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Starting with the fundamental relation that state prices are the product of physical proba- 

bilities and the stochastic discount factor, Ross (2015) shows that, given strong assump- 

tions, knowing state prices suffices to back out physical probabilities and the stochas- 

tic discount factor at the same time. We find that such recovered physical distributions 

based on the S&P 500 index are incompatible with future returns and fail to predict fu- 

ture returns and realized variances. These negative results are even stronger when we add 

economically reasonable constraints. Simple benchmark methods based on a power utility 

agent or the historical return distribution cannot be rejected. 
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1. Introduction 

Much of financial economics revolves around the trian-

gular relation among physical return probabilities p , which

are state prices π divided by the stochastic discount factor

(SDF) m : 

physical probability p = 

state price π

SDF m 

. (1)

Researchers typically pick any two variables to find

the third. Yet Ross (2015) , based on earlier work by
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Hansen and Scheinkman (2009) , presents a recovery theo-

rem that allows a researcher to back out both the SDF and

physical probabilities by using state prices only. To achieve

this, he needs to make strong assumptions. We investigate

this claim and test whether the recovered physical prob-

abilities are compatible with future S&P 500 returns. We

further analyze whether the shape of the recovered SDF is

consistent with utility theory. To understand our results,

we discuss in detail why the recovery theorem does not

perform well empirically. 

Ross (2015) makes three explicit assumptions. First, he

assumes time-homogeneous transition state prices π i,j that

represent state prices of moving from any given state i to-

day to any other state j in the future. Second, all transition

state prices need to be positive. Third, the SDF m i,j is re-

stricted to be a constant times the ratio of values in state j

and values in state i . 

Taken altogether, the three assumptions allow Ross

(2015) to formulate an eigenvalue problem based on tran-

sition state prices. Its unique solution yields the physical

transition probabilities p i,j , which represent physical prob-

abilities of moving from state i to state j , and the SDF. 

https://doi.org/10.1016/j.jfineco.2020.03.006
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Yet how useful are the spot physical probabilities p 0, j 

emanating from the current state i = 0 ? Are future returns 

really drawn from those recovered distributions? We reject 

this hypothesis strongly using four different density tests: 

the Berkowitz (2001) test, two versions of the uniformity 

test introduced by Knüppel (2015) , and the Kolmogorov- 

Smirnov test. Further, we show that the means and vari- 

ances of the recovered physical distributions cannot pre- 

dict future returns and realized variances. Also, Ross re- 

covery does not produce downward-sloping SDFs (as one 

would expect given risk-averse preferences) but rather 

ones that are riddled with local minima and maxima. 

Two simple benchmark methods by contrast perform 

well on all accounts. Our first benchmark uses a power 

utility SDF to transform option-implied state prices into 

physical probabilities. Our second benchmark uses simply 

the five-year historical return distribution. Neither bench- 

mark can be rejected. 

The empirical problems of Ross recovery stem from sev- 

eral sources and are related to his strong assumptions. 

First, it is hard to obtain transition state prices from option 

prices. Our basic implementation of Ross recovery requires 

only positivity of transition state prices and leads to unsta- 

ble transition state prices that exhibit multimodality and 

imply extreme risk-free rates in different states. Yet if we 

introduce economically reasonable constraints to restrict 

the transition state prices (bounding state-dependent risk- 

free rates and requiring unimodal transition state prices), 

Ross recovery generates almost flat SDFs. A stable version 

that uses only spot state prices without the need to esti- 

mate transition state prices also does not work. 

Second, we argue that the strong assumption concern- 

ing the functional form of the SDF is rather limiting. For 

example, the state-dependent SDF in Ross recovery is in- 

compatible with the state-independent one under power 

utility. We further show that the recovered SDF is highly 

dependent on the structure of the transition state price 

matrix, which in turn is not well-identified from option 

prices. 

Third, the assumption of time-homogeneous transition 

state prices might not hold, and different periods may re- 

quire different transition state prices. Indeed, we show em- 

pirically a poor simultaneous fit to short- and long-dated 

options for most Ross recovery methods. 

We add to the empirical literature concerning Ross re- 

covery by pinpointing exactly where Ross recovery goes 

awry. Moreover, we answer the intriguing question as to 

where Ross recovery, despite its theoretical shortcomings, 

might still be useful empirically as a rough approximation 

of reality. Alas, our work confirms the negative theoretical 

outlook. 

As an alternative to the numerically difficult recovery 

of transition state prices from spot state prices, we suggest 

an additional implicit method (Ross Stable), which obviates 

that recovery and works directly with spot state prices. In 

independent work, Jensen et al. (2019) suggest the same 

method but add further structure to the SDF. They then 

focus on analysis of the theoretical properties of their gen- 

eralized recovery. They also employ a Berkowitz density 

test (where they reject their model) and predict means 

and volatilities (where they find little mean predictabil- 
ity in a setting with look-ahead bias and, due to higher 

persistence, better volatility predictability). We differ by 

choosing two simple methods close to the original Ross 

(2015) work, two further economically constrained Ross re- 

covery methods, two benchmark methods, more density 

tests, more mean and variance predictions, an analysis of 

the reasons for failure, and the longest S&P 500 option 

data sample in the literature (April 1986 through Decem- 

ber 2017). 

Next, we apply machine learning to Ross recovery. 2 

We use a cross-validated elastic net regularization, which 

forces transition state prices to zero. For the basic imple- 

mentation of Ross recovery using machine learning, we 

cannot reject Ross recovery. This nonrejection stems from 

two sources. For one, the elastic net regularization me- 

chanically induces a U-shaped SDF that makes rejection 

harder. Second, recovered physical probabilities are very 

noisy, which leads to nonrejection in our statistical tests. 

Once we add reasonable economic constraints, we are back 

to a strong rejection of Ross recovery. 

This paper relates to several others in a nascent liter- 

ature on Ross recovery. Borovicka et al. (2016) theoreti- 

cally analyze the decomposition of the SDF into a perma- 

nent and a transitory part. Using long-dated bond option 

data, Bakshi et al. (2018) empirically find the permanent 

component to be time varying. This violates an implicit as- 

sumption made by Ross (2015) , namely that the permanent 

component is constant at one. Our empirical approach dif- 

fers significantly, as we directly implement several Ross re- 

covery versions using S&P 500 index option data. Jensen 

et al. (2019) develop, in parallel with us, a version of Ross 

recovery without the need to explicitly estimate the transi- 

tion state prices. They concentrate on the theoretical prop- 

erties of this particular method yet also test it in a short 

empirical section and obtain for this method results simi- 

lar to ours. To our knowledge, we are the first to provide a 

rigorous empirical investigation of Ross recovery using S&P 

500 index option data, thereby linking our empirical find- 

ings to the theoretical properties of the recovery theorem 

and the existing literature. 

Closest to our work are Audrino et al. (2020) , who also 

implement Ross recovery on S&P 500 index options while 

forcing down state prices. Their recovered SDFs tend to be 

rather smooth and U-shaped, as in our machine learning 

setting. Their further empirical focus is on development 

of profitable trading strategies based on recovered physical 

probabilities, but unlike us, they do not statistically test if 

future returns are drawn from the recovered distribution. 

Dillschneider and Maurer (2018) apply our main ap- 

proach without the downward-forcing of transition state 

prices to confirm our density test results. They further 

generalize Ross recovery to unbounded continuous state 

spaces. Yao (2018) reproduces our study using both short- 

and long-dated S&P 500 options and confirms our results. 

Massacci et al. (2016) use a fast nonlinear programming 

approach for Ross recovery, which allows for economic 

constraints such as positive state-dependent risk-free rates 

and the unimodality of transition state prices. 
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While we do not add to the theoretical literature, Ross

recovery has been theoretically extended by Carr and Yu

(2012) and Walden (2017) . Additional works on Ross re-

covery in continuous time are Dubynskiy and Goldstein

(2013) , Qin and Linetsky (2016) , and Qin et al. (2018) . 

