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Abstract 

 

We construct a panel of S&P 500 index call and put option portfolios, daily adjusted to maintain 

targeted maturity, moneyness, and unit market beta, and test multi-factor pricing models. The 

standard linear factor methodology is applicable because the monthly portfolio returns have low 

skewness and are close to normal. We hypothesize that any one of crisis-related factors 

incorporating price jumps, volatility jumps, and liquidity (along with the market) explains the 

cross-sectional variation in returns. Our hypothesis is not rejected, even when the factor premia 

are constrained to equal the corresponding premia in the cross-section of equities. The alphas of 

short-maturity out-of-the-money puts become economically and statistically insignificant. 
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The returns of index options are highly volatile, skewed, and non-linear in the index return, 

thereby rendering tests of linear factor pricing models hard to interpret. For example, over the 

period 1986-2012, a test of a linear factor model with the S&P 500 index as the sole factor on the 

cross-section of daily-rebalanced index option portfolio returns consisting of calls and puts of 

various maturities and moneyness yields an incredible monthly root mean squared (rms) error of 

12%. Yet the p-value is 32-34% and the model is not rejected. 

An important methodological contribution of this paper is the construction of a panel of 

leverage-adjusted (that is, with targeted market beta of one) monthly returns of 54 option 

portfolios split across type (27 call and 27 put portfolios), each with targeted time to maturity 

(30, 60, or 90 days), and targeted moneyness (0.90, 0.925, 0.95, 0.975, 1.00, 1.025, 1.05, 1.075, 

or 1.10). Each portfolio’s weights are daily adjusted to maintain its targeted beta, maturity, and 

moneyness. The major advantage of this construction is to lower the variance and skewness of 

the monthly portfolio returns and render the returns close to normal (about as close to normal as 

the index return), thereby making applicable the standard linear factor pricing methodology. 

Using our portfolios, we strongly reject a model with the S&P 500 index as the sole priced 

factor. For the first time, we can now test pricing models with factor premia estimated either 

from the universe of stocks (the 25 Fama-French portfolios) or the universe of the 54 option 

portfolios and contrast the results. 

We find that either one of two crisis-related factors (along with the market) reasonably 

explains the cross-section of call and put portfolio returns, reducing the monthly rms error from 

44-47 bps under the CAPM to about 20-24 bps when the factor premia are estimated from the 

universe of equities (13 bps using premia estimated from the universe of options). These are 

Jump, a factor that captures jumps in the price of the market index, and Volatility Jump, a factor 
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that captures jumps in market volatility. Figures 1 and 2 display the time series of Jump and 

Volatility Jump, respectively, and Table 1 displays their correlation. The series are highly 

correlated (-74%) and both capture major financial crises, including the October 1987 crash, the 

Asian financial crisis, the Russian default, 9/11, the WorldCom bankruptcy, and the Lehman 

bankruptcy. Furthermore, Jump and Volatility Jump reduce the pricing errors of the 25 Fama-

French portfolios by more than size or momentum and almost as much as value. These two 

factors capture much of the spirit of stochastic volatility and stochastic jump models (e.g. Bates 

(1996) and Eraker, Johannes, and Polson (2003)). 

 

[Table 1 and Figures 1 and 2 about here] 

 

Empirically, Volatility Jump performs better than Volatility itself since Volatility, as a 

factor, has rms error of 29 bps (13 bps using option based premia). Volatility is defined as the 

change in the implied volatility of our at-the-money index call portfolio. Volatility is plotted in 

Figure 3. Volatility is moderately correlated with Jump (-39%) and Volatility Jump (28%). It 

reaches peak values during the ’87 crash, the Russian default crisis, and the Lehman bankruptcy, 

among others. 

 

[Figure 3 about here] 

 

A fourth factor that works almost as well in explaining the cross-section of index option 

returns is the Pastor and Stambaugh (2003) Liquidity factor. The rms error is 28 bps (13 bps 

using option based premia). Figure 4 displays the time series of Liquidity. Liquidity is moderately 
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correlated with Jump (31%) and Volatility Jump (-28%) because, in addition to the above major 

financial crises, it captures other periods of changes in liquidity. Furthermore, Liquidity and 

Volatility are continuous measures whereas Jump and Volatility Jump are zero most of the time. 

A large number of additional factors entertained do not succeed in pricing the option returns. 

 

[Figure 4 about here] 

 

Whereas we cannot reject the hypothesis that any one of crisis-related factors 

incorporating price jumps, volatility jumps, and liquidity (along with the market) explains the 

cross-sectional variation in returns, even when the factor premia are constrained to equal the 

corresponding premia in the cross-section of equities, about a quarter of the abnormal return to 

selling short-maturity out-of-the-money (OTM) puts remains unexplained. To address this 

remaining issue, we consider two extensions of the above two-factor unconditional pricing 

models. In the first extension, we add a third factor. With the combination of Volatility Jump and 

Liquidity as factors, none of the alphas is statistically significant even with equity-based factor 

premia. In the second extension, we consider a conditional factor model where the factor premia 

are affine in the lagged level of Liquidity. This extension reduces the overall pricing error by 

merely one basis point. However, the abnormal return of short-dated OTM puts falls to zero. We 

interpret this finding to suggest that OTM puts are particularly sensitive to market conditions. 

Related research on factor models that address index option returns but without resorting 

to de-levering includes Cao and Huang (2008), Carverhill, Cheuk, and Dyrting (2009), Jones 

(2006), and Şerban, Lehoczky, and Seppi (2008). Specifically, by not resorting to de-levering, 
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the econometrics in Şerban, Lehoczky, and Seppi (2008) turns out to be more complicated than 

for our linear factor models. 

Unlike the earlier portfolio construction in Buraschi and Jackwerth (2001), we leverage-

adjust the portfolios on a daily basis to maintain the targeted beta of one and gross up the daily 

returns to obtain monthly returns. This treatment has the effect of decreasing the volatility and 

skewness of returns and rendering them closer to normal. We do not pool calls and puts in the 

same portfolios and, as we show, put returns provide a different set of challenges to the pricing 

models than call returns do. Finally, unlike Buraschi and Jackwerth (2001), we test a wide range 

of factors, some of them novel, and identify a set of crisis-related factors as the ones which 

explain the cross-section of option returns. 

The closest related studies to our work are two studies which look at index option returns 

and, at least initially, de-lever the positions but then do not keep on adjusting the positions. 

Coval and Shumway (2001) rejected the one-factor market model for the index option returns by 

showing that zero-beta at-the-money (ATM) straddles produce negative returns. Broadie, 

Chernov, and Johannes (2009) used similar straddles plus spreads and suggested that a jump 

factor helps explaining the option portfolio returns. Constantinides, Czerwonko, Jackwerth, and 

Perrakis (2011) and Constantinides, Jackwerth, and Perrakis (2009) also rejected the one-factor 

market model by showing that option portfolio strategies stochastically dominate the market 

portfolio. 

Our second connection to the literature is via the numerous suggested priced factors 

which may influence option returns over and above the market. Many of these models are 

critically discussed in Hull (2012), Jackwerth (2004), Lian (2011), McDonald (2013), and 

Singleton (2006). Individual factors have been suggested by Barro (2006), Bates (2008), Bollen 



7 

 

and Whaley (2004), Brennan, Liu, and Xia (2008), Buraschi, Trojani, and Vedolin (2011), 

Christoffersen, Heston, and Jacobs (2006), Drechsler and Yaron (2011), and Rietz (1988). None 

of these papers allows for the linear factor model specification of options returns as we present it 

in our paper. For related research on suggesting factors for individual stock options see Buraschi, 

Trojani, and Vedolin (2011), Christoffersen, Goyenko, Jacobs, and Karoui (2011), and Duarte 

and Jones (2007). 

The paper is organized as follows. In Section 1, we describe the data sets, filters, and the 

formation of option portfolios. We present our empirical results on crisis-related factors in 

Section 2. In Section 3, we consider two extensions, three-factor unconditional pricing models 

and conditional factor models. We conclude in Section 4. In the appendices, we present 

robustness tests and technical material. Additional results are contained in the online appendix. 

 

1. Data Sets, Filters, and Portfolio Formation 

 

A cross-section of index option returns of different moneyness and maturities presents a novel 

set of technical challenges. The first one is to obtain statistically significant variation in the 

cross-section of returns because estimation errors, which could be driven in part by data errors, 

may lead to the conclusion that even naïve models are consistent with the data—a point made by 

Broadie, Chernov, and Johannes (2009). We address this issue by constructing a cross-section of 

portfolios of options with different moneyness and maturity as opposed to individual options. We 

construct the return series of 54 portfolios of S&P 500 European style options (SPX). Each 

portfolio is made up of either calls or puts with one of nine target moneyness ratios, K/S = 0.90, 

0.925, 0.95, 0.975, 1.00, 1.025, 1.05, 1.075, and 1.10, and one of three target maturities, 30, 60, 
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or 90 days. Our data starts in April 1986 and ends in January 2012. We carry out our main tests 

over this time period. We verify the robustness of our results by also analyzing the subsample 

that excludes the destabilizing effects of the 1987 crash and the 2008 financial crisis. 

The second challenge is to generate portfolio returns that are stationary and only 

moderately skewed. We address this issue by deleveraging the portfolios to have a target market 

beta of one. In constructing a leverage-adjusted portfolio, we approximate the elasticity with 

respect to the index with the elasticity implied by the Black and Scholes (1973) and Merton 

(1973) (BSM) model, without, however, presuming that this elasticity equals the true elasticity 

with respect to the index: in our tests, we explicitly adjust for the market beta instead of asserting 

that it equals one. We also revise the portfolios daily in a way that the moneyness, maturity, and 

leverage of each portfolio remain fairly constant. The procedure significantly reduces the 

variability and skewness of returns and produces returns about as close to normal as the index 

itself. We validate our primary findings on monthly holding period returns with deleveraging but 

without daily rebalancing. 

The third challenge stems from the occasional lack of price quotes when we wish to trade 

out of an options position, which may lead to survivorship bias, look-ahead bias, or the revision 

of the portfolios at artificial prices. We address these problems and also demonstrate that our 

results are insensitive to the method of portfolio revision. 

