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A. The Ross recovery theorem with two states

In the text of our paper, we highlight that in the Ross recovery setting, the physical

transition probabilities pi,j of moving from state i to state j have the form:

pi,j =
πi,j
mi,j

=
1

δ
· πi,j · u

′
i

u′j
. (1)

We now illustrate the recovery theorem in a simple example with two states, state 0 and

state 1. For either of these two initial states, the physical transition probabilities have to

sum to one:

p0,0 + p0,1 = 1 ⇔ 1

δ
· π0,0 ·

u′0
u′0

+
1

δ
· π0,1 ·

u′0
u′1

= 1,

p1,0 + p1,1 = 1 ⇔ 1

δ
· π1,0 ·

u′1
u′0

+
1

δ
· π1,1 ·

u′1
u′1

= 1.

(2)

We can rewrite this system of equations in matrix form and obtain an eigenvalue problem

as follows: (
π0,0 π0,1

π1,0 π1,1

)
·

(
z0

z1

)
= δ ·

(
z0

z1

)
where z0 =

1

u′0
and z1 =

1

u′1
. (3)

Solving this eigenvalue problem for the greatest positive eigenvalue δ gives us the values

for u′0, u
′
1, and δ, which we can insert in Eq. (1) to obtain the physical probabilities.
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B. Data

We obtain end-of-day option data on the S&P 500 index from the Berkeley Options

Database (prior to 1996) and OptionMetrics (after 1995). We use the midpoints of bid and

ask option quotes as our option prices. Consistent with the literature, we use only out-of-

the-money put and call options with positive trading volume and eliminate all options that

violate no-arbitrage constraints. We find the average implied dividend yield from put-call

parity pairs for a given maturity where the risk-free rate is given by the interpolated zero-

curve from OptionMetrics or the Berkeley Options Database. We consider monthly dates τ ,

which we find by going 30 calendar days back in time from the expiration date.

On October 21, 1987, there are no option prices available for options expiring 30 calendar

days later on November 20, 1997, and so we use October 22, 1997 as the corresponding sample

date. In all of September 1992, there are no option prices available for options expiring in

October, 1992. We end up with 380 dates. Our sample period and our option data ranges

from April 1986 through December 2017.

For the historical return distribution, we further obtain end-of-day S&P 500 index levels

from Datastream. We compute monthly S&P 500 returns from April 1981 through December

2017, which includes a five-year period prior to April 1986.
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C. Obtaining the implied volatility surface

To generate a smooth implied volatility surface, we apply an extension of the fast and

stable method of Jackwerth (2004), which finds smooth implied volatilities σi on a fine grid

of states i for a fixed maturity. The fast and stable method minimizes the sum of squared

second derivatives of implied volatilities (insuring smoothness of the volatility smile) plus

the sum of squared differences between model and observed implied volatilities (insuring fit

to the option data) using a trade-off parameter λ.

We extend the method to volatility surfaces by adding a maturity dimension to the S&P

500 level dimension. Again, we minimize the sum of squared local total second implied

volatility derivatives σ′′i,t (insuring smoothness of the volatility surface and not only of the

volatility smile) plus the sum of squared deviations of the model from the observed implied

volatilities (insuring fit of the surface) by using the trade-off parameter λ. The optimization

problem is:

min
σi,t

1

TN
·

T∑
t=1

∑
i∈I

(σ′′i,t)
2 · t + λ · 1

L
·

L∑
l=1

(
σi(l),t(l) − σobs

i(l),t(l)

)2
s.t. σi,t ≥ 0,

(4)

where σ′′i,t is the local second derivative (defined below), and where the maturity t com-

pensates for the higher curvature at shorter maturities. σobs
i(l),t(l) is the lth observed implied

volatility with a total number of L observations. We define the local second derivatives σ′′i,t

of implied volatilities as:

σ′′i,t =
σi+1,t − 2σi,t + σi−1,t

(∆i)
2 +

σi,t+1 − 2σi,t + σi,t−1

(∆t)
2

+
σi+1,t+1 − σi+1,t−1 − σi−1,t+1 + σi−1,t−1

(4∆i∆t)
,

(5)

where the first and second terms are approximations of the partial second derivative with

respect to moneyness and maturity. The third term approximates the cross derivative. We

evaluate the local second derivatives σ′′i,t on a fine equidistant grid at time t and moneyness

indexed by i ∈ I, where I = {−N fine
low , ..., 0, ..., N fine

high} with N states. We impose boundary
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conditions for all i and t as follows:

σi,0 = σi,1, σi,T+1 = σi,T

and σi−1,t = σi,t, for i = −N fine
low , σi+1,t = σi,t, for i = N fine

high

and σi−1,T+1 = σi,T , for i = −N fine
low , σi+1,0 = σi,1, for i = N fine

high

and σi−1,0 = σi,1, for i = −N fine
low , σi+1,T+1 = σi,T for i = N fine

high .

(6)

We then solve Eq. (4) to obtain the implied volatility surface on the fine grid. We start

with a high trade-off parameter λ and iteratively increase the smoothness of the volatility

surface by reducing λ, thus reducing the fit of observed implied volatility, until we obtain a

smooth and positive state price surface.

To obtain state prices on the coarser grid suitable for the recovery theorem, we linearly

interpolate the fine implied volatility surface. The number of fine states N varies between

227 for earlier sample days and 2579 for later sample days. The number of coarse states is

either 111 (Ross Basic, Ross Bounded, Ross Unimodal) or 120 (Ross Stable, Power Utility)

with two additional states of padding for taking derivatives in the next step. From the

implied volatilities on that coarser grid, we compute call option prices and, at each maturity

t, apply the Breeden and Litzenberger (1978) approach to find the spot state prices on the

coarser grid. Namely, for each maturity t, we take the numerical second derivative of the

call prices to obtain spot state prices, where we lose the lowest and highest index levels due

to the numerical second derivative. The spot state prices will then be exactly on the desired

coarser grid.

We depict the results of our implementation for a typical day in our sample, February

17, 2010. Fig. 1, Panel A, shows the interpolated smoothed implied volatility surface on the

coarser state space suitable for the recovery theorem. We note that the volatility surface is

smooth, yet passes through the observed implied volatilities (black squares). The volatility

smile is clearly visible for short maturities and flattens out at longer maturities. Panel B

shows the related spot state price surface, which also turns out to be smooth. Spot state

prices tend to be high around the current state (moneyness of one) and are more spread out

at longer maturities.
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Panel A: Implied Volatility Surface, 17-Feb-2010
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Panel B: Spot State Price Surface, 17-Feb-2010
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Fig. 1. Implied volatility and spot state price surfaces. We show the interpolated implied volatility
surface and the observed implied volatilities (as black dots) in Panel A. We show the related spot
state price surface in Panel B. Using data for February 17, 2010, we depict these surfaces for S&P
500 index options across maturities and moneyness levels.
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D. Recovery without using transition state prices

Starting with the eigenvalue problem in Ross (2015), we can multiply both sides from

the left with the transition state price matrix Π:

Π · Πz = Π · δz = δ(Πz) = δ2z. (7)

Iterating, we obtain the following relation:

Πtz = δtz with t = 1, ..., T. (8)

We show how Eq. (8) can be used to achieve recovery without explicitly deriving transition
state prices. We restate the equation in greater detail:

πt−Nlow,−Nlow
πt−Nlow,−Nlow+1 · · · πt−Nlow,Nhigh−1 πt−Nlow,Nhigh

...
. . .