The paper proceeds as follows. Section 2 explains the

Ross recovery theorem. In Section 3 , we introduce our

methods to obtain spot state prices, to back out transition

state prices, and to apply the theorem without using tran-

sition state prices. Section 4 states our hypothesis, intro-

duces our tests, and describes our results. Section 5 applies

machine learning to Ross recovery. In Section 6 we provide

reasons why the Ross recovery theorem fails empirically.

Section 7 concludes. 

2. The Ross recovery theorem 

The Ross (2015) recovery theorem is based on three

explicit assumptions. First, it requires time-homogeneous

transition state prices π i,j that represent state prices of

moving from any given state i today to any other state

j in the future. This means they are independent of cal-

endar time. Such transition state prices include the usual

spot state prices π0, j where zero is the current state of the

economy. Spot state prices can be readily found from op-

tion prices; see, e.g., Jackwerth (2004) . Yet Ross recovery

also requires as inputs the transition state prices emanat-

ing from alternative, hypothetical states of the world. 3 We

use information on spot state prices with different maturi-

ties to obtain these transition state prices and suggest sev-

eral different methods, including one that allows us to ap-

ply the recovery theorem directly to spot state prices π0, j

without the need to estimate all the other transition state

prices. 

Second, all transition state prices π i,j need to be strictly

positive, which turns out to be a fairly benign assumption,

as we can easily enforce positive transition state prices. 

Third, the SDF m i,j is transition-independent, which

means it can be written as 

m i, j = δ
u 

′ 
j 

u 

′ 
i 

, (2)

for a positive constant δ and positive state-dependent val-

ues u ′ 
j 

and u ′ 
i 
. Ross (2015) suggests a possible interpreta-

tion of those values u ′ as marginal utilities while viewing

δ as a utility discount factor. 

Given the three assumptions and using Eq. (1) , the

physical transition probabilities p i,j have the form 

p i, j = 

πi, j 

m i, j 

= 

1 

δ
· πi, j · u 

′ 
i 

u 

′ 
j 

. (3)

For a fixed initial state i , the physical transition proba-

bilities p i,j across future states j need to sum to one. After
3 Imagine that the current state of the world is characterized by the 

S&P 500 standing at 1000. Let there be two future states, 900 and 1000, 

to which the spot state prices (emanating from 10 0 0) relate. The required 

other transition state prices are the ones emanating (hypothetically) from 

900 and ending at 900 or 1000 one period later. 

 

 

 

 

rearrangement, this leads to 

∑ 

j 

πi, j 

1 

u 

′ 
j 

= δ · 1 

u 

′ 
i 

∀ i. (4)

Given N different states with indices i and j both run-

ning from 1 to N , Ross collects the transition state prices

π i,j in an N × N matrix �. Ross then collects the N equa-

tions from Eq. (4) and formulates an eigenvalue problem,

where z is a vector of the inverse marginal utilities: 

�z = δz, where z i = 

1 

u 

′ 
i 

. (5)

An application of the Perron-Frobenius theorem leads

to the result that there is only one eigenvector z with

strictly positive entries z i . That eigenvector corresponds to

the highest positive eigenvalue δ of the eigenvalue prob-

lem. This property implies a unique positive SDF m i,j , as

in Eq. (2) and unique physical transition probabilities p i,j
for all i and j across N states, as in Eq. (3) . We provide a

worked example with N = 2 states in Online Appendix A. 

Relying on the three assumptions, Borovicka et al.

(2016) argue that the SDF is the product of a transitory

component and a permanent component; Ross (2015) im-

plicitly sets the permanent component to unity. Using

long-dated bond option prices instead of index option

prices, Bakshi et al. (2018) empirically find the permanent

component to be time varying, contradicting the assump-

tions above and hinting at potential empirical problems.

For now, we keep the assumptions in place and interpret,

as Ross (2015) did, the recovered transitory SDF to be iden-

tical to the total economy-wide SDF, as the permanent SDF

component is unity. This allows us to recover SDFs and

physical probabilities, where we show the latter to be in-

compatible with future returns. We later use the recovered

quantities to analyze the reasons for failure and link them

to violations of the three assumptions. 

We always label the current state as i = 0 in a set of

state indices I = {−N low 

, . . . , 0 , . . . , N high } , where N = N low 

+
N high + 1 . The ending transition state index j is drawn

from the same set I . The 0 th row of � contains the one-

period transition state prices, starting from the current

state, which in theory coincides with the one-period spot

state prices. 

3. Methodology 

The basic ingredient missing for Ross recovery at this

point is the matrix � of transition state prices, which are

not easily observable in the market. Yet we can extract

transition state prices by exploiting that they link spot

state prices at different maturities with each other. We can

readily obtain those spot state prices from observed option

prices. 

3.1. Obtaining spot state prices from observed option prices 

We collect European put and call option quotes on the

S&P 500 from the Berkeley Options Database (April 1986

through December 1995) and from OptionMetrics (January

1996 through December 2017), see Online Appendix B. We
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consider 380 monthly sample dates, which we find by go- 

ing 30 calendar days back in time from the option expi- 

ration date. After applying standard filters, we average bid 

and ask quotes to obtain midpoint option prices, which we 

then transform to implied volatilities. For any given sample 

day, quotes are available only for specific moneyness lev- 

els and maturities, yet we would like to obtain state prices 

on a grid compatible with the recovery theorem. Thus, we 

first generate a smooth implied volatility surface on a fine 

auxiliary grid, from which we later interpolate to the grid 

required for the recovery theorem. 

For the auxiliary grid, we discretize option strike prices 

with a step size of $1.25 and add additional lower and 

higher states so that all positive spot state prices occur in 

the interior of the state set. The number of auxiliary states 

varies between 227 for earlier sample days and 2,579 for 

later sample days. We then convert strike prices into mon- 

eyness levels by normalizing them by the current level of 

the S&P 500 index. We discretize the maturity dimension 

into 120 steps with 10 steps per month. This discretization 

ensures that all available option prices lie on our fine aux- 

iliary grid. 

To generate a smooth implied volatility surface, we 

apply an extension of the fast and stable method in 

Jackwerth (2004) that balances minimizing the sum of 

squared local total second implied volatility derivatives (in- 

suring smoothness of the volatility surface) and minimiz- 

ing the sum of squared deviations of model implied volatil- 

ities from the observed implied volatilities (insuring the fit 

of the surface). 

To obtain state prices on a coarser grid suitable for the 

recovery theorem, we linearly interpolate the fine implied 

volatility surface. We typically use more than 100 states, 

while Ross (2015) originally uses only 12 states. From the 

implied volatilities on the coarser grid, we compute call 

option prices and, at each maturity t , apply the Breeden 

and Litzenberger (1978) approach to find the spot state 

prices on the coarser grid (see Online Appendix C). 

3.2. Finding transition state prices from spot state prices: 

Ross Original 

Now that we have the spot state prices in place, we 

return to the task of finding transition state prices from 

spot state prices. Following Ross (2015) , we can identify 

the transition state prices π i,j because they link spot state 

prices π t 
0 , j 

at different maturities t with one another. Us- 

ing 12 nonoverlapping, monthly transition state prices and 

spot state prices with monthly maturities of up to one 

year, we can state the relations: 

π t+1 
0 , j 

= 

∑ 

h ∈ I 
π t 

0 ,h · πh, j ∀ j ∈ I, t = 0 , . . . , 11 , (6) 

where today’s spot state prices with a maturity of zero (
π0 

0 , j 

)
are zero for all states except the current state, for 

which the spot state price is one. Eq. (6) states that one 

can find the spot state price π t+1 
0 , j 

of reaching state j at ma- 

turity t + 1 by adding up all the state price contributions 

of visiting state h one month earlier at maturity t 
(
π t 

0 ,h 

)
times the transition state price from h to j ( πh,j ). 
Directly solving Eq. (6) is not advisable, as the problem 

is ill-conditioned and does not necessarily deliver posi- 

tive transition state prices. Rather, we impose an additional 

non-negativity constraint on the transition state prices π i,j 

and back them out from the least squares problem below, 

which penalizes violations of Eq. (6) : 

min 

πi, j 

∑ 

j∈ I 

11 ∑ 

t=0 

( 

π t+1 
0 , j 

−
∑ 

h ∈ I 
π t 

0 ,h · πh, j 

) 2 

s.t. πi, j > 0 . 