 

1.1 Data sets 

The master Berkeley Options Database contains intraday quotes on individual SPX options from 

April 2, 1986 through December 31, 1995. To be consistent with the OptionMetrics database 

which reports only closing prices, we extract from the master Berkeley Options Database a 
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sample of closing prices and refer to it as the “Berkeley database”. We describe the construction 

of the Berkeley database in Appendix A. 

The OptionMetrics database contains end-of-day quotes from January 4, 1996 to January 

31, 2012. The end-of-day quotes are collected using a proprietary method similar to the one we 

outlined for the Berkeley database. OptionMetrics provides the dividend yield and open interest 

of each option contract, and we collect that as well. 

The bid-ask spreads of calls and puts, as a percentage of the average bid and ask prices, 

are generally similar for the Berkeley and OptionMetrics data sets. The spreads for ATM and in-

the-money (ITM) options are about 5%. The percentage spreads for OTM options are typically 

two to three times higher. 

 

1.2 Filters 

We sift the option prices through several filters to ensure that only options with reliable quotes 

enter our portfolios. The filtered data consist of 173,125 observations from the Berkeley database 

(52 % calls) and 824,397 observations from OptionMetrics (49 % calls). The filters are described 

in Appendix B. In the online appendix, we demonstrate robustness of our pricing results when 

we lift the filters. 

 

1.3 Portfolio formation 

We use the filtered data to form 54 portfolios, 27 made up of calls and 27 made up of puts, each 

with targeted time to maturity 30, 60, or 90 days and targeted moneyness 0.90, 0.925, 0.95, 

0.975, 1.00 1.025, 1.05, 1.075, or 1.10, where moneyness is the ratio of the strike price to the 

index price. 
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For each portfolio, we use a bivariate Gaussian weighting kernel in moneyness and days 

to maturity to calculate the option weights. The weighting kernel has bandwidths of 10 days to 

maturity and 0.0125 in moneyness, although alternative settings make little difference. We 

remove from the portfolio options with portfolio weight lower than 1% to reduce the effect of 

outliers on our targeted portfolios. The weights are normalized to sum to one. We recalculate 

each portfolio’s option weights and revise each portfolio daily. 

We calculate the one-day arithmetic return of an option under the assumption that we buy 

and sell it at its bid-ask midpoint. One may argue that transaction costs derail our rebalancing 

which is carried out at the bid-ask midpoints. Note that we motivate portfolio rebalancing as a 

statistical procedure for obtaining monthly portfolio returns with distribution close to normal 

rather than as an implementable trading strategy. As a robustness check, we validate our primary 

findings on monthly holding period returns without daily rebalancing and report the results in the 

online appendix. 

We convert an option’s one-day return to a leverage-adjusted return by calculating the 

one-day return of a hypothetical portfolio with 1
BSM  dollars invested in the option and 11 BSM  

dollars in the risk free rate, where 
BSM  is the BSM elasticity based on the implied volatility of 

the option. The BSM elasticity is    / / 1BSM BSMC S S C     for a call and 

   / / 1BSM BSMP S S P      for a put. A leverage-adjusted call option portfolio consists of a long 

position in a fraction of a call and some investment in the risk free rate; a leverage-adjusted put 

portfolio consists of a short position in a fraction of a put and more than 100% investment in the 

risk free rate. In the next step, we combine the leverage-adjusted option returns into portfolio 

returns using the weights obtained through the weighting kernel. Finally, we compound the daily 

portfolio returns into monthly returns. 
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If a held option has bid and ask quotes in the filtered data, we use the bid-ask midpoint as 

the trade-in or trade-out price; if it does not have bid and ask quotes in the filtered data but has 

quotes in the unfiltered data, we use the bid-ask midpoint of these quotes as the trade-out price. 

If not, we check if the option is about to expire in which case we use its expiration payoff as the 

trade-out price. If expiry is not imminent, we hold the option in the portfolio until it reappears, or 

until the end of the month, whichever comes first. If the option fails to reappear by the end of the 

month, we compute an interpolated price by fitting an implied volatility surface that is linear in 

maturity, quadratic in moneyness, and linear in the interaction of maturity and moneyness to the 

log implied volatilities of the available filtered options and use the fitted implied volatility to 

deduce a price for the missing option. When holding on to a missing option, we keep it on the 

books at the purchase price and rescale its weight, dividing it by the daily portfolio return to fix 

the original dollar investment in the option. When the option reappears, its new price reflects the 

cumulative return on the option throughout its time in the portfolio.1 All option portfolio returns 

are available on our websites. 

Statistics on missing options are displayed in Table 2. The problem of missing options is 

concentrated in the Berkeley database, where 19% of calls and 24% of puts go missing on the 

following trading day. While many of these options reappear before the end of the month, the 

process of carrying missing options on the books leads to more missing options at the end of the 

month than at the beginning. These two effects offset each other so that at the end of the month 

                                                 
1 For example, if we invest 2 cents in a call and the value of our portfolio doubles from $1 to $2 while the call is not 

traded, the weight of the call becomes 0.01. If the call then comes back and its price too has doubled, its weight is 

appropriately restored to 0.02, giving the correct cumulative portfolio return of 100%. In this way, we avoid any 

look-ahead bias and minimize the effect of missing options on the monthly portfolio return. Options that ultimately 

reappear do not introduce an error. 
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in the Berkeley database, 19% of calls and 24% of puts are interpolated based on a fitted implied 

volatility surface. By contrast, in OptionMetrics, only 0.1% of all observations ever go missing. 

 

[Table 2 about here] 

 

The aggregation of options into portfolios, the daily rebalancing of the portfolios, and the 

adjustment for leverage have the effect of moderating the highly skewed distribution of naked 

options held to maturity. In Table 3, the reported Jarque–Bera statistics, skewness, and excess 

kurtosis of the leverage-adjusted portfolios indicate that the deviation of the return distributions 

from normality is moderate. Specifically, the ATM put portfolios have skewness of about -0.9 

and excess kurtosis around 4 across all maturities. The ATM call portfolios have skewness near 

zero and excess kurtosis of about 0.8. By contrast, over the same period, the S&P 500 index has 

skewness of -0.8 and excess kurtosis of 2.3. The deep OTM put and call 30-day portfolios have 

the highest skewness (-1.57 and 1.39) and highest excess kurtosis (6.90 and 5.96). Table 4 shows 

the same statistics for unadjusted portfolios. Adjusting for leverage tends to reduce skewness and 

excess kurtosis by an order of magnitude for OTM call and put portfolios. We also report 

distributional statistics for long-short strategies across moneyness and maturity, which capture 

the cross-sectional differences in average returns. The returns of these strategies tend to be 

significantly less volatile but somewhat farther from normal. 

 

[Tables 3 and 4 about here] 
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The leverage adjustment of the options in our portfolios aims to make the monthly index 

betas of these portfolios close to one. These betas need not exactly equal one for two reasons. 

First, we leverage-adjust options using the elasticity implied by the BSM model which may not 

be the exact elasticity, if the BSM model is not applicable to these options. Second, we leverage-

adjust daily returns which we subsequently compound into monthly returns; this is not the same 

as leverage adjusting monthly returns. Indeed, the call portfolio monthly betas reported in Table 

3 are lower than one and as low as 0.56 while the put portfolio betas range from 0.93 to 1.08. 

These discrepancies are not a cause for concern because in the pricing tests we explicitly adjust 

for the market beta instead of presuming that it equals one. Table 3 also displays the average 

returns of the call and put portfolios. Both the 30-day and 90-day OTM call portfolios have 

higher average returns than the corresponding ITM calls. Also 30-day and 90-day OTM put 

portfolios have higher average returns than the corresponding ITM puts (recall that put portfolios 

have a short position in puts). 

 

[Table 5 about here] 

 

In Table 5, we examine the effect of our leverage adjustment on the nonlinearity of 

option portfolio returns. We run regressions of both our leverage-adjusted and leverage-

unadjusted returns on the return and the squared return of the S&P 500 index. As expected, the 

unadjusted portfolios have bigger loadings on the index return that are increasing in moneyness. 

The differences in loadings on the squared index return are even more substantial. For our 

leverage-adjusted put portfolios, almost all are within one standard error from zero, none are 

more than two, and point estimates are often negative. As for the leverage-unadjusted returns, 
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these loadings range from 11 to 195, and all are between two and four standard errors away from 

zero. For the call returns, the differences in magnitudes are similar: the adjusted returns have 

loadings between 1 and 3 versus 16 to 433 for the unadjusted returns, though in this case the 

adjusted return loadings also tend to be more than two standard errors away from zero. 

 

1.4 Econometric modeling 

We estimate the factor premia from the cross-section of option returns and test whether these 

premia explain the cross-section of option returns. As a stricter criterion, we also estimate the 

factor premia from the cross-section of the standard Fama-French 25 portfolios and test whether 

these premia explain the cross-section of option returns, thereby investigating the degree of 

integration or differential liquidity of the equity and option markets.2 Our approach consists of 

several stages and may potentially introduce unaccounted errors-in-variables. 

We deal with this issue by reporting bootstrapped standard errors and p-values calculated 

as follows. We calculate the factor betas of our option portfolios. Then we regress the average 

excess returns of the portfolios on their betas and record the estimated premia. In the second 

cross-sectional stage, we impose the restriction that the intercept, corresponding to the excess 

return on a zero-beta asset, is equal to zero. This restriction increases the power of our tests and 

ensures that we do not obtain spurious results whereby small differences in factor loadings across 

correlated portfolios, together with a large premium, appear to fit the cross section of option 

returns. We calculate a J-statistic to test the hypothesis that all portfolio pricing errors are zero. 