...
...

...

πt0,−Nlow
πt0,−Nlow+1 · · · πt0,Nhigh−1 πt0,Nhigh

...
. . .

...
...

...

πtNhigh,−Nlow
πtNhigh,−Nlow+1 · · · πtNhigh,Nhigh−1 πtNhigh,Nhigh


·



z−Nlow

...

z0
...

zNhigh


= δt ·



z−Nlow

...

z0
...

zNhigh


, (9)

where πti,j is the transition state price of moving from state i to state j over t transition

periods. Note that the current row in Πt (indexed by i = 0) represents the transition state

prices with maturity equal to t transition periods:

(
πt0,−Nlow

πt0,−Nlow+1 · · · πt0,Nhigh−1 πt0,Nhigh

)
·



z−Nlow

...

z0
...

zNhigh


= δt · z0. (10)

After dividing both sides by z0, we use Eq. (10) for every t = 1, ..., T and stack the
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resulting equations to obtain a system of equations:



π1
0,−Nlow

π1
0,−Nlow+1 · · · π1

0,Nhigh−1 π1
0,Nhigh

π2
0,−Nlow

π2
0,−Nlow+1 · · · π2

0,Nhigh−1 π2
0,Nhigh

...
. . .

...
...

...

πT−10,−Nlow
πT−10,−Nlow+1 · · · πT−10,Nhigh−1 πT−10,Nhigh

πT0,−Nlow
πT0,−Nlow+1 · · · πT0,Nhigh−1 πT0,Nhigh


·



z−Nlow

z0
...
z−1

z0

1
z1
z0
...

zNhigh

z0


=



δ

δ2

...

δT−1

δT


. (11)

To solve this system of equations, note that all transition state prices (starting at the

current state but with different maturities) can be replaced by the spot state prices of the

same maturity, which can be directly obtained from the spot state price surface. The new

system of equations has N unknowns
(
zj
z0

with j ∈ I and δ
)

and as many equations.1 As δ

is the utility discount factor, we require it to be greater than zero and less than one. We

force the ratios
zj
z0

to be non-negative, as these ratios are directly linked to the SDF. We

solve the system of equations by means of least squares. Then, the t-period SDF for state j

can be found as:

mt
0,j = δt

z0
zj
, j ∈ I. (12)

The SDFs for different maturities of t transition periods differ from the fraction z0
zj

only

by a factor involving the discount factor δ and t. We can use this property and link SDFs

with different maturities thus:

mt
0,j = δt

z0
zj

= δt−1δ
z0
zj

= δt−1m0,j, j ∈ I, (13)

where m0,j represents the SDF value for state j with a maturity of one transition period.

1Note that I has N elements, but there are only N − 1 fractions as z0
z0

= 1.
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E. A stepwise illustration of the testing procedure

On each sample date τ , we proceed as follows:

Step 1: Generate an implied volatility surface from option prices

• Exclude options that violate no-arbitrage conditions

• Exclude options with maturity t of less than one month or more than one year

• Find the dividend yield for each maturity as the average option-implied dividend yields

from put-call parity pairs

• Remove in-the-money options and transform remaining option prices into (observed)

option-implied volatilities σi(l),t(l) with states i(l) and maturities t(l) for observations

l = 1, ..., L using the Black-Scholes formula. For the transformation, use the option-

implied dividend yields above and the interpolated zero curve from OptionMetrics as

the risk-free rate

• Discretize option strike prices with a step size of $1.25 and set low and high state

bounds so that all positive spot state prices occur in the interior of the state set. The

number of auxiliary states N varies between 227 for earlier sample days and 2579 for

later sample days

• Apply Eq. (4) (with the conditions of Eq. (5) and Eq. (6) in place) to obtain a fine

auxiliary volatility surface σi,t. That auxiliary surface is defined on N states (ranging

from 227 to 2579 depending on the sample date) and on T = 120 maturity steps (10

maturity steps each month)

• Interpolate the fine volatility surface to obtain a volatility surface on a coarse grid

suitable for a given recovery method:

For Ross Basic, Ross Bounded, and Ross Unimodal:

Equidistantly select 113 states where the current state (moneyness = 1) is included.

The coarse volatility surface is then defined on N = 113 states and on T = 120 matu-

rities (10 maturity steps each month). The maturity discretization is the same as for

the fine auxiliary grid
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For Ross Stable and Power Utility:

Equidistantly select 122 states where the current state (moneyness = 1) is included.

That coarse volatility surface is then defined on N = 122 states and on T = 120 matu-

rities (10 maturity steps each month). The maturity discretization is the same as for

the fine auxiliary grid

Step 2: Generate spot state price surfaces

• Transform the coarse implied volatility surfaces into call option price surfaces using

the Black-Scholes formula

• Transform call option price surfaces into spot state price surfaces by applying the

approach of Breeden and Litzenberger (1978) for each maturity. Taking numerical

second derivatives in the moneyness dimension leads to the first and last state being

dropped in that dimension

• The spot state price surfaces are defined on N = 111 states and on T = 120 maturities

for Ross Basic, Ross Bounded, and Ross Unimodal and on N = 120 states and on

T = 120 maturities for Ross Stable and Power Utility

Step 3: Extract transition state prices from spot state prices

Only for Ross Basic, Ross Bounded, and Ross Unimodal:

• Use the spot state price surface to generate a transition state price matrix Π for

methods Ross Basic, Ross Bounded, and Ross Unimodal as explained in detail in

the Methodology section of the main paper. For those methods, we have 111 states,

which results in 111× 111 - dimensional transition state price matrices

Step 4: Recover one-month cumulative physical distributions P̂τ

For Ross Basic, Ross Bounded, and Ross Unimodal:

• Apply the Ross recovery theorem to the transition state prices πi,j to obtain the physical

transition probabilities pi,j

• Obtain one-month spot physical probabilities p̂τ = p0,j from the recovered physical

transition probabilities pi,j with current initial state i = 0
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For Ross Stable, Power Utility, and Historical Return Distribution:

• Ross Stable: Make direct use of the spot state price surface to recover one-month (spot)

physical probabilities pτ as described in Online Appendix D

• Power Utility: Read out one-month spot state prices and transform them into one-

month physical probabilities pτ using a power utility SDF with risk-aversion coefficient

