costs the sickness funds have to pay (without the out-

of-pocket payment of €100). For our evaluation, we only

take into account the costs without the deductible of €100,
as we adopt the perspective of the sickness fund. All costs

used for the analysis are expressed in 2011 euros and all

future costs were compounded at an annual discount rate of

3 % [19].

Sensitivity analyses

To check for the validity of our results, we conduct one-

way sensitivity analyses regarding the values of all pa-

rameters of the model. Besides, we conduct a probabilistic

sensitivity analysis in which we vary all costs and pa-

rameters entering the model. The respective parameter

values are drawn simultaneously in a Monte Carlo

simulation from beta (all probabilities), log-normal (dia-

betes costs) and gamma distributions (start age, time until

complications). Distribution parameters rely on mean val-

ues and confidence intervals for known values. Where no

confidence interval is available, we assume that a 50 %

change in the assumed values corresponds to a distance of

two standard deviations from the mean value.

Results

Mortality

The simulated cumulative annual mortalities depicted in

Fig. 4 for the mixed-gender groups indicate that the in-

tervention has no significant effect on the longevity of the

individuals. The overall time trend of the mortality rates is

the same for the intervention group and the control group,

with the annual rates differing only at insignificantly low

margins. The cumulative mortality after 20 years is

27.00 % in the control group compared to 27.28 % in the

intervention group. Similarly, the difference in average

annual mortality rates between 1.35 % in the control group

and 1.36 % in the intervention group is not significantly

different from zero. The simulation results for the female

subgroup show that the described mortality effects are in-

dependent of the gender composition of the groups. In this

case, the cumulative mortality rate after 20 years is

20.26 % (20.05 %) in the intervention (control) group.

Summarizing the results, we can state that, at least in our

model setup, the M.O.B.I.L.I.S. intervention has no effects

on long-term mortality rates.

Diabetes prevalence

The annual prevalence rates of diabetes over the 20 years

of the simulated time horizon are depicted for the inter-

vention group and the control group in Fig. 5. The preva-

lence level in the intervention group is markedly below that

in the control group over all the 20 years, with an average

annual rate of 4.59 % in the intervention group compared

to 6.87 % in the control group. The simulated diabetes

prevalence at the end of the simulation is 31.9 % lower in

the intervention group than in the control group, with an

absolute difference of 4.73 percentage points. The esti-

mated diabetes prevalence in the M.O.B.I.L.I.S. population

would be considerably lower if the success of the inter-

vention persisted over the whole period. Looking at the

literature on the long-term effects of other interventions

[28, 32], this scenario seems unrealistic, but we included

the simulation as a benchmark in the sensitivity analysis.

Fig. 4 Cumulative mortality rates

Fig. 5 Annual diabetes prevalence rates

3 Including macrovascular disease, nephropathy, neuropathy, and

retinopathy.
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The prevalence of diabetes for the female subgroup

shows the same pattern as described above for the mixed

group, though the differences in prevalence rates are a bit

less pronounced. On average, the annual prevalence rate is

3.67 % (5.10 %) in the intervention (control) group. At the

end of the simulated time horizon, the diabetes prevalence is

8.04 % in the intervention group compared to 10.97 % in the

control group. This prevalence being 26.7 % lower in the

intervention group compared to 31.9 % in total indicates that

the male share of the mixed sample has a positive influence

on the effectiveness of the intervention as a whole.

Cost analysis

As discussed in the Methods section, the extent of the net

cost savings depends on the average time between the onset

of type 2 diabetes and the onset of complications (see

Table 5 for an overview). In the extreme case of no com-

plications at all, the M.O.B.I.L.I.S. intervention does not

pay off from the perspective of a sickness fund. In that

situation, with annual type 2 diabetes costs of €850, the
difference in the discounted (avoided) diabetes costs be-

tween control and intervention group amounts to €446.
With average intervention costs of €673 for a sickness

fund, this leads to net costs per participant of €227 for the

mixed group and €269 for the female subgroup.4

Following the rationale of the computation described in

the Methods section—with an average time until the onset

of complications of 10 years—the M.O.B.I.L.I.S. inter-

vention does save costs. Based on the assumption that the

costs of type 2 diabetes rise linearly from €850 (cost

without complications) in the first 5 years after diagnosis to

€3057 (25 % complications on average) in year 10 and

afterwards, the differences in the costs of diabetes are as

follows: The discounted diabetes costs cumulated over the

whole period of 20 years are €1000 lower for individuals

from the intervention group than for those from the control

group. For the mixed-gender group, this results in net cost

savings of €327 from the perspective of a sickness fund.

The positive result also holds for the female subgroup, with

net cost savings of €299.