(7) 

We collect the transition state prices π i,j in the transi- 

tion state price matrix � and recover physical transition 

probabilities by applying the recovery theorem. We label 

this recovery method Ross Original. 

Ross (2015) observes that such a coarse nonoverlap- 

ping grid of dimension 12-by-12 leads to poorly discretized 

transition state prices and to coarse discrete physical prob- 

abilities. We confirm that the method does not work and 

the future returns do not seem to be drawn from the re- 

covered physical probability distribution (see Section 4.2). 

3.3. Finding transition state prices from spot state prices: 

Ross Basic 

Instead of using the coarse nonoverlapping 12-by-12 

grid in Ross Original, we follow Audrino et al. (2020) and 

apply an overlapping approach to determining the transi- 

tion state prices. Using steps of one-tenth of a month (and 

a state price transition lasting one month, i.e., ten steps), 

our new relation is 

π t+10 
0 , j 

= 

∑ 

h ∈ I 
π t 

0 ,h · πh, j ∀ j ∈ I, t = 0 , . . . , 110 . (8) 

This results in a total number of 111 overlapping tran- 

sitions and thus allows N = 111 states, which we choose 

to be equidistant and where we include the current state 

i = 0 . Again, we impose an additional nonnegativity con- 

straint on the transition state prices π i,j , and we recover 

them by solving a least squares problem that penalizes vi- 

olations of Eq. (8) : 

min 

πi, j 

∑ 

j∈ I 

110 ∑ 

t=0 

( 

π t+10 
0 , j 

−
∑ 

h ∈ I 
π t 

0 ,h · πh, j 

) 2 

s.t. πi, j > 0 . 

(9) 

We label this method Ross Basic and depict the re- 

sults of our implementation for a typical day in our sam- 

ple, February 17, 2010. Fig. 1 illustrates the transition state 

prices, which best relate spot state prices at one maturity 

to those at a maturity one month later. 

We expect high transition state prices on the main di- 

agonal, as it is more likely to end up in states j that are

close to the initial state i . In fact, the optimization quite 

often generates high state prices for states j that are far 

away from the initial state i . 

The high transition state prices away from the main 

diagonal can occur because short-maturity option prices 

are little affected by such irrelevant transition state prices, 

which link states that are not important for the short- 

maturity spot state prices and thus the value of the short- 

maturity options. The optimization allocates prices to these 
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Transition state prices (Basic), Feb. 17, 2010
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Fig. 1. Transition state prices and recovered physical transition probabilities, Ross Basic. We show the transition state prices as identified by the Ross Basic 

method. All data are from February 17, 2010. States are expressed in terms of moneyness. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

irrelevant states to minimize the objective function while

not much changing the short-maturity spot state prices

much in the process. 

As a result, some rowsums in � have values much

higher than one, which would imply high negative risk-free

rates for some initial states. On our sample day, February

17, 2010, we observe that one-third of all one-month state-

dependent risk-free rates are lower than -20% (the lowest

value being -98%) and one-third of the rates are higher

than 80% (the highest value being 576%). We thus impose

reasonable economic constraints on the problem in Eq. (9) .

3.4. Adding economic constraints: Ross Bounded 

We first constrain all rowsums of � to the interval [0.9,

1]. As the inverse of the rowsum is equal to one plus the

risk-free rate for this state, we limit the monthly risk-free

rates to be between 0% and 11.11% (0% and 254.07% annu-

alized). We again solve Eq. (9) but additionally restrict the

rowsums: 

min 

πi, j 

∑ 

j∈ I 

110 ∑ 

t=0 

( 

π t+10 
0 , j 

−
∑ 

h ∈ I 
π t 

0 ,h · πh, j 

) 2 

s.t. πi, j > 0 

and 0 . 9 ≤
∑ 

j∈ I 
πi, j ≤ 1 . 0 ∀ i ∈ I. 

(10)

We label this method Ross Bounded. Fig. 2 illustrates

the transition state prices for Ross Bounded. They are now

highly concentrated around the current state (labeled by a

moneyness level of one). On the positive side, this elim-

inates high values in irrelevant states (i.e., far away from

the main diagonal). Yet worryingly, even the values on the
main diagonal fall off as we move away from the current

state. The constrained optimization reduces state prices al-

most uniformly the farther they are away from the current

state. As a result, we do not obtain the economically rea-

sonable diagonal structure for the transition state prices

with Ross Bounded. 

3.5. Adding economic constraints: Ross Unimodal 

Next, in addition to bounding the rowsums, we also

constrain the rows in our � matrix to be unimodal

with maximal values on the main diagonal. We solve Eq.

(10) but add the requirement of unimodality: 

min 

πi, j 

∑ 

j∈ I 

110 ∑ 

t=0 

( 

π t+10 
0 , j 

−
∑ 

h ∈ I 
π t 

0 ,h · πh, j 

) 2 

s.t. πi, j > 0 

and 0 . 9 ≤
∑ 

j∈ I 
πi, j ≤ 1 . 0 ∀ i ∈ I 

and πi, j ≤ πi,l ∀ j, l, i ∈ I with j < l ≤ i 

and πi, j ≥ πi,l ∀ j, l, i ∈ I with j > l ≥ i. 

(11)

We label this method Ross Unimodal . Fig. 3 shows the

transition state prices for Ross Unimodal. By construction,

the modes line the main diagonal, steeply falling off farther

away from the main diagonal. As intended, away-from-

current states on the main diagonal have higher values

than in Ross Bounded. Results are robust to shifting the

modes five index levels up or one index level down in par-

allel to the main diagonal. Here we are guided by the fact

that across our sample, the mode of the spot state prices

is, at most, five index levels above and one index level be-

low the current state. 
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Fig. 2. Transition state prices, Ross Bounded. We show the transition state prices as identified by the Ross Bounded method. All data are from February 17, 

2010. States are expressed in terms of moneyness.. 
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Fig. 3. Transition state prices, Ross Unimodal. We show the transition state prices as identified by the Ross Unimodal method. All data are from February 

17, 2010. States are expressed in terms of moneyness.. 
3.6. Recovery without using transition state prices: Ross 

Stable 

The computation of transition state prices is a key chal- 

lenge in applying the recovery theorem. Yet the one row 

in the transition state price matrix � associated with the 

current state i = 0 offers a novel way out. For the current 
state, the transition state prices ought to coincide with the 

spot state prices, which we can readily obtain from option 

prices. We use this insight to suggest an alternative recov- 

ery method that does not require explicitly solving for the 

transition state prices. 4 The trick is to use the eigenvalue 
4 See the independent derivation in Jensen et al. (2019) . 
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5 Bliss and Panigirtzoglou (2004) find an optimal risk aversion factor 

of four in a power utility framework for their sample (1983–2001). We 

repeat their analysis for our much longer sample (1986–2017) and find 

an optimal risk aversion factor of three. 
6 Summing the physical probabilities ˆ p τ results in a discrete cumula- 

tive distribution that is made up of piecewise constant parts with jumps 

at the defined states. To construct a continuous cdf ˆ P τ , we linearly inter- 

polate with breakpoints at the midpoints of those jumps. We use a left 

limit at a return of -100% with value zero and a right limit at 200% with 

a value of one. 
problem in Eq. (5) and multiply both sides from the left

with the transition state price matrix �: 

� · �z = � · δz = δ(�z) = δ2 z. (12)

Again, in the row of �2 associated with the current

state i = 0 are the spot state prices but now with a ma-

turity of two transition periods. In this case, the discount

factor δ appears in the second power to account for the

two periods. Iterating, we obtain the relation 

�t z = δt z with t = 1 , . . . , T , (13)

where t determines how often we apply the transitions.

For each t , we focus on the row in �t associated with

the current state i = 0 , where the t -period transition state

prices coincide with the t -period spot state prices. We

collect all those current rows with different maturities t ,

which results in a system of equations (see Online Ap-

pendix D for details): ∑ 

j∈ I 
π t 

0 , j ·
[ 

z j 

z 0 

] 
= δt , t = 1 , . . . , T . (14)

One might worry that the system of equations is ill-

conditioned and thus might violate reasonable economic

constraints. Namely, we want to insure that the utility dis-

count factor δ and the resulting SDF are nonnegative. So,

we penalize deviations from Eq. (14) and include the two

new constraints: 

min [ 
z j 
z 0 

] 
,δ

T ∑ 

t=1 

( ∑ 

j∈ I 
π t 

0 , j ·
[ 

z j 

z 0 

] 
− δt 

) 2 

s.t. 