γ = 3

• Historical Return Distribution: Collect five years of monthly S&P 500 returns prior to

date τ and construct the one-month empirical pdf pτ with those returns. The resulting

discrete distribution is based on 60 irregularly spaced states (returns) and probabilities

of 1/60 in each state

Having recovered one-month physical distributions pτ for all dates τ = 1, ..., 380 at hand, we

then:

Step 5: Transform recovered one-month probabilities p̂τ into a one-month physical cumulative

distribution function P̂τ

• Summing the physical probabilities p̂τ results in a discrete cumulative distribution that

is made up of piecewise constant parts with jumps at the defined states. To construct a

continuous cumulative distribution function P̂τ , we fit a piecewise linear function with

breakpoints at the midpoints of those jumps. We use a left limit at a return of -100%

with a value of zero and a right limit at 200% with a value of one

Step 6: Test the recovered physical distributions

• For each date τ , collect the one-month future return rτ

• For each date τ , plug the one-month future return rτ into the recovered cumulative

distributions function P̂τ to obtain one percentile value xτ for each recovery method,

where xτ = P̂τ (1 + rτ )

• Apply the Knüppel tests and the Kolmogorov-Smirnoff test to test the percentile set

xτ , τ = 1, ..., 380, for uniformity and obtain the p-values, which we report in the main

text
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• For the Berkowitz test, first convert a given percentile set xτ into a standard normal

percentile set zτ with the inverse standard normal cumulative distributions function

Φ−1, where zτ = Φ−1 (xτ ) for τ = 1, ..., 380. Then apply the Berkowitz test to test the

set zτ for standard normality and obtain the p-values, which we report in the main

text

Step 7: Run mean predictions

• For each recovery method, compute a time-series of means µτ of the recovered physical

distributions p̂τ with τ = 1, ..., 380

• Regress the recovered means µτ on the time-series of future returns rτ :

rτ = a+ bµτ + ετ , τ = 1, ..., 380. (14)

• Apply Eq. (14) using three different regression models: the Intercept model by setting

b = 1 and testing a = 0, the Slope model by setting a = 0 and testing b = 1, and the

Joint model by testing both a = 0 and b = 1

Step 8: Run variance predictions

• For each recovery method, compute a time-series of variances σ2
τ of the recovered

physical distributions p̂τ with τ = 1, ..., 380

• For each date τ , compute the realized variance RVτ as the sample variance of all future

daily returns in the month following date τ multiplied by the number of days in that

month

• Regress the recovered variances σ2
τ on the time-series of realized variances RVτ :

RVτ = a+ bσ2
τ + ετ , τ = 1, ..., 380. (15)

• Apply Eq. (15) using three different regression models: the Intercept model by setting

b = 1 and testing a = 0, the Slope model by setting a = 0 and testing b = 1, and the

Joint model by testing both a = 0 and b = 1
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F. Power analysis of the statistical tests

We provide a power analysis for each of our four statistical tests by analyzing how well

they perform in rejecting the hypothesis that returns drawn from a particular distribu-

tion come from an alternative distribution. For any given recovery method, we simulate

10,000 economies, where each economy is generated by drawing 380 future returns from that

method’s recovered distributions (one for each sample date). For each economy, we then

apply our main testing procedure to test if the generated returns, which are based on a par-

ticular recovery method, are drawn from the recovered distributions of any other method.

We report the number of rejections (p-value ≤ 0.05) within the 10,000 economies for each

combination of our methods. Table 1 reports results for the Berkowitz test, Table 2 for the

Kolmogorov-Smirnov test, Table 3 for the Knüppel test with three moments, and Table 4

for the Knüppel test with four moments.

Our results show that tests do not summarily reject alternative distributions. Rather,

the tests correctly reject the true distribution in 5% of all cases (the Knüppel test with

three moments rejects only 2% of all cases). Alternative distributions are rejected more

frequently in general and less similar distributions are rejected more frequently than more

similar distributions. As we expected, some distributions cluster: Ross Bounded, Ross

Unimodal, and Ross Stable can be grouped into a “risk-neutral” cluster. Power Utility and

the Historical Return Distribution can be clustered into a “similar to the future returns”

cluster. Ross Basic seems to be closer to the second than the first cluster but is not obviously

part of either.

Concerning our four tests, we note that the Knüppel test with three moments has a

rejection rate which is a bit too low (2% when it should be 5%). This however is conservative

in that it makes rejections harder. Thus, given that we can still reject our null for the four

Ross recovery methods, we can rest assured that our main empirical findings are correct.

The Kolmogorov-Smirnov test tends to have the least power to reject the null when a

similar distribution is true (see the low percentages comparing Ross Bounded against Ross

Unimodal, Ross Bounded against Ross Stable, and Ross Unimodal against Ross Stable).

More powerful are in turn the Knüppel test with three moments, and then the Knüppel with

four moments, while the Berkowitz test is the most powerful. Still, as all our results are

strongly supported by all four tests, we simply report them all.
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Table 1
Power Analysis of the Berkowitz Test.
We generate 10,000 realizations of an economy, where a particular recovery method holds. For each realiza-
tion, we draw 380 future returns. For any simulated economy, we report the rejection rates for the hypothesis
that the future returns are drawn from another particular recovery method’s physical distributions. We use
a Berkowitz test with a significance level of 5%.

Rejection Ross Ross Ross Ross Power Utility Hist. Return

Rates Basic Bounded Unimodal Stable with γ = 3 Distribution

cdf cdf cdf cdf cdf cdf

Ross Basic

return draws
5% 94% 79% 100% 100% 100%

Ross Bounded

return draws
98% 5% 10% 97% 100% 100%

Ross Unimodal

return draws
100% 13% 5% 100% 100% 100%

Ross Stable

return draws
94% 33% 87% 5% 66% 97%

Power Utility

with γ = 3

return draws

26% 84% 98% 69% 5% 85%

Hist. Return

Distribution

return draws

47% 56% 55% 90% 77% 5%
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Table 2
Power Analysis of the Kolmogorov-Smirnov Test.
We generate 10,000 realizations of an economy, where a particular recovery method holds. For each realiza-
tion, we draw 380 future returns. For any simulated economy, we report the rejection rates for the hypothesis
that the future returns are drawn from another particular recovery method’s physical distributions. We use
a Kolmogorov-Smirnov test with a significance level of 5%.