Sensitivity analyses

The analysis in the previous section shows that the results

of the CA are affected by the assumed time span before

diabetes with complications sets in. However, only in the

extreme case without any complications are the results

affected qualitatively. Altering the timespan from 10 years

to 5 or 15 years shows that the results are robust for

moderate changes in this model assumption and it provides

a confidence interval for the magnitude of the cost savings.

In the mixed group, if 5 years pass before the onset of

complications, the net cost savings is €411, while the figure
is reduced to €269 if 15 years pass before complications

arise.

Besides the assumed model structure, the results of the

CA may also be sensitive to the choice of model pa-

rameters. To check for the robustness of the results, we

therefore performed one-way sensitivity analyses for each

external parameter used in the model, the results of which

are reported in Table 6. For the various transition prob-

abilities in the model, we conducted the sensitivity ana-

lyses in an interval from zero to twice the used value, while

we chose a 10-year interval for all variables measuring a

time span. Table 6 shows that the qualitative result of

positive net cost savings is robust to changes in start age,

length of time horizon, and time until the onset of com-

plications as well as to variations of the mortality rates. The

same is true for realistic values of the discount rate. Not

surprisingly, if the diabetes probability of people with BMI

between 30 and 35 (or over 35) were zero, a program like

this would not be worth its costs. However, the break-even

values of the parameters reported in the last column show

that these probabilities could fall quite considerably before

the program loses its cost-saving nature.

The probabilistic sensitivity analysis leads to a 95 %

confidence interval for the net cost savings ranging from

€161.60 to €410.06. The interval is based on the 2.5 and the
97.5 percentile values of the net cost savings for the mixed-

gender group. Thus, we can summarize that the overall

result of positive net cost savings is quite robust to the

choice of model parameters.

Discussion

We are well aware of the limitations and shortcomings of

the current study that have to be considered. The first point

to look at is the lack of a randomized control group for the

evaluation. Although we are missing socioeconomic back-

ground variables for the intervention group to compare

them directly with our matched control group, differences

with respect to socioeconomic status should be considered a

minor problem, since the intervention group was recruited

Table 5 Overview of net cost savings

Avg. complications Mixed group (€) All female (€)

NO -227 -269

After 5 years 411 349

After 10 years 327 299

After 15 years 269 228

The assumed scenario is in bold. 25 % Complications on average

4 As Table 4 contains cost savings, these differences of 227 and 269

€ appear as negative numbers.
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from all over Germany and the control group is a matched

representative subsample of the German population.

There are two main problems with the artificial control

group. First, the BMI and weight values in the SOEP are

based on self-reported data. We are aware of possible un-

derreporting bias compared to the values in the intervention

group that were collected by physicians. However, this

underreporting is likely to occur at all measuring points,

the difference of the values between two points of time

(end of intervention and 4-year follow-up) should not be

biased, and it is exactly this development over time that we

compare between the two groups. The second problem is,

of course, that in the control group we cannot account for a

possible selection bias with respect to participation in the

intervention group. This might exaggerate the effects for

the intervention group as participants have the intention to

lose weight.

The only way to avoid this selection bias would be to

run a randomized controlled trial with equally motivated

persons of whom only one part is admitted to the inter-

vention whereas the others are used as controls. In the

medical literature, RCTs are controversial on ethical

grounds (see e.g., [13]) because they require consciously

withholding a presumably beneficial treatment from pa-

tients who could benefit from it. When the long-term ef-

fects are to be studied, these persons would even have to be

banned from the intervention for a number of years (in our

case, 4 years). This would not only be ethically problem-

atic but virtually infeasible since similar programs as

M.O.B.I.L.I.S. are offered in many places throughout

Germany and thus members of the control group could not

be prevented from participating in any of these, which most

of them probably would do. Thus, it would be unclear with

what the M.O.B.I.L.I.S. program would be compared in

that case.

As a final defense of our procedure, we would argue that

the motivation of participants for losing weight does not

alter the implications of the analysis for the evaluation of

public prevention programs. As long as prevention pro-

grams offered by sickness funds are voluntary, we will

always observe similar self-selection of participants.

Besides this selection effect at the baseline, we have to

consider the differences between responders and non-re-

sponders at the 4-year follow-up, as mentioned in the data

section and depicted in Fig. 1. The follow-up responders

had on average a larger weight loss by the end of the

program, which might in general exaggerate the long-term

effectiveness of the whole intervention in the present

analysis. However, looking at BMI development between

the completion of the program and the follow-up in detail,

it appears that this self-selection of responders does not

obviously bias our findings in one direction. The effect of

an initial BMI decline on the BMI development in the

4-year follow-up period is significantly negative, with an

estimated coefficient of -0.429 (SE: 0.054) in a simple

OLS regression model used as a robustness check. Thus,

the observed rebound effect is stronger for those who lost

more weight during the program. This larger regain in BMI

has in turn negative consequences for the long-term ef-

fectiveness of the intervention. Considering these two

points, it is not clear that the larger share of initially suc-

cessful responders in the follow-up overstates the effects of

the intervention.