[ 
z j 

z 0 

] 
> 0 , 1 > δ > 0 . (15)

As we solve for the SDF with the least squares approach

of Eq. (15) , the system of equations in Eq. (14) does not

hold exactly. As a result, the recovered physical spot prob-

abilities do not necessarily sum to one, so we normalize

them. 

Full identification requires at least as many equations

with different maturities t as there are number of states

N . Using only N = 12 as in Ross Original results in a very

coarse grid and recovered physical probabilities that are in-

compatible with future returns. Thus, we use N = 120 and

as many equations with 1 to 120 periods of one-tenth of a

month each and recover the SDF spanning one-tenth of a

month. We make use of the property that the structure of

the SDF in Ross recovery for different maturities varies by

only a factor (see Online Appendix D for details): 

m 

t 
0 , j = δt−1 · m 0 , j , (16)

where m 

t 
0 , j 

is the spot SDF with a maturity of t transition

periods and m 0, j is the spot SDF with a maturity of one

transition period. We use Eq. (16) to find the ten-period

(i.e., one-month) SDF and use it to transform one-month

spot state prices into one-month physical probabilities. We

label this method Ross Stable. Note that we cannot provide

the corresponding figures for the transition state prices

and the transition physical probabilities, as we no longer

compute them explicitly. 
3.7. Competing benchmark methods: Power Utility and 

Historical Return Distribution 

In addition to our methods based on Ross recovery

(Ross Basic, Ross Bounded, Ross Unimodal, and Ross Sta-

ble), we introduce two competing benchmark methods

that are not related to Ross recovery to obtain physical

distributions. For the first, we assume a representative in-

vestor with a power utility and a risk aversion coefficient

of three. 5 Given the power utility SDF, we transform the

spot state prices into physical probabilities. For compara-

bility, we use the same one-month spot state prices as in

Ross Stable, which lie on a moneyness grid defined on 120

points. We label this method Power Utility with γ = 3 . 

In addition, we use the empirical distribution of the

past five years of monthly S&P 500 returns. It is irregu-

larly spaced at the historical returns with probability 1/60

at each return. We label this method Historical Return Dis-

tribution. 

4. Testing the recovered physical probabilities 

Each month, we find the date τ that is 30 calendar days

before the option expiration date. We obtain the future re-

turn r τ (i.e., the realized return from date τ to the expi-

ration date) on the S&P 500 from Thomson Reuters Datas-

tream. That return is one realization drawn from the true

physical distribution p τ . Our hypothesis is then, for each

method in turn: 

H0: Future one-month S&P 500 returns (with distribu-

tion p τ ) are drawn from the one-month physical distribu-

tion ˆ p τ (i.e., p τ = ˆ p τ ). 

We test our hypothesis first with density tests and then

with mean and variance predictions (see Online Appendix

E for details). 

4.1. Density tests: methodology 

Our six methods give us the physical spot distribution

ˆ p τ and the corresponding cumulative distribution 

ˆ P τ for

date τ . 6 We then find the percentile x τ of the cumulative

distribution 

ˆ P τ that corresponds to the future return r τ us-

ing 

x τ = 

ˆ P τ (1 + r τ ) = 

∫ 1+ r τ

−∞ 

ˆ p τ (v ) dv , (17)

and we collect those percentiles x τ for all dates τ across

moneyness levels 1 + r. Under our null that future returns

are indeed drawn from the physical distribution accord-

ing to a particular method (i.e., ˆ p τ = p τ ), the percentiles

should be independently and identically (i.i.d.) uniformly
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Table 1 

Density tests of the recovered physical probabilities. 

We present our results when future returns are drawn from physical probabilities gener- 

ated by one of our six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, 

Power Utility, and Historical Return Distribution. For each method, we show the p -values 

from the Berkowitz, Kolmogorov-Smirnov, and Knüppel (using both three and four mo- 

ments) tests for uniformity of the percentiles of future returns under the method’s phys- 

ical cumulative distribution. Our sample runs from April 1986 through December 2017. 

H0: p τ = ˆ p τ Berkowitz Kolmogorov- Knüppel Knüppel 

Smirnov 3 moments 4 moments 

Recovery Method p -value p -value p -value p -value 

Ross Basic π i,j > 0 0.001 0.020 0.000 0.000 

Ross Bounded π i,j > 0, 

rowsums ∈ [0.9, 1] 

0.000 0.049 0.012 0.000 

Ross Unimodal π i,j > 0 

and unimodal, 

rowsums ∈ [0.9, 1] 

0.000 0.044 0.000 0.000 

Ross Stable No 

transition state prices 

0.002 0.045 0.028 0.002 

Power Utility with 

γ = 3 

0.155 0.530 0.594 0.088 

Historical Return 

Distribution 

0.763 0.663 0.939 0.832 

 

distributed. We use four different tests to establish the 

uniformity of the percentiles x τ : the Berkowitz test, two 

versions of the Knüppel test, and the Kolmogorov-Smirnov 

test. 

4.1.1. Berkowitz test 

The Berkowitz (2001) test jointly tests uniformity and 

the i.i.d. property of x τ . For this test, the series x τ is trans- 

formed by applying the inverse standard normal cumula- 

tive density function � to x τ : 

z τ = �−1 (x τ ) . (18) 

As z τ is distributed standard normally, we test the 

AR(1) model: 

z τ − μ = ρ(z τ−1 − μ) + ετ , (19) 

where the null requires μ = 0 , Var (ετ ) = 1 , and ρ = 0 . 

Berkowitz then applies a likelihood ratio test as follows: 

LR 3 = −2(LL (0 , 1 , 0) − LL ( ̂  μ, ˆ σ , ˆ ρ)) , (20) 

where LL characterizes the log likelihood of Eq. (19) . 

4.1.2. Knüppel test 

The Knüppel (2015) test first scales the series x τ to 

y τ = 

√ 

12 ( x τ − 0 . 5 ) . To test x τ for standard uniformity, the 

series y τ is tested for scaled uniformity with zero mean 

and unit variance. The test then compares the first S mo- 

ments of the series y τ to the respective theoretical mo- 

ments in a generalized method of moments-type proce- 

dure with test statistic αS : 

αS = T · D T

 

S 
�−1 

S D S , (21) 

where T is the number of dates in our sample. D S is a 

vector that consists of the differences between the sam- 

ple moments 1 
T 

∑ T 
τ=1 y 

s 
τ and the theoretical moments μs 

for s = 1 , . . . , S. �S is a consistent covariance matrix es- 

timator of all S moment differences. We follow Knüppel 

(2015) and set all elements of �S that represent covari- 

ances between odd and even moment differences to zero 
and apply the test by considering the first three moments 

( S = 3 ) and the first four moments ( S = 4 ), respectively. We

account for serial correlation of x τ by estimating a Newey- 

West covariance matrix with automated lag length, as pro- 

posed by Andrews (1991) . 

4.1.3. Kolmogorov-Smirnov test 

The Kolmogorov-Smirnov test looks at the maximum 

distance between the empirical cumulative distribution 

function 

ˆ U , which is based on the percentiles x τ and com- 

puted, as in Kaplan and Meier (1958) , and the uniform 

cumulative density function U . It uses the following test 

statistic: 

KS = sup 

v 
| U(v ) − ˆ U (v ) | . (22) 

In comparing the four tests, Bliss and Panigirtzoglou 

(2004) argue that the Berkowitz test is superior to the 

Kolmogorov-Smirnov test in small samples with autocor- 

related data. While more powerful than the Kolmogorov- 

Smirnov test, the Berkowitz test uses only the first 

two moments and ignores higher moments. The Knüppel 

(2015) test has the advantage of testing for higher mo- 

ments, can deal with autocorrelated data, and still has 

power even in small samples. 