Rejection Ross Ross Ross Ross Power Utility Hist. Return

Rates Basic Bounded Unimodal Stable with γ = 3 Distribution

cdf cdf cdf cdf cdf cdf

Ross Basic

return draws
5% 93% 88% 97% 49% 94%

Ross Bounded

return draws
85% 5% 5% 6% 56% 68%

Ross Unimodal

return draws
78% 7% 5% 10% 55% 80%

Ross Stable

return draws
91% 5% 7% 5% 62% 68%

Power Utility

with γ = 3

return draws

20% 60% 58% 68% 5% 22%

Hist. Return

Distribution

return draws

53% 52% 54% 57% 16% 5%
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Table 3
Power Analysis of the Knüppel (3 Moments) Test.
We generate 10,000 realizations of an economy, where a particular recovery method holds. For each realiza-
tion, we draw 380 future returns. For any simulated economy, we report the rejection rates for the hypothesis
that the future returns are drawn from another particular recovery method’s physical distributions. We use
a Knüppel (3 moments) test with a significance level of 5%.

Rejection Ross Ross Ross Ross Power Utility Hist. Return

Rates Basic Bounded Unimodal Stable with γ = 3 Distribution

cdf cdf cdf cdf cdf cdf

Ross Basic

return draws
2% 88% 70% 97% 72% 96%

Ross Bounded

return draws
70% 2% 6% 4% 43% 61%

Ross Unimodal

return draws
62% 5% 2% 17% 55% 78%

Ross Stable

return draws
88% 5% 24% 2% 48% 54%

Power Utility

with γ = 3

return draws

19% 48% 63% 53% 2% 16%

Hist. Return

Distribution

return draws

25% 48% 56% 49% 21% 2%
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Table 4
Power Analysis of the Knüppel (4 Moments) Test.
We generate 10,000 realizations of an economy, where a particular recovery method holds. For each realiza-
tion, we draw 380 future returns. For any simulated economy, we report the rejection rates for the hypothesis
that the future returns are drawn from another particular recovery method’s physical distributions. We use
a Knüppel (4 moments) test with a significance level of 5%.

Rejection Ross Ross Ross Ross Power Utility Hist. Return

Rates Basic Bounded Unimodal Stable with γ = 3 Distribution

cdf cdf cdf cdf cdf cdf

Ross Basic

return draws
5% 91% 82% 99% 82% 100%

Ross Bounded

return draws
87% 5% 19% 17% 63% 98%

Ross Unimodal

return draws
92% 14% 5% 61% 86% 100%

Ross Stable

return draws
91% 29% 93% 5% 57% 94%

Power Utility

with γ = 3

return draws

26% 75% 99% 60% 5% 76%

Hist. Return

Distribution

return draws

50% 59% 67% 77% 41% 5%
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G. Robustness

In robustness checks for our study, we first investigate whether variations of the state

space change our empirical results. Next, we repeat our study but exclude the Early 1990s

Recession, the Early 2000s Recession, and the Great Recession from the original sample.

G.1. Variations of the state space

The recovery theorem works on a finite state space and we are concerned that our choices

for the states might drive the results; see Tran and Xia (2015). This is not the case when

we use (i) log returns instead of straight returns or (ii) a 20% coarser state space than our

usual fine state spaces with N = 111 (120 for Ross Stable and Power Utility). If we use (iii)

the non-overlapping state space with N = 12 from Ross Original, then we reject all Ross

recovery methods and also Power Utility. The fit to the option prices deteriorates markedly

in the process. Note that the Historical Return Distribution is always unaffected by choice of

the state space, and we thus always maintain our result that we cannot reject the Historical

Return Distribution.

Log returns.

We now define our state-space in log-returns and construct our volatility surface by

linearly interpolating the log-moneyness of the fine implied volatility surface. In our density

tests, we still reject our hypothesis that future returns are compatible with the recovered

physical distributions for all Ross recovery methods at the 5% level. For Power Utility,

we find lower p-values than for the main results, but we still cannot reject our hypothesis

at the 5% level for three out of our four tests. Table 5 presents the density test results.

Results for our moment prediction studies barely change as well, except that Ross Basic now

predicts means more poorly than before, while Power Utility predicts means slightly better

and variances slightly worse; see Table 6 for the mean prediction results and Table 7 for the

variance prediction results.
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Table 5
Density tests of the recovered physical probabilities for log returns.
We present our results when future log returns are drawn from physical probabilities generated by one of
the six log-scaled methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and
Historical Return Distribution. For each method, we show the p-values from the Berkowitz, Kolmogorov-
Smirnov, and Knüppel (using both three and four moments) tests for uniformity of the percentiles of future
returns under the method’s physical cumulative distribution.

H0: pτ = p̂τ Berkowitz Kolmogorov- Knüppel Knüppel

Smirnov 3 moments 4 moments

Recovery Method p-value p-value p-value p-value

Ross Basic

πi,j > 0
0.000 0.000 0.000 0.000

Ross Bounded

πi,j > 0, rowsums ∈ [0.9, 1]
0.000 0.001 0.000 0.000

Ross Unimodal

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]

0.000 0.000 0.000 0.000

Ross Stable

No transition state prices
0.000 0.006 0.002 0.000

Power Utility

with γ = 3
0.100 0.620 0.415 0.049

Historical Return

Distribution
0.762 0.663 0.939 0.833
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Table 6
Mean predictions using log returns.
We test whether future log returns rτ can be predicted by recovered means µτ generated by one of our six
log-scaled methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical
Return Distribution. For each method, we report the p-values and estimated coefficients with the 95%
confidence intervals for three different regression models.

rτ = a+ bµτ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic 0.098 [± 0.029] -0.009 [± 0.015]
0.007 [± 0.005]
-0.001 [± 0.016]

πi,j > 0 0.000 0.000 0.000

Ross Bounded 0.024 [± 0.005] -0.235 [± 0.204]
0.008 [± 0.007]
0.022 [± 0.299]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.000 0.000

Ross Unimodal 0.028 [± 0.005] -0.154 [± 0.167]
0.010 [± 0.007]
0.108 [± 0.247]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.000 0.000

Ross Stable 0.011 [± 0.005] -0.351 [± 0.518]
0.008 [± 0.005]
0.029 [± 0.572]

No transition state prices 0.000 0.000 0.000

Power Utility 0.001 [± 0.005] 0.487 [± 0.529]
0.009 [± 0.007]
-0.284 [± 0.758]

with γ = 3 0.600 0.057 0.004

Historical Return 0.001 [± 0.005] 0.583 [± 0.499]
0.008 [± 0.007]
-0.057 [± 0.744]

Distribution 0.776 0.101 0.020
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Table 7
Variance predictions using log returns.
We test if future realized variances RVτ based on log-returns can be predicted by recovered variances σ2

τ

generated by one of our six log-scaled methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable,
Power Utility, and Historical Return Distribution. For each method, we report the p-values and estimated
coefficients with the 95% confidence intervals for three different regression models.