Regarding the structure of the Markov model, two points

can be criticized, the pure foundation on BMI changes and

the focus on diabetes as the only cost relevant outcome. We

think the former issue is justified by the fact that our

control group dataset does not allow for a richer model, as

the BMI is the only relevant risk factor we can observe.

The focus on the cost of diabetes might understate the

effectiveness of the intervention in the CA as we omit

possible cost savings due to other obesity-associated dis-

eases. Consequently, we regard our positive cost-saving

results as a lower benchmark for the total cost effects of the

Table 6 Overview sensitivity analyses

Variable Net savings (low value) Net savings (used value) Net savings (high value) Break-even value

Discount rate 465 (0) 327 (0.03) 106 (0.06) 0.079

Diabetes mortality 469 (0) 327 (0.00575) 68 (0.012) 0.019

Diabetes probability BMI[ 35 -122 (0) 327 (0.04381) 1040 (0.09) 0.022

Mortality rate BMI[ 35 381 (0) 327 (0.00566) 193 (0.012) 0.035

Diabetes probability 30\BMI\ 35 -59 (0) 327 (0.02320) 1456 (0.05) 0.0059

Diabetes probability BMI\ 30 479 (0) 327 (0.00834) 232 (0.017) 0.073

Start age 401 (49) 327 (54) 284 (59)

Number of stages (time horizon) 62 (15) 327 (20) 392 (25) 10.6

Time until average complications 411 (5) 327 (10) 269 (15)

The lower and the upper bound of the one-way sensitivity analyses, as well as the used values are in parentheses. The last column reports the

critical parameter value for the break-even point of the net savings. All net savings are expressed in 2011 euros
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M.O.B.I.L.I.S. intervention and think that considering

further diseases should add further cost savings. The effect

on the simulated mortality should on the other hand be

minimal, as the overall mortality rates for obese persons

used in the model as transition probabilities reflect the

other diseases as well.

Conducting the cost analysis from the perspective of the

health care system might neglect some additional benefits

for the society at large. Nevertheless, we think the health

care system perspective is the right one for this analysis as

we evaluate a program advertised and reimbursed by

sickness funds. Besides looking at the simulation results,

we think there is another point for our perspective. As

projected mortality rates in the intervention group and

control group do not differ significantly, taking those ef-

fects into account would not change the CA results we

found from the perspective of the health care system. A

further issue is that our analysis neglects sick leave costs of

diabetes. This is a valid point, although in our model

framework these costs—for a population with a starting

age of 54 and a time horizon of 20 years—could only occur

in the first years. Considering the development of diabetes

prevalence rates in the first 10 years of our model (Fig. 5),

we cannot exclude those additional indirect costs. How-

ever, with constantly higher rates in the control group, the

results will not change qualitatively.

The difference in the magnitude of effects between the

mixed group and the female subgroup basically reflects the

lower diabetes prevalence over the whole simulation

horizon of women. On the other hand, this effect is de-

creased by the higher female life expectancy. In combi-

nation with effects due to the composition of the mixed

group, we cannot make any predictions on the effectiveness

of this intervention for a subgroup of male participants.

Conclusions

In this paper we have shown that from the perspective of

the health care system, real-world diabetes prevention

programs for obese people such as the M.O.B.I.L.I.S. in-

tervention may pay for themselves in the long run. We

consider the net cost savings found in our study as a lower

bound for the total cost effects of the intervention, as we

only evaluate the costs of diabetes. Taking avoided costs of

further obesity-related diseases into account would pre-

sumably raise the net effects of the intervention. On the

other hand, the estimated cost savings themselves may be

slightly biased upward due to the (mild) self-selection of

participants. It seems, however, reasonable to assume that

this upward bias is smaller than the downward bias men-

tioned before. From a policy point of view, the results

indicate that allowing sickness funds to invest in preven-

tion might help to reduce health care expenditures, if the

funds are able to detect effective programs and address the

appropriate target groups.
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Verhältnissen zwischen Nutzen und Kosten im System der

deutschen gesetzlichen Krankenversicherung. Version 2.0. Insti-

tut für Qualität und Wirtschaftlichkeit im Gesundheitswesen

(IQWiG), Köln
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