In Online Appendix F, we provide a power analysis of 

our four density tests. The tests do not summarily reject 

too often, and tests differ in their statistical power. Rather 

than picking among tests, we simply report all results be- 

low, as they are similar. 

4.2. Density tests: results 

Table 1 presents the density test results. Our four orig- 

inal versions of the recovery theorem (Ross Basic, Ross 

Bounded, Ross Unimodal, and Ross Stable) reject the null 

hypothesis ( p -values less than 5%) in all four tests. Fu- 

ture returns are not drawn from physical distributions re- 

covered as per Ross recovery. To the contrary, our simple 

benchmark methods (Power Utility and Historical Return 
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Panel F: Historical Return Distribution

Fig. 4. State prices and recovered physical probabilities. We depict spot state prices (black lines), transition state prices (light gray lines), and physical 

probabilities (gray dashed lines) on February 17, 2010. Our methods are Ross Basic in Panel A, Ross Bounded in Panel B, Ross Unimodal in Panel C, Ross 

Stable in Panel D, Power Utility with γ = 3 in Panel E, and the kernel-smoothed Historical Return Distribution in Panel F. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Distribution) are not rejected by any of our four tests ( p -

values higher than 8%). We thus see a complete empiri-

cal failure of the recovery theorem, while our benchmark

methods cannot be rejected. 

To understand our results, we take a closer look at the

probabilities in Fig. 4 . The solid black lines show spot state

prices, which are derived from option prices and are virtu-

ally the same in all six panels except for small differences
in the number of states (Panels A–C use 111 states, Panels

D–F 120). The risk-neutral distributions, differing by only

a small interest rate adjustment, would also look just the

same. The dashed lines show the physical probabilities. 

In the Historical Returns Distribution in Panel F, we

cannot reject our null that future returns are drawn from

the physical distribution of the past 60 monthly returns.

The physical distribution has been kernel-smoothed (MAT-
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7 Bakshi et al. (2018) conduct related tests of predicting the first and 

second moments of bond returns instead of index returns. Their results 

are also, in line with ours, negative. 
8 Table 2 does not use excess returns as in Jensen et al. (2019) , yet re- 

sults do not change when doing so. 
LAB ksdensity with default bandwidth) onto the same state 

space as Power Utility and Ross Stable ( N = 120 ) and has 

been normalized. The physical distribution is more peaked 

around at-the-money than the spot state prices and shows 

some waviness because of the original data. 

The Power Utility method in Panel E changes the spot 

state prices into physical probabilities using a power SDF 

with γ = 3 , and we cannot reject our hypothesis that fu- 

ture returns are drawn from it. Again, the physical distri- 

bution is more peaked around at-the-money than the spot 

state prices and is somewhat lower than the spot state 

prices for moneyness levels below one. Such a shift implies 

a positive market risk premium and thus makes much eco- 

nomic sense. The realized market risk premium during our 

sample over April 1986–December 2017 is 6.65% per year. 

The recovery methods in Panels A–C have an additional 

light gray line for the transition state prices. This is be- 

cause the methods allow for transition state prices to dif- 

fer from the spot state prices, thus incorporating a pricing 

error for the option prices. Yet, Ross Basic in Panel A does 

not use this possibility, which is why the spot and transi- 

tion state prices plot on top of each other. The reason can 

be found in the lack of economic constraints on the tran- 

sition state prices (other than positivity), which allows the 

optimization to closely follow the spot state prices. As a 

result, Ross Basic produces implausible fluctuations for the 

transition state prices and rowsums, which imply extreme 

monthly risk-free rates, ranging from -98% to 576% on a 

typical sample day (February 17, 2010). The physical dis- 

tribution is somewhat right-shifted but insufficiently so, as 

we reject our hypothesis for Ross Basic as well as for all 

other recovery methods. 

Adding economic constraints on the rowsums in Ross 

Bounded (Panel B) leads to a very slight separation of tran- 

sition state prices from spot state prices. Further adding 

the economic constraint of unimodality in Ross Unimodal 

(Panel C), the separation becomes somewhat stronger (we 

quantify this mispricing later). Also, the physical probabil- 

ities are almost identical to the transition state prices in 

both cases. As a result, the physical distributions end up 

being too close to the spot state prices, and we reject our 

hypothesis that the recovered distributions are compatible 

with future returns. Finally, in Ross Stable (Panel D), we do 

not explicitly compute transition state prices. The physical 

probabilities are again very close to the spot state prices, 

and we also reject our hypothesis for Ross Stable. 

Summing up, all recovery methods, as opposed to our 

simple benchmark methods, are incompatible with future 

S&P 500 returns. Ross Basic suggests extreme fluctuations 

in the transition state prices and risk-free rates in differ- 

ent states. The other recovery methods cannot generate a 

sufficiently high risk premium, as the recovered physical 

distributions stay too close to the spot state prices. This 

closeness implies SDFs that are too flat and are almost risk- 

neutral. 

4.3. Mean predictions: methodology 

Our null that the distribution of future returns is the 

same as the physical distribution based on each of our six 

methods implies that the one-month mean μτ of the phys- 
ical distribution at date τ should predict the one-month 

future return r τ . 7 We collect both time series and run a 

regression as follows: 

r τ = a + bμτ + ετ . (23) 

Our null implies that the intercept a = 0 and the slope 

b = 1 . So we test three different models. In the Intercept 

model, we fix the slope at b = 1 and test for the intercept

at a = 0 . In the Slope model, we fix the intercept at a = 0

and test for the slope at b = 1 . In the Joint model, we test

for the intercept being a = 0 and, at the same time, the 

slope at b = 1 . 

4.4. Mean predictions: results 

Table 2 presents the mean prediction results for all re- 

covery methods. For the Intercept model (fixing the slope 

at b = 1 ), we cannot reject a zero intercept for Ross Ba-

sic, Power Utility, and the Historical Return Distribution ( p - 

values above 0.43). 

For Ross Bounded, Ross Unimodal, and Ross Stable, in- 

tercepts are all positive and are significantly different from 

zero ( p -values below 0.002), which indicates that those 

means are significantly lower than average returns. This 

finding supports our insight above that those three meth- 

ods imply an almost flat SDF and thus do not generate 

much of a risk premium. 

For the Slope model (fixing the intercept at a = 0 ), we 

cannot reject a unit slope for Ross Bounded, Ross Sta- 

ble, and the Historical Return Distribution. Yet we note 

that the point estimates are far away from one for Ross 

Bounded ( b = 0 . 069 ) and Ross Stable ( b = 0 . 198 ). The slope

for the Historical Return Distribution ( b = 0 . 668 ) is much

more reasonable in comparison. For Ross Basic, Ross Uni- 

modal, and Power Utility, the slopes are significantly dif- 

ferent from one ( p -values below 0.022). We reject the Joint 

model for all methods. 

Jensen et al. (2019) also predict means for their version 

of Ross Stable. They focus on predictive power in a set- 

ting with look-ahead bias. Eliminating the bias and using 

our much longer sample, 8 the adjusted R -squared values 

for Table 2 are all around 0%. 

We conclude that all methods predict mean returns 

poorly. The Historical Return Distribution performs best, as 

we cannot reject the Intercept and the Slope models sepa- 

rately, even though we have to reject the Joint model. 

4.5. Variance predictions: methodology 

Our null further implies that the one-month variance 

σ 2 
τ of the physical distribution at date τ should predict the 

one-month future realized variance RV τ , which we com- 

pute as the sample variance of all future daily returns in 

the month following date τ multiplied by the number of 
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Table 2 

Mean predictions. 