RVτ = a+ bσ2
τ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic -0.097 [± 0.047] 0.001 [± 0.001]
0.003 [± 0.000]
0.000 [± 0.001]

πi,j > 0 0.000 0.000 0.000

Ross Bounded -0.014 [± 0.002] 0.127 [± 0.015]
0.001 [± 0.001]
0.110 [± 0.018]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.000 0.000

Ross Unimodal -0.016 [± 0.002] 0.118 [± 0.013 ]
0.000 [± 0.001]
0.104 [± 0.017]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.000 0.000

Ross Stable -0.002 [± 0.000] 0.540 [± 0.042]
0.000 [± 0.000]
0.509 [± 0.050]

No transition state prices 0.000 0.000 0.000

Power Utility 0.000 [± 0.000] 1.088 [± 0.095]
-0.001 [± 0.001]
1.275 [± 0.141]

with γ = 3 0.376 0.063 0.000

Historical Return 0.001 [± 0.000] 1.063 [± 0.205]
0.002 [± 0.001]
0.272 [± 0.452]

Distribution 0.026 0.547 0.001
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Reducing the state-space by 20%.

Next, we reduce the overlapping fine state space by 20%. We thus reduce the state space

to eight (instead of ten) maturity steps per month and end up with 89 (instead of 111) states

for Ross Basic, Ross Bounded, and Ross Unimodal, and 96 (instead of 120) states for Ross

Stable and Power Utility. Table 8 presents the density test results. Again, the Ross recovery

methods are strongly rejected at the 5% level, while our benchmark methods are not. Our

moment predictions barely change at all; see Table 9 and Table 10.

Table 8
Density tests of the recovered physical probabilities using a reduced state-space size.
We present our results when future returns are drawn from physical probabilities generated by one of the
six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return
Distribution. We reduce the original state-space size by 20%. For each method, we show the p-values from
the Berkowitz, Kolmogorov-Smirnov, and Knüppel (using both three and four moments) tests for uniformity
of the percentiles of future returns under the method’s physical cumulative distribution.

H0: pτ = p̂τ Berkowitz Kolmogorov- Knüppel Knüppel

Smirnov 3 moments 4 moments

Recovery Method p-value p-value p-value p-value

Ross Basic

πi,j > 0
0.000 0.010 0.000 0.000

Ross Bounded

πi,j > 0, rowsums ∈ [0.9, 1]
0.000 0.039 0.010 0.000

Ross Unimodal

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]

0.000 0.027 0.002 0.000

Ross Stable

No transition state prices
0.000 0.003 0.000 0.000

Power Utility

with γ = 3
0.117 0.447 0.459 0.062

Historical Return

Distribution
0.763 0.663 0.939 0.832
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Table 9
Mean predictions using a reduced state-space size.
We test if future returns rτ can be predicted by recovered means µτ generated by one of our six methods:
Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return Distribution.
We reduce the original state-space size by 20%. For each method, we report the p-values and estimated
coefficients with the 95% confidence intervals for three different regression models.

rτ = a+ bµτ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic -0.002 [± 0.006] -0.011 [± 0.102]
0.009 [± 0.005]
-0.058 [± 0.103]

πi,j > 0 0.616 0.000 0.000

Ross Bounded 0.007 [± 0.004] 0.280 [± 1.105]
0.009 [± 0.005]
-0.216 [± 1.118]

πi,j > 0, rowsums ∈ [0.9, 1] 0.001 0.201 0.000

Ross Unimodal 0.008 [± 0.004] 0.164 [± 0.990]
0.008 [± 0.004]
-0.009 [± 0.978]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.098 0.000

Ross Stable 0.007 [± 0.004] 0.592 [± 1.127]
0.010 [± 0.005]
-0.559 [± 1.267]

No transition state prices 0.004 0.477 0.001

Power Utility -0.002 [± 0.005] 0.394 [± 0.314]
0.009 [± 0.006]
-0.065 [± 0.448]

with γ = 3 0.427 0.000 0.000

Historical Return 0.001 [± 0.004] 0.688 [± 0.459]
0.009 [± 0.007]
-0.077 [± 0.765]

Distribution 0.788 0.156 0.022
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Table 10
Variance predictions using a reduced state-space size.
We test if future realized variances RVτ can be predicted by recovered variances σ2

τ generated by one of our
six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return
Distribution. We reduce the original state-space size by 20%. For each method, we report the p-values and
estimated coefficients with the 95% confidence intervals for three different regression models.

RVτ = a+ bσ2
τ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic -0.007 [± 0.002] 0.131 [± 0.027]
0.002 [± 0.001]
0.078 [± 0.029]

πi,j > 0 0.000 0.000 0.000

Ross Bounded -0.005 [± 0.001] 0.398 [± 0.037]
-0.001 [± 0.001]
0.493 [± 0.058]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.000 0.000

Ross Unimodal -0.008 [± 0.001] 0.304 [± 0.036 ]
-0.002 [± 0.001]
0.401 [± 0.060]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.000 0.000

Ross Stable -0.002 [± 0.000] 0.683 [± 0.054]
0.000 [± 0.000]
0.730 [± 0.074]

No transition state prices 0.000 0.000 0.000

Power Utility 0.000 [± 0.000] 1.058 [± 0.085]
-0.001 [± 0.000]
1.149 [± 0.118]

with γ = 3 0.518 0.185 0.039

Historical Return 0.001 [± 0.000] 1.124 [± 0.217]
0.002 [± 0.001]
0.252 [± 0.507]

Distribution 0.010 0.261 0.001
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Using a non-overlapping state space with twelve states: Ross Original.

Finally, we use a very coarse non-overlapping state space with just 12 states per month,

as in the original work of Ross (2015). For Ross Basic, Ross Bounded, and Ross Unimodal,

we now use a 12 by 12 transition state price matrix. For Ross Stable, we recover a one-

month stochastic discount factor on a 12-state moneyness grid. For both the density tests

and for the moment predictions, unreported results show that we can reject all four Ross

recovery methods and also Power Utility with p-values close to zero. Only the results for

the Historical Return Distribution are unaffected, as it does not rely on the changed state

space.

So far, we chose our 12 states equidistant, which leads to many zeros for the short-

maturity spot state prices. Using 12 non-equidistant states leads to a better approximation of

the shorter-maturity spot state prices and a poorer approximation of the longer-maturity spot

state prices. Yet, results are as disappointing as for the equidistant state space. We construct

the non-equidistant state space in the moneyness dimension, by picking 14 moneyness levels,

which is reduced by the Breeden-Litzenberger approach to the final 12 moneyness levels. We

pick the first 6 moneyness levels at: the beginning N1 and the end N12 of the moneyness

range needed to cover the tails of one-year spot state prices; the beginning N3 and the end

N10 of the moneyness range needed to cover the tails of one-month spot state prices; a

moneyness of zero N0 where we assign the same implied volatility value as at N1; and a

moneyness of three N13 where we assign the same implied volatility value as at N12.