                                                 
2 This approach is in the spirit of the recommendation in Lewellen, Nagel, and Shanken (2010) to expand the set of 

test assets to include other portfolios. 
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To calculate our bootstrapped standard errors, we draw 10,000 simulations under the null 

of zero pricing error for each of our portfolios. Specifically, we subtract the estimated pricing 

errors from the returns of our portfolios and draw a sample of equal length to our underlying 

sample with replacement. Our sampling method assumes that returns are uncorrelated across 

months but allows for cross-sectional correlation. We then perform our two-stage pricing test and 

calculate a new set of betas, premia, and alphas for each run. We calculate bootstrapped standard 

errors as the standard deviation of the quantities in question. We calculate bootstrapped p-values 

by comparing our actual J-statistic to the J-statistics drawn under the null of zero alphas in the 

bootstrapped runs. 

 

2. Empirical Results for Unconditional Crisis-Related Factor Models 

 

As a preliminary step in our investigation, we allow for the S&P 500 index to be the sole factor, 

thereby testing the CAPM. The results are displayed in the first two columns of Table 6 and the 

two left-most panels of Figure 5. The alphas of all call portfolios are negative and statistically 

significant, irrespective of whether the factor premium is estimated from the universe of stocks 

or the universe of options. Thus calls are overpriced according to the CAPM. The alphas of the 

30-day OTM put portfolios are positive and statistically significant, irrespective of whether the 

market premium is estimated from the universe of stocks or the universe of options. Thus the 

short-maturity OTM puts are also overpriced according to the CAPM (recall that the put 

portfolios have a short position in puts). The alphas of most of the other put portfolios are not 

statistically different from zero. The monthly root-mean-squared (rms) pricing error is 44-47 bps 



16 

 

and the p-value is 1% or less. These results confirm well known results and, in particular, the 

overpricing of OTM puts. 

 

[Tables 6 and 7 and Figure 5 about here] 

 

In the first two columns of Table 7, we contrast the above results with tests of the CAPM 

using leverage-unadjusted option returns. The p-value is 34% (using stock-based premia) or 32% 

(using option-based premia) and the CAPM is not rejected even though the monthly rms error is 

1200 bps. This result illustrates the major advantage of using leverage-adjusted portfolio returns. 

There are only two sizeable principal components in the covariance structure of the 

option portfolios, accounting for 89% and 10% of the variance, respectively. This feature of the 

covariance structure guides our test design. In this section, we limit the pricing model to at most 

two factors at a time, with the market proxied by the S&P 500 index being always the first factor. 

Thus with each model we test one new factor at a time. In the next section, we also investigate 

three-factor models and conditional models. 

In our broad quest for factors that explain the cross-section of index option returns, we 

seek factors and their associated premia estimated from the universe of index options (along with 

the market factor and the equity market premium) which explain, at least in part, the variation 

across moneyness (the level and slope) and maturity of index option returns. Of all the factors 

that we consider, the crisis-related factors, Jump, Volatility Jump, Volatility, and Liquidity, are 

the only ones that meet this challenge. We thus concentrate on these factors which can be 

consistently estimated from either the universe of equities or options.3 

                                                 
3 We also explore a large number of alternative factors, namely, Market (equally- weighted), Size, Value, 
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Jump is defined as the sum of all daily returns of the S&P 500 that are lower than -4% 

within each month, zero if there are none; approximately 7% of the months have nonzero jump. 

Volatility Jump is defined as the sum of all daily increases in the ATM call portfolio implied 

volatility that are greater than 4%, zero otherwise; approximately 10% of the months have 

nonzero Volatility Jump. Volatility is defined as the end-of-the-month ATM call portfolio 

implied volatility minus the beginning-of-the-month ATM call portfolio implied volatility; using 

instead the CBOE-provided VIX shorter time-series does not significantly change the results. 

Finally, Liquidity is defined as the innovation of the market-wide liquidity factor proposed by 

Pastor and Stambaugh (2003) and provided by the Wharton Research Data Services. The factor 

correlations are displayed in Table 1. 

We show that the four crisis-related factors work reasonably well in explaining the cross-

section of option returns, even when we impose the stricter standard of estimating the premium 

from the universe of equities. The first panel of Table 6 displays the risk premia, betas, alphas, 

and pricing errors for each of these factors. We expect Jump to earn a positive premium as assets 

whose prices fall with the market are risky. We expect Volatility Jump and Volatility to earn 

negative premia because assets that have high returns during periods of increased volatility 

provide a useful hedge. We also expect the Liquidity premium to be positive because assets that 

                                                                                                                                                             
Momentum, Realized Volatility, Realized Volatility minus Implied Volatility, Implied Volatility Slope, Volume, 

Open Interest, OTM Put Volume, Bid-Ask Spread, Sentiment, SPF Dispersion, Retail Call Demand, Retail Put 

Demand, Default Spread, Term Spread, Sharpe Ratio, Riskfree Rate, Inflation, and GDP. We find that these factors 

improve option pricing only when we base the premia on the universe of options. The pricing performance 

deteriorates once we require equity-based premia. The results, reported in the online appendix, demonstrate that the 

task of finding factors with equity-based premia that can explain the cross section of option portfolio returns is a 

non-trivial one. 
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covary positively with Liquidity are risky. The premia estimated from the universe of equities 

have the right signs and are statistically significant but for Volatility. The premia estimated from 

the universe of options have the right signs, are not significantly different from zero (but for 

Volatility), and are not significantly different from their counterparts estimated from the universe 

of equities. 

The second and third panels of Table 6 display the betas and alphas of call portfolios for 

selected moneyness and maturities. The Jump betas of the call portfolios are negative and 

statistically significant, consistent with the intuition that calls provide downside protection. The 

Jump betas of the put portfolios are not statistically significant but are positive, as to be expected, 

since our leverage-adjusted portfolios hold puts short, which exposes them to downside risk. The 

call portfolios have positive Volatility Jump and Volatility betas that are increasing both in 

magnitude and statistical significance towards the OTM call portfolios. This is intuitive since 

buying calls, in general, and OTM calls in particular, is a positive bet on volatility. Conversely, 

selling puts is a negative bet on volatility and the put portfolios have negative betas that become 

larger and more statistically significant in the direction of the OTM put portfolios. The 

differential sign and variation across moneyness of the loadings of our portfolios with respect to 

Jump, Volatility Jump, and Volatility allow these factors to capture the variation in option 

portfolio returns. By comparison, the Liquidity betas of the option portfolios are generally small 

and insignificant. 

Each of the four factors does a good job at pricing the level of call returns. None of the 

call alphas is statistically different from zero, irrespective of whether the premium is estimated 

from the universe of equities or the universe of options. The alphas of put returns drop to 4-28 

bps from up to 84 bps when the premium is estimated from the universe of options but some 
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alphas are statistically different from zero. Figure 5 illustrates these results. The predicted and 

actual average returns of our put portfolios are more strongly aligned under each of our four two-

factor models than under the single-index model. Whereas the S&P 500 index generates almost 

no variation in predicted returns among put portfolios, our crisis factors are able to differentiate 

them regardless of whether the factor premium is estimated among stocks or options. 

For Jump, Volatility Jump, Volatility, and Liquidity, the rms pricing error of the option 

returns is 24 bps (p-value 5%), 20 bps (p-value 39%), 29 bps (p-value 1%), and 28 bps (p-value 

13%), respectively, when the premium is estimated from the universe of equities and drops 

further to 13 bps (p-value 21%), 13 bps (p-value 51%), 13 bps (p-value 8%), and 13 bps (p-value 

61%), respectively, when the premium is estimated from the universe of options. These numbers 

contrast to the rms error of 47 bps obtained from the single-factor model with the S&P 500 index 

as the only factor and premium estimated from the universe of equities. Thus, each one of the 

factors Jump and Volatility Jump, and, to a lesser extent, Volatility and Liquidity is able to 

account for a large part of the level of option portfolio returns, even when their premium is 

estimated among equities. 

In the online appendix, we report results for the portfolios without daily rebalancing. The 

point estimates become noisier as the portfolios are farther from normal. The pricing errors are 

higher, but the four crisis-related factors continue to improve pricing even with equity-based 

premia. We also report results when we focus on the OptionMetrics subsample, 1996-2012. 

Jump and Volatility continue to do well and Volatility Jump does well with an option-based 

premium but less so with an equity-based premium. The ability of Liquidity to price the cross-

section of options and equities is reduced, and the estimated premium is statistically different 

between the two markets. In a further robustness test reported in the online appendix, we omit 
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the 1987 crash and the 2008 financial crisis from the sample 1986-2012. As the crises comprise 

the most pronounced episodes for our Jump and Volatility Jump factors, their explanatory power 

is reduced, while Volatility remains strong. We view the crises as revealing important risks 

associated with options and therefore choose to focus on the full sample. 

Frazzini and Pedersen (2011) argued that securities with embedded leverage have higher 

prices because they allow investors to take levered positions without borrowing. The results in 

Table 3 support this hypothesis. Both 30-day and 90-day OTM call portfolios have lower 

average returns than the corresponding ITM calls. Also 30-day and 90-day OTM put portfolios 

have higher average returns than the corresponding ITM puts (recall that put portfolios have a 

short position in puts). The same results obtain in Table 6 when the alphas are adjusted for 

market beta. However, this pattern is weakened and, in some instances, reversed when we 

introduce Jump, Volatility Jump, Volatility, or Liquidity as a second factor. For example, the 

pattern is reversed in Table 6 for both call and put portfolios when the alphas are also adjusted 

for exposure to Liquidity with an option-based Liquidity premium. It appears that the returns of 

the OTM calls and puts are systematically related to market conditions. 

Reiterating the importance of using adjusted returns, we compare the results to Table 7 

where we use unadjusted returns. Few estimates are significant and the results are noisy. The p-

values are 53-64% and we cannot reject the pricing tests at all. 

 

3. Empirical Results for Unconditional 3-Factor and Conditional Models 

 

We have established that we cannot reject the hypothesis that any one of crisis-related factors 

incorporating price jumps, volatility jumps, and liquidity (along with the market) explains the 
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cross-sectional variation in option returns, even when the factor premia are constrained to equal 

the corresponding premia in the cross-section of equities. We explore whether we can further 

reduce the pricing errors and, in particular, reduce the alphas of portfolios that sell short-maturity 

OTM puts. 

In the first extension, we consider a number of combinations of Jump, Volatility Jump, 

Volatility, and Liquidity (along with the market) as 3-factor unconditional linear pricing models. 