We test whether future returns r τ can be predicted by recovered means μτ generated by one of 

our six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and Historical 

Return Distribution. For each method, we report the p -values and estimated coefficients with the 

95% confidence intervals for three different regression models. Our sample runs from April 1986 

through December 2017. 

r τ = a + bμτ + ετ

Intercept model 

Set b = 1 

Test a = 0 

Slope model 

Set a = 0 

Test b = 1 

Joint model 

Test a = 0 

and b = 1 

Recovery method Intercept [95% CI] 

p -value 

Slope [95% CI] 

p -value 

Intercept [95% CI] 

Slope [95% CI] 

p -value 

Ross Basic π i,j > 0 –0.001 [ ± 0.006] 

0.652 

0.075 [ ± 0.101] 

0.000 

0.008 [ ± 0.005] 

0.035 [ ± 0.102] 

0.000 

Ross Bounded π i,j > 0, 

rowsums ∈ [0.9, 1] 

0.008 [ ± 0.004] 

0.001 

0.069 [ ± 0.949] 

0.055 

0.009 [ ± 0.004] 

–0.185 [ ± 0.943] 

0.000 

Ross Unimodal π i,j > 0 

and unimodal, 

rowsums ∈ [0.9, 1] 

0.008 [ ± 0.004] 

0.001 

0.106 [ ± 0.764] 

0.022 

0.009 [ ± 0.004] 

–0.080 [ ± 0.758] 

0.000 

Ross Stable No 

transition state prices 

0.007 [ ± 0.004] 

0.002 

0.198 [ ± 1.281] 

0.219 

0.010 [ ± 0.005] 

–0.940 [ ± 1.378] 

0.000 

Power Utility with 

γ = 3 

–0.002 [ ± 0.005] 

0.432 

0.393 [ ± 0.314] 

0.000 

0.009 [ ± 0.006] 

–0.067 [ ± 0.449] 

0.000 

Historical Return 

Distribution 

0.001 [ ± 0.004] 

0.788 

0.668 [ ± 0.459] 

0.156 

0.009 [ ± 0.007] 

–0.077 [ ± 0.765] 

0.022 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

days in that month. We collect both time series and run

the regression: 

RV τ = a + bσ 2 
τ + ετ . (24)

As with the mean predictions, we test the Intercept,

Slope, and Joint models. 

4.6. Variance predictions: results 

Table 3 presents the variance prediction results for all

recovery methods. For the Intercept model (fixing the slope

at b = 1 ), we cannot reject a zero intercept for Power

Utility ( p -value 0.524). For all other methods, intercepts

are significantly different from zero ( p -values below 0.010)

because most methods’ variances are significantly higher

than realized variances (except for the Historical Return

Distribution, where they are significantly lower). 

For the Slope model (fixing the intercept at a = 0 ), we

cannot reject a unit slope for Power Utility and the His-

torical Return Distribution. For all Ross recovery methods,

the slopes are significantly different from one ( p -values of

0.0 0 0). We again reject the Joint model for all methods. 

The adjusted R -squared values for Table 3 range from

0% (Historical Return Distribution) and 5% (Ross Basic) to

40–52%. In line with the high R -squared values for volatil-

ity in Jensen et al. (2019) , the R -squared values for vari-

ance are much higher than for the mean predictions. Ex-

ceptions are the Historical Return Distribution, which uses

too many stale returns (60) in its realized variance predic-

tion, and the noisy Ross Basic method. The high R -squared

values are largely due to the persistence of variance. Sim-
ply using the CBOE Volatility Index (VIX) would give simi-

lar explanatory power for future realized variance. 

We conclude that all methods have a hard time pre-

dicting variances. Power Utility performs best, as we can-

not reject the Intercept and the Slope models separately,

even though we have to reject the Joint model. The His-

torical Return Distribution cannot be rejected for the Slope

model. 

4.7. Robustness 

Looking at our density tests, as well as our mean and

variance predictions, we find that Ross recovery does not

work, not in its basic form (Ross Basic), nor in the econom-

ically constrained forms (Ross Bounded, Ross Unimodal,

or Ross Stable). Our benchmark methods (Power Utility

and Historical Return Distribution) perform much better, as

they tend not to reject our null in our various tests. 

Several robustness checks confirm the stability of our

results. We investigate whether variations of the state

space influence our empirical findings by (i) using log re-

turns instead of straight returns, by (ii) reducing the di-

mension of our state space by 20%, and by (iii) using Ross

Original, which is based on 12 nonoverlapping monthly pe-

riods and 12 states. We also repeat our study but now ex-

clude the early 1990s recession, the early 20 0 0s recession,

and the Great Recession from our original sample. Last,

we use weekly options instead of monthly options for the

sample for which the weeklies are available from 2005–

2017. For details on our robustness checks, see Online Ap-

pendix G. 



734 J.C. Jackwerth and M. Menner / Journal of Financial Economics 137 (2020) 723–739 

Table 3 

Variance predictions. 

We test whether future realized variances RV τ can be predicted by recovered variances σ 2 
τ generated 

by one of our six methods: Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility, and 

Historical Return Distribution. For each method, we report the p -values and estimated coefficients with 

the 95% confidence intervals for three different regression models. Our sample runs from April 1986 

through December 2017. 

RV τ = a + bσ 2 
τ + ετ Intercept model 

Set b = 1 

Test a = 0 

Slope model 

Set a = 0 

Test b = 1 

Joint model 

Test a = 0 

and b = 1 

Recovery method Intercept [95% CI] 

p -value 

Slope [95% CI] 

p -value 

Intercept [95% CI] 

Slope [95% CI] 

p -value 

Ross Basic π i,j > 0 –0.005 [ ± 0.002] 

0.000 

0.118 [ ± 0.027] 

0.000 

0.002 [ ± 0.001] 

0.067 [ ± 0.028] 

0.000 

Ross Bounded π i,j > 0, 

rowsums ∈ [0.9, 1] 

–0.007 [ ± 0.001] 

0.000 

0.326 [ ± 0.032] 

0.000 

–0.002 [ ± 0.001] 

0.436 [ ± 0.055] 

0.000 

Ross Unimodal π i,j > 0 

and unimodal, 

rowsums ∈ [0.9, 1] 

–0.008 [ ± 0.001] 

0.000 

0.304 [ ± 0.030] 

0.000 

–0.002 [ ± 0.001] 

0.401 [ ± 0.049] 

0.000 

Ross Stable No 

transition state prices 

–0.001 [ ± 0.000] 

0.000 

0.871 [ ± 0.068] 

0.000 

0.000 [ ± 0.000] 

0.915 [ ± 0.091] 

0.000 

Power Utility with 

γ = 3 

0.000 [ ± 0.000] 

0.524 

1.058 [ ± 0.085] 

0.180 

–0.001 [ ± 0.000] 

1.150 [ ± 0.118] 

0.037 

Historical Return 

Distribution 

0.001 [ ± 0.000] 

0.010 

1.124 [ ± 0.217] 

0.261 

0.002 [ ± 0.001] 

0.252 [ ± 0.507] 

0.001 
5. Applying machine learning to Ross recovery 

Machine learning takes advantage of large amounts of 

data and tries to detect patterns that might evade human 

investigators. We apply machine learning to Ross recovery 

to optimally regularize the transition state prices and to 

tease out information in the options data. 9 As Ross Sta- 

ble fits the SDF and the discount factor (and not transi- 

tion state prices) to the data, we focus on Ross Basic, Ross 

Bounded, and Ross Uniform. We address potential overfit- 

ting in the process. 

In our first approach, we use absolute instead of 

squared deviations in Eqs. ( 9 )–( 11 ). Unreported results 

show that our empirical findings barely change for Ross 

Basic, Ross Bounded, and Ross Unimodal. 

In our second approach, we borrow from elastic net 

regression and augment our equations not only with a 

term forcing the sum of absolute transition state prices to 

zero but also with an additional term forcing the sum of 

squared transition state prices to zero. 

In the case of Ross Basic, this changes the optimization 

procedure for finding transition state prices to 

min 

πi, j 

∑ 

j∈ I 

110 ∑ 

t=0 

( 

π t+10 
0 , j 

−
∑ 

h ∈ I 
π t 

0 ,h · πh, j 

) 2 

+ λ1 

∑ 

j,i ∈ I 
πi, j 

+ λ2 

∑ 

j,i ∈ I 

(
πi, j 

)2 
s.t. πi, j > 0 , (25) 
9 We thank an anonymous referee for pointing us toward machine 

learning and loss functions other than sum of squares. See, e.g., Gu et al. 