We optimize for the location of the eight remaining moneyness levels in a way that the

least squares distance between the interpolated volatility surface and the volatility surface

on the fine grid is minimized, while we require N2 to lie in between N1 and N3; N4 to N9

(one of them being the current state with moneyness of one) to lie in between N3 and N10;

and N11 to lie in between N10 and N12. For the time dimension we use 12 monthly steps.

Fig. 2 shows one-month spot state prices (black) and 12-month spot state prices (gray

dotted) for a non-equidistant state space with N = 12 on February 17, 2010.
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Fig. 2. Spot state prices for a non-equidistant N = 12 state-space. We show one-month spot state
prices (black) and twelve-month spot state prices (gray dotted) on February 17, 2010 when using
a non-equidistant state space with N = 12 states.

G.2. Removing recession periods

Our main sample consists of 380 monthly dates from April 1987 through December 2017.

This period includes three recession periods: the Early 1990s Recession (July 1990 until

March 1991), the Early 2000s Recession (March 2001 until November 2001), and the Great

Recession (December 2007 until June 2009).2 We want to insure that our results are not

driven by these recession periods and consider the reduced sample with only 343 dates.

Table 11 shows results for our density tests under our original setting but excluding

recession periods. Table 12 shows the corresponding mean prediction results, and Table 13

the corresponding variance prediction results.

Our density tests do not change much. Also, the moment predictions barely change for

the Ross recovery methods. Yet for Power Utility and the Historical Return Distribution,

removing recession periods leads to much better mean and poorer variance predictions.

2See, e.g.: https://fred.stlouisfed.org/series/VIXCLS
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Table 11
Density tests of the recovered physical probabilities when excluding recession periods.
We present our results when future returns are drawn from physical probabilities generated by one of our
six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return
Distribution. We use our sample period from April 1986 until December 2017 but exclude months that are
associated with the Early 1990s Recession (July 1990 until March 1991), the Early 2000s Recession (March
2001 until November 2001), and the Great Recession (December 2007 until June 2009). For each method,
we show the p-values from the Berkowitz, Kolmogorov-Smirnov, and Knüppel (using both 3 and 4 moments)
tests for uniformity of the percentiles of future returns under the method physical cumulative distribution.

H0: pτ = p̂τ Berkowitz Kolmogorov- Knüppel Knüppel

Smirnov 3 moments 4 moments

Recovery Method p-value p-value p-value p-value

Ross Basic

πi,j > 0
0.001 0.038 0.000 0.000

Ross Bounded

πi,j > 0, rowsums ∈ [0.9, 1]
0.000 0.033 0.008 0.000

Ross Unimodal

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]

0.000 0.032 0.000 0.000

Ross Stable

No transition state prices
0.000 0.016 0.013 0.001

Power Utility

with γ = 3
0.093 0.689 0.532 0.057

Historical Return

Distribution
0.805 0.522 0.946 0.871
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Table 12
Mean predictions when excluding recession periods.
We test if future returns rτ can be predicted by recovered means µτ generated by one of our six methods:
Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return Distribution.
We use our sample period from April 1986 until December 2017 but exclude months that are associated
with the Early 1990s Recession (July 1990 until March 1991), the Early 2000s Recession (March 2001 until
November 2001), and the Great Recession (December 2007 until June 2009). For each method, we report
the p-values and estimated coefficients with the 95% confidence intervals for three different regressions.

rτ = a+ bµτ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic 0.001 [± 0.006] 0.062 [± 0.095]
0.009 [± 0.004]
0.035 [± 0.094]

πi,j > 0 0.659 0.000 0.000

Ross Bounded 0.009 [± 0.004] 0.117 [± 0.888]
0.010 [± 0.004]
-0.124 [± 0.870]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.051 0.000

Ross Unimodal 0.009 [± 0.004] 0.073 [± 0.716]
0.010 [± 0.004]
-0.097 [± 0.701]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.011 0.000

Ross Stable 0.008 [± 0.004] 1.176 [± 1.248]
0.009 [± 0.005]
0.075 [± 1.331]

No transition state prices 0.000 0.781 0.000

Power Utility 0.001 [± 0.004] 0.689 [± 0.370]
0.009 [± 0.007]
0.079 [± 0.594]

with γ = 3 0.785 0.099 0.010

Historical Return 0.002 [± 0.004] 0.732 [± 0.425]
0.011 [± 0.007]
-0.138 [± 0.718]

Distribution 0.486 0.216 0.007
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Table 13
Variance predictions when excluding recession periods.
We test if future realized variances RVτ can be predicted by recovered variances σ2

τ generated by one of our
six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return
Distribution. We use our sample period from April 1986 until December 2017 but exclude months that are
associated with the Early 1990s Recession (July 1990 until March 1991), the Early 2000s Recession (March
2001 until November 2001), and the Great Recession (December 2007 until June 2009). For each method, we
report the p-values and estimated coefficients with the 95% confidence intervals for three different regressions.

RVτ = a+ bσ2
τ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic -0.006 [± 0.002] 0.077 [± 0.017]
0.002 [± 0.000]
0.037 [± 0.015]

πi,j > 0 0.000 0.000 0.000

Ross Bounded -0.007 [± 0.000] 0.241 [± 0.021]
0.000 [± 0.000]
0.286 [± 0.039]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.000 0.000

Ross Unimodal -0.007 [± 0.001] 0.221 [± 0.019 ]
0.000 [± 0.000]
0.230 [± 0.034]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.000 0.000

Ross Stable -0.001 [± 0.000] 0.698 [± 0.053]
0.000 [± 0.000]
0.640 [± 0.078]

No transition state prices 0.000 0.000 0.000

Power Utility 0.000 [± 0.000] 0.830 [± 0.064]
0.000 [± 0.000]
0.780 [± 0.098]

with γ = 3 0.003 0.000 0.000

Historical Return 0.000 [± 0.000] 0.893 [± 0.120]
0.001 [± 0.001]
0.318 [± 0.271]

Distribution 0.724 0.080 0.000
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G.3. Weekly options

We check whether Ross recovery with weekly instead of monthly options leads to the

same results. The weekly S&P 500 options were introduced in 2005 and expire each Friday.

We process weekly option data analogous to how we process monthly option data; see Online

Appendix B and Section 3.1 in the main paper. On each expiry date, we go seven calendar

days back to find our sample dates. The weekly options are concentrated in the short

maturities (one to 13 weeks) whereas the monthly options are spread out across longer

maturities (four to 52 weeks). In total, and up with 597 weekly sample dates from October

14, 2005 through the December 29, 2017.

Next, we compute spot state prices analogous to our approach for monthly options. We

discretize the maturity dimension with 10 steps each week resulting in a total of 130 maturity

steps. Following our approach in the main paper, we then recover physical distributions for

our four Ross recovery methods and our two benchmark models in the weekly setting. The

weekly physical distributions recovered from Ross Basic, Ross Bounded, and Ross Unimodal

are defined on N = 121 states. For Ross Stable and Power Utility with γ = 3, the distribu-

tions are defined on N = 130 states. We construct the Historical Return Distribution based

on the last 60 weekly observed returns.