The results are displayed in Table 8. With equity-based factor premia, none of the alphas is 

statistically significant. The pricing errors decrease from 20-29 bps for the two-factor models to 

16-27 bps for the three-factor models; the best-performing model has Volatility Jump and 

Liquidity as factors (along with the market). With option-based premia, the pricing errors 

decrease by 1 bp or less. We conclude that the extension to 3-factor models is moderately 

valuable. 

 

[Table 8 about here] 

 

In the second extension, we consider conditional 2-factor models where the premia are 

affine in the level of Liquidity. The results are displayed in Table 9. The conditional models do 

not lead to an improvement in overall fit as measured by the rms pricing errors. However, the 

conditional model featuring Volatility Jump with an equity-based premium leads to a negligible 3 

bps pricing error for our most puzzling portfolio, the one made up of 30-day OTM puts. The 

model does slightly worse on the other put portfolios, so the overall fit improves only 

marginally. Our interpretation is that short-dated OTM puts are particularly vulnerable to market 



22 

 

conditions. Alternative conditioning variables are presented in the online appendix with largely 

negative results. 

 

[Table 9 about here] 

 

We conclude that 3-factor unconditional models (in particular, the combination of 

Volatility Jump and Liquidity as factors along with the market) improve upon the 2-factor models 

in explaining the cross-section of option returns. Conditional models do not improve upon 

unconditional ones overall, but conditioning on Liquidity in our model with Volatility Jump and 

an equity-based premium eliminates the pricing error on short-maturity OTM puts. 

 

4. Concluding Remarks 

 

We established that the leverage-adjusted returns on S&P 500 index options strongly reject the 

predictions of the Black-Scholes-Merton model. We then considered a wide range of 

unconditional factor pricing models, where the factor premia are estimated either from the 

universe of equities or the universe of options. Of all the factors that we considered, the four 

crisis-related factors, Jump, Volatility Jump, Volatility, and Liquidity are the only ones that work 

reasonably well in explaining the cross-section of index option returns. Furthermore, in a model 

with Volatility Jump using Liquidity as a conditioning variable and an equity-based premium, 

the pricing error on short-dated OTM puts disappears.  

An important methodological contribution of the paper is the construction (and public 

availability) of a panel of de-levered monthly returns of option portfolios split across type, 
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maturity, and moneyness. This construction lowers the skewness of the monthly portfolio returns 

and renders them close to normal thereby allowing the future exploration of alternative linear 

factor models and linear forecasting models. 
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Appendix A: Data sets 

The master Berkeley Option Database consists of intraday quotes on individual options and we 

seek to extract a single end-of-day cross section of quotes, comparable to the quotes provided by 

OptionMetrics in the latter part of our sample. In addition, we seek to avoid the issue of non-

synchronous trading. To that end, on each trading day, we find the minute between 3:00 PM and 

4:00 PM Central Standard Time with the largest number of simultaneous quotes. We stop at 4:00 

PM because the market closes at 4:15 PM and we wish to avoid contamination relating to last 

minute trading activity. We record all option quotes in that minute. 

Next we add not so far recorded quotes in the adjacent minutes within the same hour one 

after the other. Here, we assume that the implied volatilities stay constant within that final hour 

of the day. Based on this assumption, we create hypothetical option prices for the option in 

adjacent minutes. About half of our observations from the Berkeley database are obtained from a 

single minute. The pattern of returns across our portfolios remains unchanged if we use only the 

observations obtained from the single minute. 

We also record the intraday volume of each of our end-of-day options, as well as total 

daily call volume and total daily put volume. We further collect the present value of all realized 

dividend payments during the remaining life of each option, discounting with the relevant 

constant maturity T-bill rate from the H.15 statistical release of the Federal Reserve. We work 

out the associated continuously compounded dividend yield. 
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Appendix B: Filters 

We apply three levels of filters designed to minimize possible quoting errors.  In constructing our 

portfolios, we apply these filters on the trade-in (buy) side to make sure that we are buying into 

reliable quotes. Applying our filters on the buy side minimizes the problem of having to make up 

trade-out prices for options that were bought but cannot be sold due to missing observations. 

When we seek to exit our position, if no quote is available in the filtered data, we look for a price 

in the raw data. The filters are described below. 

 

Level 1 filters: 

“Identical” filter  The OptionMetrics data set contain duplicate observations, defined as two or 

more quotes with identical option type, strike, expiration date, and price. In each such case, we 

eliminate all but one of the quotes. 

“Identical except price” filter  There are a few sets of quotes with identical terms (type, strike, 

and maturity) but different prices. When this occurs, we keep the quote whose T-Bill-based 

implied volatility is closest to that of its moneyness neighbors, and delete the others. 

“Bid = 0” filter  We remove quotes of zero for bids thereby avoiding low valued options.  Also, a 

zero bid may indicate censoring as negative bids cannot be recorded. 

 

Level 2 filters: 

“Days to maturity <7 or >180” filter  We remove all options with fewer than 7 or more than 180 

calendar days to expiration. The short maturity options tend to move erratically close to 

expiration and the long maturity options lack volume and open interest. 
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“IV<5% or >100%” filter  We remove all option quotes with implied volatilities lower than 5% 

or higher than 100%, computed using T-Bill interest rates. Such extreme values likely indicate 

quotation problems or simply low value. 

“Moneyness <0.8 or >1.2” filter  We remove all option quotes with moneyness, the ratio of strike 

price to index price, below 0.8 or above 1.2. These options have little value beyond their intrinsic 

value and are also very thinly traded. 

“Implied interest rate <0” filter  When filtering outliers we use T-Bill interest rates to compute 

implied volatilities. T-Bill interest rates are obtained from the Federal Reserve’s H.15 release. 

We assign a T-Bill rate to each observation by assuming that we can use the next shortest rate if 

the time to expiration of the option is shorter than the shortest constant maturity rate. 

Our goal is to obtain an interest rate that is as close as possible to the one faced by 

investors in the options market. It appears that the T-Bill rates are not the relevant ones when 

pricing these options. Specifically, when the T-Bill rates are used, put and call implied 

volatilities do not line up very well; for example the T-Bill rate tends to be too high for short 

maturity options, perhaps because no T-Bill has maturity of less than a month. To address these 

issues, we compute a put-call-parity-implied interest rate. Since we believe that put-call parity 

holds reasonably well in this deep and liquid European options market, we use the put-call-parity 

implied interest rate as our interest rate in the remainder of the paper and for further filters. 

To construct this rate, we take all put-call pairs of a given maturity and impose put-call 

parity using the bid-ask midpoint as the price, and allowing the interest rate to adjust. We remove 

89,563 pairs with a negative implied interest rate. We then take the median implied interest rate 

across all remaining pairs of the same maturity with moneyness between 0.95 and 1.05 and 

assign it to all quotes with that maturity. We are able to directly assign an implied interest rate to 
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93% of our sample in this way. We fill in the gaps by interpolating across maturities and if 

necessary, across days. Our implied interest rate is on average 54 basis points above the T-Bill 

rate. 

“Unable to compute IV” filter We remove quotes that imply negative time value. 

 

Level 3 filters: 

“IV” filter  We remove implied volatility outliers to reduce the prevalence of apparent butterfly 

arbitrage. For each date and maturity, we fit a quadratic curve (separately to puts and calls) 

through the observed log implied volatilities. We calibrate a confidence band around all curves 

using the entire sample. Combining the information from all days and maturities in the sample, 

we compute a typical (one standard deviation) relative distance in percent from the level of the 

fitted curve for different levels of moneyness (0.8, 0.85, …, 1.2). Thus, for each fitted IV curve, 

we compute the relative distance of all option IVs from the fitted IV curve and we calculate the 

standard deviation of these relative distances for each moneyness bin. In a second pass, we check 

for each option’s IV, how many standard deviations it is apart from the fitted IV curve. These 

distances are tight in and around the money (about 2%) and wide in the out of the money range 

(around 3.5%). 

“Put-call parity” filter  For every put-call pair with the same date, maturity, and moneyness, we 

insure that put-call parity holds and that violations are eliminated. Thus, for each put-call pair, 

we find the bid-ask midpoint put-call-parity implied interest rate. Next, we trim outliers in a 

similar way as with the IV filter. Specifically, we use the whole sample of distances of the put-

call parity implied interest rates from the corresponding daily median implied interest rate to find 
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the standard deviation of the corresponding distances. This distance is computed to be about 90 

basis points. 

We record the number of observations at each filtering level in Table A.1. Before the 

application of the filters, the Berkeley database consists of 269,460 observations and the 

OptionMetrics database consists of 3,410,396 observations. Level 1 filters eliminate 8% of the 

prices from the OptionMetrics database but none from the Berkeley database. Level 2 filters 

eliminate about 28% of the observations from Berkeley and as many as 66% from OptionMetrics 

(mostly the maturity filter) and level 3 filters eliminate 10% of observations from each dataset. 

We also note that our filters produce 124 trading days with no surviving observations. These 

dropped days represent less than 2% of the trading days in our sample and since they are 

determined without the use of forward-looking information, we safely do not rebalance our 

portfolios during those days. 

 

[Table A.1 about here] 

 

Next, we compute implied volatilities based on the put-call parity implied interest rate, 

and 95% of these are within 1.4% of the T-Bill implied volatilities. In the remainder of the paper, 

we work exclusively with these implied volatilities. 
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Table 1. Pairwise correlations of our principal factors, April 1986 to January 2012. S&P is the excess return on the S&P 500 index. Jump is the 

sum of all daily S&P 500 returns lower than -4% in a given month, zero if there are none. Volatility Jump is the sum of all daily increases in the 

ATM call portfolio implied volatility that are greater than 4%, zero otherwise. Volatility is the ATM call portfolio implied volatility at the end of 

the month minus its value at the beginning of the month. Liquidity is the innovation in market-wide liquidity proposed by Pastor and Stambaugh 

(2003). 