(2018) for details on applying machine learning to asset pricing. 
where the positive regularization parameters λ1 and λ2 are 

determined by cross-validation on a ten-day training set, 

which mitigates overfitting. We compute a reduced spot 

state price surface that incorporates only 50% of the matu- 

rities of the training set to determine transition state prices 

π i,j . For each combination of λ1 and λ2 , we then evaluate 

the full set of available maturities during the training set 

using the associated transition state prices and record the 

resulting sum of squared errors between model and ob- 

served spot state prices. We search for the optimal com- 

bination of λ1 and λ2 on a fine and large grid so that we 

minimize the sum of squared errors in the training set. 

Finally, we use the optimal parameters on our remaining 

data set. 

For Ross Bounded and Ross Unimodal, the elastic net 

regularization is implemented accordingly. For each of 

these new methods (labeled Ross Basic ML, Ross Bounded 

ML, and Ross Unimodal ML) we recover physical probabili- 

ties and test whether future returns are compatible with 

those probabilities. Table 4 presents the density test re- 

sults. 

For Ross Basic ML, none of the four tests can reject 

our hypothesis that future returns are drawn from the re- 

covered distribution. To understand this result, we take a 

closer look at the effect of including an elastic net penalty. 

The penalty pushes transition state prices toward zero, es- 

pecially away-from-the-current states that are not as rel- 

evant in explaining the spot state price surface. The re- 

sulting rowsums are thus lower in away-from-the-current 

states and are higher in near-the-current states. Empiri- 

cally, we observe a strong inverse relation between the 

rowsums of the transition state price matrix and the Ross 
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Table 4 

Density tests of the recovered physical probabilities (machine learning). 

We present our results when future returns are drawn from physical probabilities generated 

by Ross Basic, Ross Bounded, and Ross Unimodal when an elastic net regularization is in- 

cluded. We show the p -values from the Berkowitz, Kolmogorov-Smirnov, and Knüppel (both 

three and four moments) tests for uniformity of the percentiles of future returns under the 

method physical cumulative distribution. Our sample runs from April 1986 through Decem- 

ber 2017. 

H0: p τ = ˆ p τ Berkowitz Kolmogorov- Knüppel Knüppel 

Smirnov 3 moments 4 moments 

Recovery method p -value p -value p -value p -value 

Ross Basic ML 

π i,j > 0 

0.281 0.485 0.486 0.315 

Ross Bounded ML π i,j > 0, 

rowsums ∈ [0.9, 1] 

0.000 0.065 0.001 0.000 

Ross Unimodal ML π i,j > 0 

and unimodal, rowsums 

∈ [0.9, 1] 

0.000 0.056 0.000 0.000 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

recovery SDF, which have an average correlation of -0.49.

Empirically, we observe only negative correlations between

our 380 recovered SDFs and the rowsums of the corre-

sponding transition state price matrices with correlations

ranging from -0.09 to -0.82 and an average of -0.49. Sta-

tistically, these negative correlations are significantly lower

than zero in 372 out of 380 cases. The inverse-U-shaped

rowsums therefore mechanically translate into a U-shaped

SDF. 10 We provide more details and a simulation study to

illustrate that property in Online Appendix H. 

The U-shaped SDF, even though determined largely by

forcing down transition state prices in away-from-the-

current states, turns out to be compatible with future re-

turns; see, e.g., Bakshi et al. (2010) and Chaudhuri and

Schroder (2015) . Alas, Ross Basic ML delivers implausi-

ble transition state prices, which imply extreme state-

dependent risk-free rates. For our sample day of February

17, 2010, the risk-free rates vary from -62% to 6,207% and

are even more extreme on the upside than the values of -

98% to 576% for Ross Basic. As a result, the recovered phys-

ical probabilities entail much noise, which leads to nonre-

jection in our statistical tests. Yet, as the nonrejection of

Ross Basic ML is driven by the particular choice of penalty

terms and by the noise in the physical probabilities, we do

not trust the recovered physical probabilities. 

After constraining the rowsums of the transition state

price matrix (Ross Bounded ML) and additionally forcing

unimodal rowsums (Ross Unimodal ML), transition state

prices are calmed significantly, which reduces the vari-

ability of the SDF. Hence, recovered physical probabili-

ties are again close to risk-neutral ones and are not com-

patible with future returns anymore (only the low-power

Kolmogorov-Smirnov test cannot reject with p -values of

0.065 and 0.056). 

We additionally perform our moment prediction study

for the elastic net methods. In unreported results, we find

that Ross Basic ML compares to the Power Utility bench-

mark method, while Ross Bounded ML and Ross Unimodal

ML fail to predict means and variances. Untabulated results
10 Audrino et al. (2020) use a similar regularization technique for their 

implementation of Ross recovery and also find U-shaped SDFs. 

 

 

 

 

show that our empirical findings for the elastic net ver-

sions are robust to varying the state space and eliminating

recession periods. For weekly options, we can additionally

reject Ross Basic with all four density tests. 

6. Reasons for failure 

We now investigate why the recovery theorem empir-

ically fails by looking at SDFs, the time-homogeneity of

transition state prices, simulated economies, and the par-

ticular issues in machine learning methods. 

6.1. Recovered stochastic discount factors 

Assuming a theoretical risk-averse representative in-

vestor, we expect SDFs to be positive and monotonically

decreasing. However, Ait-Sahalia and Lo (20 0 0) , Jackwerth

(2004) , and Rosenberg and Engle (2002) find the empiri-

cal SDF to be locally increasing, the so-called pricing kernel

puzzle. Yet how do the SDFs of our six methods in Fig. 5

line up with these findings? The solid black line shows

the implied SDF for each method, measured as spot state

prices divided by the physical probabilities. 

For Power Utility in Panel E, the SDF is, by construction,

monotonically decreasing and theoretically well-founded.

From our main results, we already know that this SDF

translates the spot state prices into physical probabilities

that are compatible with future returns. The SDF for Ross

Basic in Panel A looks somewhat similar. It is not very

smooth yet is decreasing for moneyness levels higher than

one. As a result, the shift from state prices to physical

probabilities is insufficient in that we reject our hypothesis

that future returns are drawn from the recovered physical

distribution. 

Here, we also depict as a gray line the method SDF,

measured as transition state prices for the current state

divided by the recovered physical probabilities. Any dif-

ference between method and implied SDFs is because the

optimization fails to exactly match the spot state prices

(and thus the observed option prices). For Ross Basic, this

is not an issue, as the optimization is free to fit option

prices as long as the transition state prices are positive.
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Panel F: Historical

Fig. 5. Stochastic discount factors. We present SDFs for six different methods on February 17, 2010. Black lines depict implied SDFs, measured as spot state 

prices divided by physical probabilities, while gray lines depict method SDFs measured as transition state prices for the current state divided by physical 

probabilities. Panel A shows the SDFs for Ross Basic, Panel B for Ross Bounded, Panel C for Ross Unimodal, Panel D for Ross Stable, Panel E for Power Utility 

with γ = 3 , and Panel F for Historical Return Distribution. Only the implied SDF exists for methods D–F. 
We learned that this freedom comes at the cost of extreme 

rowsums, which in turn lead to extreme monthly risk-free 

rates, ranging from -98 to 576%. 

Once we implement reasonable economic constraints in 

Ross Bounded and Ross Unimodal (Panels B and C), the im- 

plied SDFs become even more wavy overall and flatter for 
center moneyness levels of about 0.9 to 1.1. The physical 

probabilities remain closer to the spot state prices and are 

incompatible with future returns. Interestingly, now the 

implied and the method SDFs diverge, indicating that the 

optimization struggles to match the spot state prices, as 

the transition state prices now need to satisfy our eco- 
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Table 5 

Accuracy of transition state prices. 

We report how well our methods (Ross Basic, Ross Bounded, Ross Unimodal, Ross Stable, Power Utility with 

γ = 3 , and the Historical Return Distribution not being applicable) fit observed option prices. Our measure 

is the time-series average of the RMSE of method versus observed implied volatilities, MRMSE. Columns 1 

and 2 present the MRMSE for a one-month maturity, where method-implied volatilities are based on either 

transition state prices or on spot state prices. Columns 3 and 4 present the MRMSE for a 12-month maturity, 

where method-implied volatilities are based on either conflated transition state prices or on spot state prices. 