We then repeat our main study. Density test results are shown in Table 14, mean

prediction results are shown in Table 15, and variance prediction results are shown in Table

16. Again, we strongly reject all Ross recovery methods using density tests (only Ross

Bounded cannot be rejected by the KS test, and Ross Stable cannot be rejected by the

Knüppel 3 moments test). Power Utility and Historical Return Distribution are only rejected

by the Berkowitz test.

In the weekly mean predictions, there are three changes compared to the main results.

Ross Bounded, Ross Stable, and the Historical Return Distribution are now rejected in the

Slope model. In the weekly variance predictions, results are similar to the main results

except that Ross Stable is no longer rejected in the Intercept model, and Power Utility is no

longer rejected in the Joint model.

In untabulated results, we repeated the density tests in the machine learning setting.

Ross Basic ML is now rejected by all four density tests. Results for the other methods

remain unchanged. Altogether, results do not change much one way or the other and are

robust with respect to using weekly options.
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Table 14
Density tests of the recovered physical probabilities using weekly options.
We present our results when future returns are drawn from physical probabilities generated by one of our
six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return
Distribution. For each method, we show the p-values from the Berkowitz, Kolmogorov-Smirnov, and Knüppel
(using both 3 and 4 moments) tests for uniformity of the percentiles of future returns under the method
physical cumulative distribution.

H0: pτ = p̂τ Berkowitz Kolmogorov- Knüppel Knüppel

Smirnov 3 moments 4 moments

Recovery Method p-value p-value p-value p-value

Ross Basic

πi,j > 0
0.000 0.007 0.000 0.000

Ross Bounded

πi,j > 0, rowsums ∈ [0.9, 1]
0.000 0.093 0.042 0.000

Ross Unimodal

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]

0.000 0.000 0.001 0.000

Ross Stable

No transition state prices
0.000 0.034 0.054 0.002

Power Utility

with γ = 3
0.039 0.472 0.500 0.067

Historical Return

Distribution
0.006 0.680 0.848 0.457
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Table 15
Mean predictions when using weekly options.
We test if future returns rτ can be predicted by recovered means µτ generated by one of our six methods:
Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return Distribution.
For each method, we report the p-values and estimated coefficients with the 95% confidence intervals for
three different regressions.

rτ = a+ bµτ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic -0.001 [± 0.003] 0.041 [± 0.078]
0.002 [± 0.002]
0.035 [± 0.078]

πi,j > 0 0.471 0.000 0.000

Ross Bounded 0.005 [± 0.002] -0.415 [± 0.540]
0.001 [± 0.003]
-0.160 [± 0.936]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.000 0.000

Ross Unimodal -0.123 [± 0.005] 0.012 [± 0.014]
0.001 [± 0.005]
0.004 [± 0.038]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.000 0.000

Ross Stable 0.002 [± 0.002] -0.389 [± 1.372]
0.002 [± 0.002]
-0.014 [± 1.455]

No transition state prices 0.037 0.047 0.045

Power Utility 0.000 [± 0.002] 0.384 [± 0.399]
0.001 [± 0.002]
0.298 [± 0.442]

with γ = 3 0.617 0.003 0.007

Historical Return 0.000 [± 0.002] 0.078 [± 0.570]
0.002 [± 0.002]
-0.143 [± 0.627]

Distribution 0.874 0.002 0.002

32



Table 16
Variance predictions when using weekly options.
We test if future realized variances RVτ can be predicted by recovered variances σ2

τ generated by one of our
six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical Return
Distribution. For each method, we report the p-values and estimated coefficients with the 95% confidence
intervals for three different regressions.

RVτ = a+ bσ2
τ + ετ

Intercept

Model

Set b = 1

Test a = 0

Slope

Model

Set a = 0

Test b = 1

Joint

Model

Test a = 0

and b = 1

Recovery Method Intercept [95% CI] Slope [95% CI] Intercept [95% CI]
Slope [95% CI]

p-value p-value p-value

Ross Basic -0.003 [± 0.001] 0.075 [± 0.013]
0.001 [± 0.000]
0.059 [± 0.013]

πi,j > 0 0.000 0.000 0.000

Ross Bounded -0.002 [± 0.000] 0.343 [± 0.024]
0.000 [± 0.000]
0.415 [± 0.031]

πi,j > 0, rowsums ∈ [0.9, 1] 0.000 0.000 0.000

Ross Unimodal -0.008 [± 0.001] 0.112 [± 0.009 ]
-0.001 [± 0.000]
0.144 [± 0.012]

πi,j > 0 and unimodal,

rowsums ∈ [0.9, 1]
0.000 0.000 0.000

Ross Stable 0.000 [± 0.000] 0.894 [± 0.052]
0.000 [± 0.000]
0.895 [± 0.060]

No transition state prices 0.056 0.000 0.000

Power Utility 0.000 [± 0.000] 0.966 [± 0.064]
0.000 [± 0.000]
0.950 [± 0.073]

with γ = 3 0.717 0.300 0.372

Historical Return 0.000 [± 0.000] 0.899 [± 0.153]
0.000 [± 0.000]
0.657 [± 0.193]

Distribution 0.025 0.195 0.000
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H. The relation between transition state prices and the stochastic

discount factor

The rowsums of the transition state price matrix are inversely related to the Ross recovery

SDF. Importantly, any modeling choice that affects rowsums will thus determine the Ross

recovery SDF. As the machine learning implementation forces away-from-the-current-state

transition state prices (and thus rowsums) downward, a U-shaped SDF obtains. Even though

we cannot reject Ross Basic ML, we are nevertheless concerned that the non-rejection is

largely due to the mechanics of the machine learning approach. We now document the inverse

relation between rowsums and SDF empirically, mathematically in a two-state setting, and

in a simulation using our usual state space.

Empirically for our 380 dates, we observe only negative correlations between our recovered

SDFs (using Ross Basic ML) and the rowsums of the corresponding transition state price

matrices ranging from -0.09 to -0.82 with an average correlation of -0.49. These negative

correlations are significantly lower than zero in 372 out of 380 cases (98%). We choose Ross

Basic ML here as this is the method that forces the recovered SDF to be U-shaped. For the

other methods, we also observe significantly negative correlations.

Mathematically, we prove the negative relation in the following N = 2 state example.

Let the transition state price matrix be given by Π where, without loss of generality, we

assume that the current state is i = 0 and the rowsum with initial state i = 0 is larger than

the rowsum with initial state i = 1:3

π0,0 + π0,1 > π1,0 + π1,1. (16)

Now consider the eigenvalue problem from Eq. (3) in the N = 2 case:

π0,0 · z0 + π0,1 · z1 = δ · z0
π1,0 · z0 + π1,1 · z1 = δ · z1.