 

 
  Jump Volatility Jump Volatility Liquidity

S&P 0.43 -0.44 -0.60 0.29

Jump -0.74 -0.39 0.31

Volatility Jump 0.28 -0.28

Volatility       -0.30
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Table 2. Summary statistics for the call and put portfolios, April 1986 to January 2012. Filters are applied on the buy side but relaxed on the sell 

side. Found observations are those options with records on the day following the purchase day. (If the same option is bought and sold two days in 

a row, it will appear as being found twice.) Missing observations are those options that disappear on the day following the day on which they 

were purchased. (If an option remains missing for two days, it is counted as missing twice.) Expired observations are options that expire while 

being held as missing in the portfolio. Expired options are assigned their exercise value. Missing options are held until found, or their implied 

volatility is interpolated at the end of the month using a fit quadratic in moneyness and linear in maturity and the interaction between moneyness 

and maturity in log implied volatility. 

 

  Calls   Puts 

Observations Berkeley OptionMetrics   Berkeley OptionMetrics 

All trading days 

Found 67,652 81% 314,784 100% 62,922 76% 327,199 100%

Missing 15,714 19% 336 0% 20,267 24% 311 0%

Expired 219 0% 14 0% 324 0% 19 0%

Last trading day of the month 

Found 3,655 81% 15,550 100% 3,438 76% 15,856 100%

Interpolated 876 19% 42 0%   1,094 24% 34 0%
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Table 3.  Average percentage monthly returns of the leverage-adjusted portfolios with daily rebalancing, April 1986 to January 2012. We omit 

portfolios with moneyness 0.925, 0.975, 1.025, 1.075 and maturity 60 days to conserve space. For comparison, the S&P 500 has average return 

0.86%, volatility 4.57%, skewness -0.82, excess kurtosis 2.30, and Jarque-Bera p-value 0.00. 

  Calls     Puts 

K/S 90.0% 95.0% 100.0% 105.0% 110.0% Hi-Lo   90.0% 95.0% 100.0% 105.0% 110.0% Hi-Lo

  Average returns 

30 days 0.49 0.42 0.21 0.03 -0.02 -0.51 2.18 1.66 1.07 0.80 0.75 -1.43

(s.e.) (0.24) (0.24) (0.24) (0.23) (0.22) (0.17) (0.36) (0.32) (0.29) (0.27) (0.26) (0.20)

90 days 0.51 0.44 0.37 0.31 0.21 -0.30 1.15 1.10 0.91 0.81 0.74 -0.40

(s.e.) (0.24) (0.24) (0.24) (0.24) (0.24) (0.11) (0.33) (0.31) (0.29) (0.27) (0.27) (0.14)

90-30 0.03 0.02 0.16 0.28 0.23 -1.04 -0.55 -0.16 0.00 -0.01

(s.e.) (0.02) (0.02) (0.03) (0.06) (0.11) (0.11) (0.07) (0.03) (0.02) (0.02)

  Volatility 

30 days 4.28 4.20 4.15 4.08 3.94 2.97 6.33 5.66 5.11 4.72 4.57 3.46

90 days 4.20 4.16 4.16 4.18 4.18 1.94 5.84 5.41 5.06 4.82 4.68 2.39

90-30 0.35 0.34 0.49 1.14 1.98 1.95 1.23 0.54 0.42 0.42

  Skewness 



35 

 

30 days -0.26 -0.19 0.02 0.58 1.39 1.28 -1.57 -1.24 -0.89 -0.63 -0.51 1.64

90 days -0.21 -0.11 0.03 0.25 0.47 1.42 -1.16 -1.02 -0.86 -0.70 -0.61 1.43

90-30 1.95 0.48 -0.30 -0.69 -0.15 0.11 1.17 0.08 -0.57 -0.87

  Excess kurtosis 

30 days 0.65 0.68 0.81 2.26 5.96 4.12 6.90 5.03 4.10 2.75 1.86 6.67

90 days 0.60 0.62 0.75 1.10 1.45 4.88 5.11 4.60 3.64 3.05 2.45 4.45

90-30 9.84 3.71 3.09 1.77 5.11 4.64 6.92 1.90 2.40 4.28

  Jarque-Bera normality test p-value 

30 days 0.02 0.03 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90 days 0.03 0.05 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

90-30 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

  S&P betas 

30 days 0.88 0.86 0.82 0.71 0.56 -0.32 1.08 1.02 0.99 0.96 0.93 -0.14

90 days 0.86 0.85 0.83 0.79 0.74 -0.13 1.06 1.03 1.00 0.97 0.95 -0.11
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Table 4:  Average percentage monthly returns of the leverage-unadjusted portfolios with daily rebalancing, April 1986 to January 2012. We omit 

portfolios with moneyness 0.925, 0.975, 1.025, 1.075 and maturity 60 days to conserve space. For comparison, the S&P 500 has average return 

0.86%. volatility 4.57%, skewness -0.82, excess kurtosis 2.30, and Jarque-Bera p-value 0.00. 

  Calls     Puts 

K/S 90.0% 95.0% 100.0% 105.0% 110.0% Hi-Lo   90.0% 95.0% 100.0% 105.0% 110.0% Hi-Lo

  Average returns 

30 days 0.2 -1.4 -3.9 7.9 12.4 12.2 -50.6 -40.5 -28.4 -12.5 -7.0 43.5

(s.e.) (2.1) (3.3) (8.5) (26.6) (27.3) (26.3) (7.8) (9.6) (5.9) (3.6) (2.5) (6.4)

90 days 0.7 0.1 0.4 6.1 2.7 1.9 -14.3 -16.3 -11.9 -8.5 -5.7 8.6

(s.e.) (1.7) (2.4) (4.1) (7.8) (9.3) (8.1) (6.7) (4.4) (3.6) (2.7) (2.2) (5.3)

90-30 0.5 1.6 4.4 -1.8 -9.7 36.2 24.1 16.4 3.9 1.3

(s.e.) (0.4) (1.0) (5.1) (22.1) (22.2) (4.4) (6.1) (2.7) (1.1) (0.5)

  Volatility 

30 days 37 59 151 469 480 464 137 170 103 64 44 113

90 days 31 43 72 138 164 144 118 78 64 48 38 93

90-30 7 18 90 389 391 77 107 47 21 9

  Skewness 

30 days 0  1  5  10  9 9  6  9 5 2 1 ‐7
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90 days 0  1  3  5  4 5  8  5 3 2 1 ‐11

90-30 ‐1  ‐2  ‐6  ‐12  ‐11 ‐7  ‐10 ‐7 ‐3 ‐1

  Excess kurtosis 

30 days 1 6 40 125 97 102 55 114 56 11 4 59

90 days 1 6 24 40 31 37 112 46 24 7 4 166

90-30 3 9 53 175 150 81 118 79 19 4

  Jarque-Bera normality test p-value 

30 days 0 0 0 0 0 0 0 0 0 0 0 0

90 days 0 0 0 0 0 0 0 0 0 0 0 0

90-30 0 0 0 0 0 0 0 0 0 0

  S&P betas 

30 days 7 10 18 33 35 28 -18 -22 -17 -12 -8 9

90 days 6 8 11 17 19 13 -17 -13 -11 -9 -7 9
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Table 5: Regressions of option portfolio returns on the S&P 500 return and the squared S&P 500 return, leverage-adjusted (panel A) and 

leverage-unadjusted portfolios (panel B).  The leverage-adjusted portfolios use elasticity scaling, the leverage-unadjusted portfolio do not.  The 

sample covers April 1986 through January 2012. 

Calls Puts 

K/S 90.0% 95.0% 100.0% 105.0% 110.0%   90.0% 95.0% 100.0% 105.0% 110.0%

Panel A: Leverage-adjusted option portfolios 

Loading on S&P 500 return 

30 days 0.91 0.89 0.86 0.77 0.64 1.01 0.97 0.98 0.96 0.94

(s.e.) (0.02) (0.03) (0.03) (0.04) (0.06) (0.06) (0.05) (0.04) (0.03) (0.03)

90 days 0.89 0.88 0.88 0.85 0.80 1.01 0.99 0.98 0.96 0.95

(s.e.) (0.02) (0.03) (0.03) (0.04) (0.04) (0.05) (0.04) (0.04) (0.03) (0.03)

Loading on the squared S&P 500 return 

30 days 1.06 1.28 1.75 2.33 3.00 -2.62 -1.69 -0.72 0.00 0.20

(s.e.) (0.48) (0.42) (0.40) (0.44) (0.65) (1.36) (1.26) (0.98) (0.78) (0.67)

90 days 1.11 1.38 1.72 2.15 2.31 -1.86 -1.26 -0.69 -0.24 0.02

(s.e.) (0.44) (0.42) (0.38) (0.39) (0.48) (1.00) (1.00) (0.90) (0.85) (0.74)
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Panel B: Leverage-unadjusted option portfolios 

Loading on S&P 500 return 

30 days 7.77 11.85 22.67 43.72 47.20 -13.31 -15.45 -14.22 -11.49 -8.44

(s.e.) (0.30) (0.79) (3.82) (13.93) (13.59) (1.97) (2.40) (1.09) (0.61) (0.37)

90 days 6.61 9.04 13.63 21.56 24.08 -13.48 -11.44 -10.55 -8.95 -7.45

(s.e.) (0.23) (0.53) (1.39) (3.36) (3.68) (1.46) (0.73) (0.54) (0.39) (0.29)

Loading on the squared S&P 500 return 

30 days 20.06 47.48 154.31 393.36 433.24 195.22 250.74 120.46 36.53 12.80

(s.e.) (3.40) (10.50) (59.88) (200.64) (203.07) (36.38) (77.84) (32.64) (10.55) (5.79)

90 days 16.30 32.77 70.09 143.07 165.92 157.22 85.31 52.65 22.77 11.00

(s.e.) (2.49) (7.26) (21.74) (54.25) (58.74)  (57.28) (20.90) (12.27) (5.76) (4.10)
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Table 6:  Asset pricing tests with selected factors, April 1986 to January 2012. The stock-based (option-based) results estimate factor premia 

from the 25 Fama-French portfolios (54 option portfolios). We report betas (factor loadings) and pricing errors (alphas) for four representative 

portfolios (the rest fall in between). We run two-stage OLS with 10,000 bootstrap simulations. We report bootstrapped standard errors, root-

mean-squared pricing errors, and a bootstrapped p-value for the joint hypothesis that all pricing errors are zero. 