Our sample runs from April 1986 through December 2017. 

Recovery method 

1-month 

transition state 

prices MRMSE 

1-month spot 

state prices 

MRMSE 

12-month 

transition state 

prices MRMSE 

12-month spot 

state prices 

MRMSE 

Ross Basic π i,j > 0 0.006 0.050 

Ross Bounded π i,j > 0, 

rowsums ∈ [0.9, 1] 

0.124 0.052 

Ross Unimodal π i,j > 0 

and unimodal, 

rowsums ∈ [0.9, 1] 

0.134 0.065 

Ross Stable No 

transition state prices 

0.005 0.003 

Power Utility with 

γ = 3 

0.005 0.003 

Historical Return 

Distribution 

n/a n/a n/a n/a 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

nomic constraints. The method SDF (the part driven by

the recovery theorem and not due to the fit of option

prices) is now U-shaped but is virtually flat in the cen-

ter. U-shapes could occur because of heterogeneity in be-

liefs about return outcomes and short-selling ( Bakshi et al.,

2010 ) or jumps in the stock return processes ( Chaudhuri

and Schroder, 2015 ). In the case of Ross recovery, the flat

center part of the SDFs dominates the recovered physical

probabilities, and they are incompatible with observed fu-

ture returns. 

We also find a flat implied SDF for Ross Stable in Panel

D. 11 Yet that flatness stems partially from the numerical

implementation. We first recover the SDF with maturity of

0.1 months to allow a larger number of 120 states (instead

of only 12) and then convert the 0.1-month SDF into a 1-

month SDF by the multiplicative adjustment of Eq. (16) .

The negligible curvature of the 0.1-month SDF then directly

translates into an almost flat 1-month SDF, which again

implies that we recover physical probabilities that are close

to the spot state prices. 

Last, the implied SDF for the Historical Return Distri-

bution in Panel F is rather irregular on this particular day,

even after we kernel-smooth the historical distribution. Yet

in general, and across our whole sample, we cannot re-

ject our main hypothesis, and the implied SDFs manage to

translate spot state prices into generally right-shifted phys-

ical probabilities. 

We conclude that the Ross recovery methods (except

Ross Basic) cannot generate a sufficiently sloped SDF to

make the physical distribution consistent with future re-

turns. In the case of Ross Basic, the SDF is sloped but is

too wavy, and we still reject our hypothesis. 
11 The method SDF does not exist, as we never explicitly compute tran- 

sition state prices. 
6.2. Time homogeneity of transition state prices and option 

pricing errors 

How well do the Ross recovery methods fit option

prices? Ross Stable (and also Power Utility) uses only spot

state prices, and both methods fit the one-month option

prices very well in terms of the mean root-mean-squared-

errors (MRMSE). This error is the time-series average of

the root-mean-squared-errors (RMSE) between one-month

method implied and observed implied volatilities at each

date τ . 12 Table 5 , column 2 shows these one-month MRM-

SEs to be 0.005, which is very low compared to a typi-

cal implied volatility of about 0.170. Note that the Histori-

cal Return Distribution does not use state prices at all and

cannot be used to price options. 

Among the transition state price methods in Table 5 ,

column 1, Ross Basic has only a slightly higher MRMSE of

0.006. As we require only positivity of the transition state

prices, the optimization can freely choose transition state

prices to match the spot state prices. This good fit comes

at the price of implying extreme monthly state-dependent

risk-free rates. 

For the other two transition state price methods (Ross

Bounded and Ross Unimodal), we find more than 20 times

higher MRMSEs (0.124 and 0.134), which are large when

compared to the typical implied volatility of 0.17. Adding

even mild economic constraints removes many degrees of

freedom in the allocation of transition state prices and in-

creases the error between method and observed implied

volatilities. 

We further want to investigate how the assumption of

time-homogeneous transition state prices influences our
12 For the method implied volatilities, we first compute method call op- 

tion prices C with the corresponding transition state prices π for the cur- 

rent state using numerical integration: C(K) = 

∫ ∞ 
0 π(S) · max (S − K, 0) dS. 

We then transform method call option prices into method implied volatil- 

ities σ . 
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empirical results. Given time-homogeneity, we may multi- 

ply the one-month transition state price matrix � t -times 

with itself to generate transition state prices (and thus also 

spot state prices) with a maturity of t months. 

The third column of Table 5 reports the MRMSEs of the 

transition state price methods for the 12-month horizon, 

which we can compare to the MRMSEs of 0.003 in the last 

column for the spot state price methods. 13 Ross Bounded 

and Ross Unimodal again show errors of up to 20 times 

the value of 0.003. Interestingly, the error for Ross Basic 

is 17 times the value of 0.003 and is much worse at the 

12-month than at the 1-month horizon. 

We conclude that Ross Basic, Ross Bounded, and Ross 

Unimodal fail to produce transition spot state prices that 

approximate option prices well. Only Ross Basic prices the 

one-month options reasonably well but at the cost of im- 

plausible transition state prices and extreme risk-free in- 

terest rates. 

6.3. Insights from simulated economies 

It is possible that small data errors in the option prices 

cause the recovery theorem to fail. To check, we simulate 

economies, where a particular recovery method holds true, 

and generate future returns by drawing from the recov- 

ered physical distribution. Then, at the 5% significance level 

for our statistical tests, we should have a 95% nonrejection 

rate (i.e., future returns are compatible with the simulated 

recovery method) and a 5% rejection rate. 

Next, we perturb the option prices; for details, see On- 

line Appendix I. Such perturbation will increase the re- 

jection rates, as the perturbed recovery methods gener- 

ate physical distributions, which will deviate from the true 

physical distribution, from which we drew the future re- 

turns. 

Without any perturbation, the rejection rates are all 

very close to the theoretical value of 5%. Beyond that, we 

find that only Ross Basic turns out to be very sensitive to 

perturbations of up to two times the mean bid-ask spread. 

For Ross Bounded, Ross Unimodal, Ross Stable, and Power 

Utility, rejection rates stay below 7% for perturbations of 

up to the mean bid-ask spread and only increase for even 

greater perturbations. Thus, the failure of Ross Basic could 

also be driven by its sensitivity with respect to small data 

errors in the option-implied volatilities. With added eco- 

nomic constraints, methods are less sensitive to perturba- 

tions. 

7. Conclusion 

We implement and test several recovery methods to ex- 

amine the Ross (2015) framework. We further present a 

variant of Ross recovery without explicitly estimating the 

transition state prices, which are numerically hard to de- 

termine. Using density tests, we find that future S&P 500 
13 The reason for a lower 12-month horizon error of 0.003 than a 1- 

month error of 0.005 for spot state prices is that the longer dated distri- 

butions cover a greater range of states and thus approximate the observed 

spot prices better. 

 

returns are incompatible with recovered physical probabili- 

ties. Two simple benchmark methods (a power utility with 

γ = 3 and the empirical distribution of non-overlapping 

monthly S&P 500 returns during the past five years) are 

not rejected by the data. We confirm our results when we 

use moment predictions instead of density tests. Our re- 

sults are robust to variations in the state space and the 

sample. 

Next, we apply machine learning to Ross recovery, 

which regularizes transition state prices and forces them to 

zero. In the unconstrained basic implementation, we can- 

not reject Ross recovery any longer, but this result is likely 

mechanically related to the regularization. Once we add 

reasonable economic constraints, we reject all Ross recov- 

ery methods again. 

We further analyze why the recovery theorem fails. We 

find that the most basic method, requiring minimal as- 

sumptions, delivers unstable transition state prices. Backed 

by a simulation study, we argue that it is very sensitive to 

small variations in the option prices to which the method 

is fitted. Further, the extreme risk-free rates implied by this 

basic method are economically implausible. 

Alternative implementations of Ross recovery with mild 

economic constraints are more stable than the basic 

method but cannot generate SDFs that are far enough away 

from risk-neutrality to be compatible with future index re- 

turns. Further, the assumption of time homogeneity of the 

transition state prices leads to poorly fitted option prices 

for all Ross recovery methods that explicitly estimate tran- 

sition state prices. 
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