(17)

Let x = z0
z1

. We already know that the Perron-Frobenius theorem implies that x > 0.

Solving each of the two equations in Eq. (17) for δ gives:

π0,0 +
π0,1
x

= δ = π1,0 · x+ π1,1 (18)

3Note that we do not cover equal rowsums in this proof. Equal rowsums would lead to a flat SDF, as
already shown in Ross (2015).
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⇔ π1,0 · x2 + (π1,1 − π0,0)x− π0,1 = 0 (19)

Rewriting Eq. (16) as π0,1 − π1,0 > π1,1 − π0,0 and inserting it into Eq. (19) gives:

π1,0 · x2 + (π0,1 − π1,0)x− π0,1 > 0

⇔ π1,0 · x(x− 1) + π0,1 · (x− 1) > 0.
(20)

Given that x > 0, this inequality holds only if x > 1. We further know that the recovered

SDF with current initial state i = 0 is given by:

SDF =

(
δ, δ · z0

z1

)
= (δ, δ · x) , (21)

which is increasing from state 0 to state 1 for x > 1. This proves that if we observe decreasing

rowsums of Π in the N = 2 case, we always end up with a recovered SDF that is increasing

in states. The relation between increasing rowsums and decreasing SDF follows analogously.

Finally, we use a simulation to show the negative relation for larger state spaces, where

we cannot show the result mathematically. In line with our empirical study, we use a state

space 0 to 1.6 with dimension of N = 111, and simulate M = 10, 000 different transition

state price matrices on that state space.

Each simulated matrix Π is constructed as follows. First, we fill each row of Π with a

truncated normal distribution function with mean equal to the value of the initial state of

that row and standard deviation uniformly drawn between values of 0.15 and 0.3. After

each row is filled, we add noise to each value with a probability of 10% and leave the value

unchanged otherwise. The noise we add is lognormally distributed and ranges from 0 to

8.60 with an average value of 0.29. For each row of Π, we then determine a target rowsum

by uniformly drawing a value between a lower bound lb = 0 and an upper bound ub = 10.

Next, we normalize each row so that it sums to the specified target rowsum.

We generate 10,000 different transition state price matrices, recover the SDF, and com-

pute its correlation with the rowsums of Π. All correlations are negative and lie between

-0.15 and -0.82 with an average correlation of -0.42. 97% of the correlations are statistically

significant. These findings are in line with the empirical values above. When we restrict

rowsums to lie between lb = 0.9 and ub = 1, as in Ross Bounded, the average correlation is

-0.52. We conclude that there is a strong negative relation between rowsums and the SDF.
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I. Insights from simulated economies

It is conceivable that small data errors in option prices might cause the recovery theorem

to fail. To check, we simulate economies where a particular recovery method holds true and

generate future returns by drawing from the recovered physical distributions. In that case

and with a 5% significance level for our statistical tests, we should have a 5% rejection rate

(i.e., future returns are incompatible with the simulated recovery method).

Next, we perturb the option prices. This will increase the rejection rates, as the per-

turbed recovery methods generate physical distributions that deviate from the true physical

distribution, from which we drew the future returns.

Our methodology is as follows. For each date τ in our sample, we assume that the

true risk-neutral economy is represented by the observed implied volatilities σi(l),t(l) with

moneyness i(l) and maturity t(l) for observation l = 1, ..., L. At date τ , we further draw a

one-month future return rtrueτ from the physical distributions ptrueτ that we recovered with

a particular recovery method. This gives us a time series of 380 one-month future returns

drawn from an economy where the particular recovery method holds.

On each date, we then add v times a standard normally distributed error ε to the observed

implied volatilities σi(l),t(l) and obtain perturbed implied volatilities σ̂i(l),t(l) as:

σ̂i(l),t(l) = σi(l),t(l) + v · ε, ε ∼ N(0, 1), (22)

where v on each date τ is a multiple of the mean implied volatility bid/ask spread on that

date.4 Our four levels of perturbation are none, one-half, one, and twice the mean spread of

a particular date.

We apply our standard algorithm to recover the physical distributions p̂τ , which are now

based on the perturbed implied volatilities σ̂i(l),t(l). We then use a Berkowitz test to test

the hypothesis that the simulated future returns rtrueτ are compatible with the recovered

distributions p̂τ .
5 We draw 10,000 realizations of future return time series, each consisting

of 380 returns, and report the rejection rates for our hypothesis at the 5% significance level.

Table 17 presents how often our hypothesis is rejected at the 5% significance level for

different multipliers v of the error-term ε. Without any perturbation, the rejection rates all

equal the theoretical value of 5%. Beyond that, we find that only Ross Basic turns out to be

4On each date, we compute the mean across all options of (ask implied volatility - bid implied volatility).

The mean spread ranges from 0.001 to 0.085 for our 380 sample dates, with an average value of 0.013.

5Using the Knüppel test with four moments at the 5% level does not change our results qualitatively.

36



very sensitive to perturbations. Even though the simulations assume that Ross Basic holds,

we have rejection rates of around 41% to 99% with perturbations instead of 5% without.

Thus, the failure of Ross Basic could be driven by errors in the option implied volatilities.

Yet for all other methods, the increased the rejection rates are barely noticeable up to

perturbations by the mean spread and much slower than for Ross Basic as we increase our

perturbations to two times the mean spread.6 We thus reason that the empirical failure of

Ross Bounded, Ross Unimodal, and Ross Stable is not likely to be driven by perturbations

of the option prices.

We conclude that, while Ross Bounded, Ross Unimodal, and Ross Stable suffer from

rather flat SDFs, the methods are less sensitive to perturbations of the option prices than

Ross Basic. It seems that adding economic constraints results in methods that are less

sensitive to perturbations. This finding also holds for Power Utility.

Table 17

Stability of simulated recovery methods.
We generate 10,000 realizations of an economy where a particular recovery method holds. For each
realization, we draw 380 future returns. Next, we perturb option implied volatilities by adding v
times a standard normally distributed error ε. The v of each date τ is based on the mean implied
volatility bid/ask spread of that date times 0, 0.5, 1, or 2. Given v, we report the rejection rates
for the hypothesis that the future returns are drawn from the perturbed physical distributions. We
use a Berkowitz test with a significance level of 5%.

Recovery Method v = 0·spread v = 1
2
·spread v = 1·spread v = 2·spread

rej. rate rej. rate rej. rate rej. rate

Ross Basic 5% 41% 59% 99%

Ross Bounded 5% 5% 6% 12%

Ross Unimodal 5% 5% 6% 10%

Ross Stable 5% 5% 6% 20%

Power Utility 5% 5% 7% 41%

Hist. Return Distr. n/a n/a n/a n/a

6The rejection rate cannot be computed for the Historical Return Distribution.
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