  Factor premia 

1st factor S&P S&P S&P S&P S&P 

Stock-based 0.63 (0.30) 0.51 (0.28) 0.57 (0.30) 0.53 (0.27) 0.48 (0.30)

Option-based 0.46 (0.27) 0.55 (0.41) 0.47 (0.32) 0.36 (0.28) 0.62 (0.59)

Difference 0.17 (0.16) -0.04 (0.33) 0.11 (0.23) 0.17 (0.17) -0.14 (0.59)

2nd factor 
 

Jump Volatility Jump Volatility Liquidity 

Stock-based 
 

1.27 (0.78) -3.73 (1.70) -1.04 (0.84) 5.81 (2.19)

Option-based 
 

2.32 (1.31) -4.98 (3.10) -1.87 (0.48) 13.91 (11.37)

Difference 
 

-1.05 (1.50) 1.24 (3.41) 0.83 (0.90) -8.10 (11.47)

  Call portfolios 

Betas (for 2nd factor) 

30 days, 95% 0.86 (0.04) -0.19 (0.05) 0.06 (0.02) 0.13 (0.05) -0.03 (0.03)

30 days, 105% 0.71 (0.06) -0.28 (0.08) 0.12 (0.04) 0.29 (0.06) -0.06 (0.03)
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90 days, 95% 0.85 (0.04) -0.19 (0.05) 0.07 (0.02) 0.14 (0.05) -0.03 (0.03)

90 days, 105% 0.79 (0.05) -0.27 (0.07) 0.12 (0.03) 0.25 (0.06) -0.04 (0.03)

Alphas (using stock-based premia) 

30 days, 95% -0.45 (0.17) -0.14 (0.20) -0.19 (0.22) -0.27 (0.16) -0.17 (0.22)

30 days, 105% -0.74 (0.20) -0.34 (0.29) -0.29 (0.31) -0.45 (0.28) -0.31 (0.28)

90 days, 95% -0.42 (0.17) -0.10 (0.21) -0.15 (0.22) -0.24 (0.16) -0.12 (0.22)

90 days, 105% -0.51 (0.19) -0.12 (0.27) -0.07 (0.29) -0.25 (0.25) -0.16 (0.25)

Alphas (using option-based premia) 

30 days, 95% -0.31 (0.07) 0.02 (0.07) -0.01 (0.08) 0.00 (0.03) -0.09 (0.15)

30 days, 105% -0.62 (0.14) -0.07 (0.09) -0.04 (0.09) -0.05 (0.06) 0.05 (0.23)

90 days, 95% -0.28 (0.07) 0.06 (0.06) 0.03 (0.06) 0.03 (0.03) 0.00 (0.13)

90 days, 105% -0.38 (0.12) 0.13 (0.06) 0.17 (0.08) 0.12 (0.04) 0.05 (0.16)

  Put portfolios 

Betas (for 2nd factor) 

30 days, 95% 1.03 (0.06) 0.23 (0.15) -0.12 (0.05) -0.42 (0.12) 0.04 (0.06)

30 days, 105% 0.96 (0.04) 0.00 (0.10) -0.02 (0.03) -0.11 (0.08) -0.02 (0.04)

90 days, 95% 1.04 (0.05) 0.16 (0.12) -0.09 (0.05) -0.33 (0.10) 0.02 (0.05)
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90 days, 105% 0.97 (0.04) 0.02 (0.10) -0.03 (0.03) -0.14 (0.08) -0.01 (0.04)

Alphas (using stock-based premia) 

30 days, 95% 0.66 (0.21) 0.54 (0.34) 0.33 (0.33) 0.48 (0.41) 0.61 (0.30)

30 days, 105% -0.14 (0.16) -0.02 (0.19) -0.14 (0.19) -0.12 (0.18) 0.10 (0.23)

90 days, 95% 0.11 (0.18) 0.06 (0.27) -0.12 (0.26) -0.02 (0.32) 0.14 (0.25)

90 days, 105% -0.14 (0.16) -0.05 (0.20) -0.19 (0.19) -0.14 (0.19) 0.08 (0.23)

Alphas (using option-based premia) 

30 days, 95% 0.84 (0.14) 0.27 (0.10) 0.28 (0.09) 0.27 (0.06) 0.17 (0.25)

30 days, 105% 0.03 (0.04) -0.07 (0.10) -0.05 (0.11) -0.06 (0.04) 0.09 (0.16)

90 days, 95% 0.28 (0.10) -0.15 (0.06) -0.12 (0.08) -0.16 (0.04) -0.19 (0.17)

90 days, 105% 0.02 (0.04) -0.11 (0.08) -0.13 (0.06) -0.11 (0.04) 0.04 (0.14)

  Stock portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.25 (0.00) 0.24 (0.00) 0.23 (0.00) 0.25 (0.00) 0.21 (0.01)

  Option portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.47 (0.01) 0.24 (0.05) 0.20 (0.39) 0.29 (0.01) 0.28 (0.13)

  Option portfolio test statistics (using option-based premia) 

R.m.s. (p) 0.44 (0.00) 0.13 (0.21) 0.13 (0.51) 0.13 (0.08) 0.13 (0.61)
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Table 7:  Asset pricing tests on leverage-unadjusted portfolios with selected factors, April 1986 to January 2012. The stock-based (option-based) 

results estimate factor premia from the 25 Fama-French portfolios (54 option portfolios). We report betas (factor loadings) and pricing errors 

(alphas) for four representative portfolios (the rest fall in between).  We run two-stage OLS with 10,000 bootstrap simulations. We report 

bootstrapped standard errors, root-mean-squared pricing errors, and bootstrapped p-values for the hypothesis that all pricing errors are zero. 

  Factor premia 

1st factor S&P S&P S&P S&P S&P 

Stock-based 0.63 (0.30) 0.51 (0.28) 0.57 (0.31) 0.53 (0.27) 0.48 (0.30)

Option-based 0.75 (0.33) 0.92 (0.61) 1.19 (0.58) 1.03 (0.48) 0.86 (0.50)

Difference -0.12 (0.30) -0.41 (0.53) -0.62 (0.51) -0.50 (0.36) -0.38 (0.44)

2nd factor 
 

Jump Volatility Jump Volatility Liquidity 

Stock-based 
 

1.27 (0.79) -3.73 (1.71) -1.04 (0.85) 5.81 (2.17)

Option-based 
 

1.60 (2.37) -5.34 (4.92) -1.52 (0.84) 3.69 (4.52)

Difference 
 

-0.33 (2.44) 1.61 (5.05) 0.48 (1.03) 2.12 (5.07)

  Call portfolios 

Betas (for 2nd factor) 

30 days, 95% 10.54 (0.94) -2.79 (1.04) 0.89 (0.40) 3.98 (1.21) -0.14 (0.56)

30 days, 105% 32.22 (11.21) -15.23 (6.81) 6.60 (2.92) 26.93 (10.38) -6.41 (4.37)

90 days, 95% 8.15 (0.65) -2.04 (0.71) 0.70 (0.27) 2.77 (0.89) -0.21 (0.37)
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90 days, 105% 17.61 (3.13) -6.91 (2.39) 2.96 (1.16) 12.69 (4.66) -1.61 (1.38)

Alphas (using stock-based premia) 

30 days, 95% -8.52 (2.59) -4.14 (3.26) -4.96 (3.34) -4.48 (3.82) -6.09 (3.46)

30 days, 105% -12.51 (19.72) 8.21 (25.81) 11.05 (25.72) 10.38 (31.85) 28.42 (31.45)

90 days, 95% -5.36 (1.86) -2.11 (2.32) -2.58 (2.42) -2.51 (2.67) -2.93 (2.47)

90 days, 105% -5.28 (6.19) 4.49 (8.34) 5.48 (8.90) 5.81 (12.61) 6.45 (9.37)

Alphas (using option-based premia) 

30 days, 95% -9.75 (2.38) -7.92 (4.35) -10.45 (4.32) -9.01 (3.48) -10.45 (4.71)

30 days, 105% -16.28 (10.61) -2.09 (8.61) -1.38 (8.55) -0.83 (7.44) 1.50 (12.46)

90 days, 95% -6.31 (1.90) -5.05 (3.48) -6.82 (3.26) -6.07 (2.78) -6.53 (3.40)

90 days, 105% -7.34 (4.21) -1.40 (5.45) -2.04 (5.31) -0.67 (5.05) -3.94 (5.89)

  Put portfolios 

Betas (for 2nd factor) 

30 days, 95% -21.40 (6.44) -18.53 (12.22) 2.56 (2.90) 16.71 (8.32) -6.41 (4.02)

30 days, 105% -12.20 (0.93) 0.36 (1.70) -1.04 (0.42) 2.41 (0.88) -0.56 (0.49)

90 days, 95% -13.57 (2.01) -5.06 (3.93) 0.88 (0.98) 6.82 (2.31) -2.04 (1.27)

90 days, 105% -9.45 (0.54) 0.17 (0.98) -0.37 (0.28) 1.89 (0.46) -0.28 (0.31)

Alphas (using stock-based premia) 
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30 days, 95% -27.14 (11.26) -9.48 (24.15) -19.98 (15.16) -17.26 (18.48) 5.54 (22.56)

30 days, 105% -5.01 (2.79) -6.93 (3.17) -9.15 (3.35) -4.49 (3.13) -3.72 (3.20)

90 days, 95% -7.96 (3.84) -4.10 (7.32) -5.86 (5.14) -4.39 (6.45) 1.42 (7.02)

90 days, 105% -2.80 (1.89) -4.17 (1.94) -4.58 (2.10) -2.40 (2.15) -2.68 (2.07)

Alphas (using option-based premia) 

30 days, 95% -24.64 (12.28) 2.68 (8.81) -3.91 (11.45) -3.58 (9.25) -0.87 (12.55)

30 days, 105% -3.59 (3.59) -2.02 (4.88) -2.80 (5.17) 2.03 (3.48) -0.34 (4.20)

90 days, 95% -6.37 (4.82) 2.37 (3.67) 3.50 (3.42) 3.60 (1.86) 1.96 (3.64)

90 days, 105% -1.70 (2.64) -0.36 (3.08) 0.82 (2.77) 2.65 (3.00) 0.30 (3.31)

  Stock portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.25 (0.00) 0.24 (0.00) 0.23 (0.00) 0.25 (0.00) 0.21 (0.01)

  Option portfolio test statistics (using stock-based premia) 

R.m.s. (p) 12.24 (0.34) 9.53 (0.61) 11.52 (0.55) 10.51 (0.53) 12.65 (0.64)

  Option portfolio test statistics (using option-based premia) 

R.m.s. (p) 12.08 (0.32) 6.75 (0.61) 7.24 (0.64) 7.01 (0.56) 7.54 (0.60)
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Table 8:  Three-factor model asset pricing tests with selected factors, April 1986 through January 2012. The stock-based results estimate the 

factor premia among the 25 Fama-French size and book-to-market portfolios. The option-based results use premia estimated among the 10 option 

portfolios themselves. We report the betas (factor loadings) and pricing errors (alphas) for six of the 10 test portfolios (the results for the other 

four portfolios fall in between the reported ones). We run two-stage OLS with 10,000 bootstrap simulations. We report bootstrapped standard 

errors, root-mean-squared pricing errors, and a bootstrapped p-value for the joint hypothesis that all pricing errors are zero. 

  Factor premia 

1st factor S&P S&P S&P S&P S&P S&P S&P 

Stock-based 0.63 (0.30) 0.56 (0.28) 0.53 (0.27) 0.45 (0.29) 0.55 (0.27) 0.47 (0.30) 0.47 (0.27)

Option-based 0.46 (0.27) 0.55 (0.36) 0.69 (0.30) 0.58 (0.40) 0.42 (0.28) 0.54 (0.34) 0.49 (0.30)

Difference 0.17 (0.16) 0.01 (0.28) -0.16 (0.21) -0.13 (0.34) 0.13 (0.16) -0.07 (0.30) -0.03 (0.22)

2nd factor 
 

Volatility Jump Volatility Jump Volatility Volatility Jump Volatility 

Stock-based 
  

-3.71 (1.67) -0.33 (0.81) 1.16 (0.86) -0.58 (0.95) -3.40 (1.85) -0.94 (0.91)

Option-based 
  

-3.55 (1.82) -0.03 (0.79) 2.14 (1.28) -1.05 (0.61) -4.27 (2.56) -1.80 (0.58)

Difference 
  

-0.16 (2.51) -0.30 (0.99) -0.98 (1.49) 0.47 (1.05) 0.87 (3.17) 0.86 (1.02)

3rd factor 
 

Jump Jump Liquidity Volatility Jump Liquidity Liquidity 

Stock-based 
  

1.31 (0.82) 1.45 (0.73) 5.45 (2.13) -3.64 (1.70) 5.11 (2.21) 5.82 (2.20)

Option-based 
  

2.36 (1.16) 3.67 (1.12) 6.80 (4.10) -2.80 (1.55) 7.39 (3.99) 7.32 (2.15)

Difference     -1.06 (1.37) -2.22 (1.25) -1.36 (4.63) -0.84 (2.28) -2.28 (4.48) -1.50 (3.00)
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  Call portfolios 

Betas (for 2nd factor) 

30 days, 95% 0.86 (0.04) 0.01 (0.02) 0.10 (0.03) -0.19 (0.05) 0.13 (0.04) 0.06 (0.02) 0.12 (0.05)

30 days, 105% 0.71 (0.06) 0.07 (0.05) 0.25 (0.05) -0.27 (0.08) 0.29 (0.04) 0.12 (0.03) 0.28 (0.06)

90 days, 95% 0.85 (0.04) 0.01 (0.02) 0.11 (0.03) -0.19 (0.05) 0.13 (0.04) 0.07 (0.02) 0.13 (0.05)

90 days, 105% 0.79 (0.05) 0.06 (0.03) 0.21 (0.05) -0.27 (0.07) 0.25 (0.04) 0.12 (0.03) 0.25 (0.06)

Betas (for 3rd factor) 

30 days, 95% -0.18 (0.07) -0.17 (0.04) -0.00 (0.02) 0.06 (0.02) -0.01 (0.02) -0.01 (0.02)

30 days, 105% -0.18 (0.10) -0.23 (0.06) -0.02 (0.03) 0.12 (0.02) -0.03 (0.03) -0.03 (0.03)

90 days, 95% -0.17 (0.07) -0.17 (0.05) -0.01 (0.02) 0.07 (0.01) -0.02 (0.02) -0.02 (0.02)

90 days, 105% -0.17 (0.09) -0.22 (0.06) -0.01 (0.02) 0.12 (0.02) -0.02 (0.03) -0.02 (0.03)

Alphas (using stock-based premia) 

30 days, 95% -0.45 (0.17) -0.16 (0.21) -0.15 (0.20) -0.08 (0.24) -0.14 (0.19) -0.06 (0.25) -0.14 (0.20)

30 days, 105% -0.74 (0.20) -0.26 (0.30) -0.37 (0.32) -0.20 (0.32) -0.21 (0.34) -0.11 (0.35) -0.26 (0.31)

90 days, 95% -0.42 (0.16) -0.12 (0.21) -0.12 (0.21) -0.03 (0.24) -0.10 (0.19) -0.01 (0.25) -0.09 (0.20)

90 days, 105% -0.51 (0.19) -0.05 (0.28) -0.14 (0.29) -0.05 (0.31) -0.00 (0.30) 0.04 (0.32) -0.12 (0.28)

Alphas (using option-based premia) 

30 days, 95% -0.31 (0.07) 0.03 (0.05) 0.04 (0.03) -0.02 (0.04) -0.01 (0.03) -0.05 (0.06) -0.04 (0.03)
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30 days, 105% -0.62 (0.14) -0.07 (0.07) -0.08 (0.06) -0.01 (0.08) -0.05 (0.06) 0.01 (0.08) 0.01 (0.07)

90 days, 95% -0.28 (0.07) 0.07 (0.05) 0.08 (0.03) 0.04 (0.05) 0.03 (0.03) 0.02 (0.05) 0.02 (0.03)

90 days, 105% -0.38 (0.12) 0.13 (0.05) 0.14 (0.03) 0.10 (0.04) 0.15 (0.03) 0.12 (0.07) 0.09 (0.03)

  Put portfolios 

Betas (for 2nd factor) 

30 days, 95% 1.03 (0.06) -0.10 (0.08) -0.39 (0.13) 0.22 (0.14) -0.41 (0.13) -0.12 (0.05) -0.42 (0.12)

30 days, 105% 0.96 (0.04) -0.03 (0.05) -0.12 (0.08) 0.01 (0.10) -0.11 (0.09) -0.02 (0.03) -0.12 (0.08)

90 days, 95% 1.04 (0.05) -0.07 (0.07) -0.32 (0.11) 0.16 (0.12) -0.33 (0.11) -0.09 (0.05) -0.34 (0.10)

90 days, 105% 0.97 (0.04) -0.05 (0.05) -0.14 (0.08) 0.03 (0.10) -0.14 (0.09) -0.04 (0.03) -0.15 (0.08)

Betas (for 3rd factor) 

30 days, 95% 0.08 (0.21) 0.14 (0.17) 0.01 (0.05) -0.12 (0.04) 0.01 (0.05) 0.00 (0.05)

30 days, 105% -0.04 (0.14) -0.02 (0.11) -0.02 (0.03) -0.02 (0.03) -0.02 (0.04) -0.03 (0.04)

90 days, 95% 0.06 (0.18) 0.09 (0.15) 0.00 (0.05) -0.08 (0.03) 0.00 (0.05) -0.01 (0.05)

90 days, 105% -0.05 (0.14) -0.01 (0.12) -0.02 (0.04) -0.03 (0.03) -0.02 (0.04) -0.03 (0.04)

Alphas (using stock-based premia) 

30 days, 95% 0.66 (0.21) 0.34 (0.36) 0.60 (0.44) 0.57 (0.39) 0.28 (0.47) 0.41 (0.39) 0.58 (0.48)

30 days, 105% -0.14 (0.16) -0.12 (0.19) -0.01 (0.21) 0.12 (0.24) -0.13 (0.20) 0.06 (0.24) 0.10 (0.25)

90 days, 95% 0.11 (0.18) -0.11 (0.28) 0.10 (0.34) 0.12 (0.32) -0.15 (0.36) -0.01 (0.32) 0.12 (0.39)



49 

 

90 days, 105% -0.14 (0.16) -0.17 (0.20) -0.03 (0.22) 0.09 (0.25) -0.19 (0.22) 0.01 (0.25) 0.08 (0.26)

Alphas (using option-based premia) 

30 days, 95% 0.84 (0.14) 0.27 (0.08) 0.28 (0.06) 0.21 (0.09) 0.27 (0.05) 0.21 (0.08) 0.21 (0.07)

30 days, 105% 0.03 (0.04) -0.07 (0.07) -0.07 (0.04) 0.00 (0.06) -0.06 (0.03) 0.01 (0.07) 0.01 (0.04)

90 days, 95% 0.28 (0.10) -0.15 (0.05) -0.15 (0.04) -0.18 (0.06) -0.14 (0.04) -0.16 (0.07) -0.18 (0.05)

90 days, 105% 0.02 (0.04) -0.10 (0.06) -0.10 (0.04) -0.04 (0.05) -0.12 (0.03) -0.05 (0.05) -0.04 (0.03)

  Stock portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.25 (0.00) 0.23 (0.00) 0.24 (0.00) 0.21 (0.02) 0.23 (0.00) 0.20 (0.01) 0.21 (0.01)

  Option portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.47 (0.01) 0.19 (0.40) 0.27 (0.10) 0.24 (0.17) 0.17 (0.40) 0.16 (0.40) 0.26 (0.14)

  Option portfolio test statistics (using option-based premia) 

R.m.s. (p) 0.44 (0.00) 0.13 (0.20) 0.13 (0.44) 0.12 (0.34) 0.13 (0.18) 0.12 (0.53) 0.12 (0.12)
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Table 9:  Conditional asset pricing tests with selected factors, April 1986 to January 2012. The conditioning variable is the level of Liquidity. The 

stock-based (option-based) results estimate factor premia from the 25 Fama-French portfolios (54 option portfolios). We report betas (factor 

loadings) and pricing errors (alphas) for four representative portfolios (the rest fall in between). We run two-stage OLS with 10,000 bootstrap 

simulations. We report bootstrapped standard errors, root-mean-squared pricing errors, and a bootstrapped p-value for the joint hypothesis that all 

pricing errors are zero. 

  Factor premia 

1st factor, intercept S&P S&P S&P S&P S&P 

Stock-based 0.64 (0.30) 0.47 (0.28) 0.50 (0.30) 0.53 (0.27) 0.47 (0.29)

Option-based 0.60 (0.42) 0.77 (0.37) 0.44 (0.31) 0.34 (0.31) 0.60 (0.57)

Difference 0.03 (0.33) -0.30 (0.30) 0.06 (0.22) 0.19 (0.22) -0.12 (0.58)

1st factor, slope S&P S&P S&P S&P S&P 

Stock-based -0.03 (0.12) 0.27 (0.13) 0.23 (0.15) 0.01 (0.13) 0.05 (0.15)

Option-based -1.25 (0.51) 0.07 (0.13) 0.09 (0.13) 0.22 (0.11) -0.16 (0.27)

Difference 1.22 (0.52) 0.20 (0.18) 0.13 (0.19) -0.21 (0.17) 0.21 (0.30)

2nd factor, intercept 
 

Jump Volatility Jump Volatility Liquidity 

Stock-based 1.13 (0.85) -2.72 (1.88) -1.78 (0.86) 6.01 (2.04)

Option-based 1.52 (1.49) -3.46 (1.64) -1.78 (0.52) 14.15 (6.08)

Difference -0.40 (1.73) 0.74 (2.45) 0.00 (0.95) -8.14 (6.26)
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2nd factor, slope 
 

Jump Volatility Jump Volatility Liquidity 

Stock-based -0.23 (0.15) -0.62 (0.60) 0.48 (0.24) -0.20 (0.21)

Option-based 0.15 (0.32) 0.00 (0.42) -0.21 (0.14) -0.65 (0.60)

Difference -0.39 (0.35) -0.62 (0.67) 0.69 (0.28) 0.45 (0.63)

  Call portfolios 

Betas, intercept (for 2nd factor) 

30 days, 95% 0.86 (0.00) -0.30 (0.00) 0.10 (0.00) 0.14 (0.00) -0.05 (0.00)

30 days, 105% 0.72 (0.00) -0.44 (0.00) 0.19 (0.00) 0.33 (0.00) -0.08 (0.00)

90 days, 95% 0.86 (0.00) -0.31 (0.00) 0.11 (0.00) 0.15 (0.00) -0.05 (0.00)

90 days, 105% 0.81 (0.00) -0.41 (0.00) 0.17 (0.00) 0.31 (0.00) -0.06 (0.00)

Betas, slope (for 2nd factor) 

30 days, 95% 0.13 (0.00) -1.29 (0.00) 0.31 (0.00) 0.14 (0.00) -0.58 (0.00)

30 days, 105% 0.24 (0.00) -1.77 (0.00) 0.53 (0.00) 0.45 (0.00) -0.75 (0.00)

90 days, 95% 0.27 (0.00) -1.29 (0.00) 0.31 (0.00) 0.17 (0.00) -0.55 (0.00)

90 days, 105% 0.60 (0.00) -1.65 (0.00) 0.42 (0.00) 0.56 (0.00) -0.72 (0.00)

Alphas (using stock-based premia) 

30 days, 95% -0.45 (0.16) -0.41 (0.23) 0.03 (0.25) -0.23 (0.18) -0.19 (0.24)

30 days, 105% -0.73 (0.20) -0.74 (0.31) 0.05 (0.38) -0.41 (0.29) -0.33 (0.31)
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90 days, 95% -0.43 (0.16) -0.42 (0.23) 0.03 (0.25) -0.21 (0.18) -0.15 (0.24)

90 days, 105% -0.51 (0.20) -0.61 (0.31) 0.10 (0.34) -0.27 (0.29) -0.23 (0.29)

Alphas (using option-based premia) 

30 days, 95% -0.26 (0.12) 0.00 (0.04) 0.01 (0.04) -0.01 (0.03) -0.09 (0.08)

30 days, 105% -0.41 (0.20) -0.03 (0.07) -0.03 (0.06) -0.02 (0.07) 0.04 (0.13)

90 days, 95% -0.07 (0.11) 0.01 (0.04) 0.03 (0.04) 0.01 (0.03) 0.01 (0.07)

90 days, 105% 0.25 (0.23) 0.09 (0.04) 0.11 (0.04) 0.13 (0.03) 0.06 (0.10)

  Put portfolios 

Betas, intercept (for 2nd factor) 

30 days, 95% 1.03 (0.00) 0.21 (0.00) -0.20 (0.00) -0.47 (0.00) 0.02 (0.00)

30 days, 105% 0.97 (0.00) -0.10 (0.00) -0.04 (0.00) -0.11 (0.00) -0.03 (0.00)

90 days, 95% 1.04 (0.00) 0.13 (0.00) -0.15 (0.00) -0.36 (0.00) 0.01 (0.00)

90 days, 105% 0.97 (0.00) -0.07 (0.00) -0.05 (0.00) -0.15 (0.00) -0.03 (0.00)

Betas, slope (for 2nd factor) 

30 days, 95% -0.11 (0.00) -0.15 (0.00) -0.66 (0.00) -0.56 (0.00) -0.41 (0.00)

30 days, 105% 0.26 (0.00) -1.19 (0.00) -0.17 (0.00) 0.06 (0.00) -0.36 (0.00)

90 days, 95% -0.03 (0.00) -0.38 (0.00) -0.53 (0.00) -0.29 (0.00) -0.37 (0.00)

90 days, 105% -0.08 (0.00) -1.02 (0.00) -0.17 (0.00) -0.12 (0.00) -0.39 (0.00)
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Alphas (using stock-based premia) 

30 days, 95% 0.67 (0.24) 0.53 (0.38) 0.03 (0.46) 0.38 (0.43) 0.61 (0.35)

30 days, 105% -0.14 (0.17) -0.36 (0.23) -0.24 (0.25) -0.23 (0.21) 0.08 (0.26)

90 days, 95% 0.10 (0.20) -0.03 (0.31) -0.35 (0.36) -0.16 (0.34) 0.13 (0.30)

90 days, 105% -0.14 (0.17) -0.24 (0.23) -0.21 (0.25) -0.20 (0.22) 0.09 (0.26)

Alphas (using option-based premia) 

30 days, 95% 0.57 (0.17) 0.25 (0.09) 0.27 (0.06) 0.24 (0.06) 0.15 (0.14)

30 days, 105% 0.21 (0.14) -0.02 (0.04) -0.10 (0.04) -0.04 (0.03) 0.11 (0.09)

90 days, 95% 0.10 (0.15) -0.17 (0.06) -0.14 (0.04) -0.13 (0.04) -0.19 (0.09)

90 days, 105% -0.20 (0.10) -0.05 (0.05) -0.11 (0.04) -0.07 (0.03) 0.04 (0.09)

  Stock portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.26 (0.00) 0.21 (0.07) 0.20 (0.03) 0.24 (0.00) 0.21 (0.02)

  Option portfolio test statistics (using stock-based premia) 

R.m.s. (p) 0.47 (0.02) 0.48 (0.41) 0.18 (0.52) 0.27 (0.40) 0.30 (0.09)

  Option portfolio test statistics (using option-based premia) 

R.m.s. (p) 0.31 (0.48) 0.12 (0.42) 0.13 (0.23) 0.13 (0.18) 0.13 (0.66)
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Table A.1: Filters.  Number of observations that are removed by the filters. The sample covers April 1986 through January 2012. We report 

separate statistics for the Berkeley dataset (April 1986 to December 1995) and OptionMetrics (January 1996 to January 2012). 

   
Berkeley OptionMetrics Total 

      Deleted Remaining   Deleted Remaining   Deleted Remaining 

Starting 

Calls 
 

143,261 1,704,128 1,847,389

Puts     126,199   1,706,268   1,832,467

All     269,460     3,410,396     3,679,856

Level 1 

filters 

Identical   0     1     1   

Identical except price 
 

0 11 11

Bid = 0 
 

0 272,048 272,048

Volume = 0   0     0     0   

All     269,460     3,138,336     3,407,796

Level 2 

filters 

Days to expiration < 7 or > 180 
 

63,938 1,297,634 1,361,572

IV < 5% or > 100% 
 

184 12,676 12,860

K/S < 0.8 or > 1.2 
 

7,905 553,947 561,852

Implied interest rate < 0 
 

1,880 177,246 179,126

Unable to compute IV   890     20,059     20,949   
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All     194,663     1,076,774     1,271,437

Implied 

interest rate 

Directly assigned     189,072     1,071,278     1,260,350

Interpolated     5,591     5,494     11,085

All     194,663     1,076,774     1,271,437

Level 3 

filters 

IV filter   10,865     67,850     78,715   

Put-call parity filter   10,298     46,138     56,436   

All     173,500     962,784     1,136,284

Final 

Calls     91,193     470,036     561,229

Puts     82,307     492,748     575,055

All     173,500     962,784     1,136,284



56 

 

Figure 1:  Time series of the Jump factor, April 1986 to January 2012. 
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Figure 2:  Time series of the Volatility Jump factor, April 1986 to January 2012. 
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Figure 3:  Time series of the Volatility factor, April 1986 to January 2012. 
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Figure 4:  Time series of the Liquidity factor, April 1986 to January 2012. 
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Figure 5: Predicted versus average returns, April 1986 to January 2012. We plot the predicted versus sample average returns of the 54 

option portfolios based on the five models in Table 6, with stock-based factor premia (top row) and option-based factor premia 

(bottom row). 
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