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Abstract
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term strips are similar to or higher than Sharpe ratios for the market. Short-term strips also

have a low market beta and a positive alpha. Over the business cycle, realized term premia
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1 Introduction

Does short-term equity outperform long-term equity? Most asset pricing models imply risk premia

and Sharpe ratios on short-term claims that are close to zero and thus much lower than those on

long-term claims (Campbell and Cochrane 1999; Bansal and Yaron 2004). Yet, the empirical evi-

dence on this topic is still debated. Van Binsbergen, Brandt, and Koijen (2012) (henceforth BBK)

estimate prices of dividend strips with maturities close to two years from index options during

1996 through 2009 and show that these short-term dividend strips deliver higher risk premia and

Sharpe ratios than does the long-term market. Van Binsbergen et al. (2013), Van Binsbergen and

Koijen (2017), Cejnek and Randl (2020), and Gormsen (2021) extend this evidence using propri-

etary data on over-the-counter dividend swaps. Dividend swaps allow for direct measurement of

dividend strip prices and are thus less susceptible to measurement error than strip prices estimated

from options data (Boguth, Carlson, Fisher, and Simutin 2023). However, over-the-counter divi-

dend derivatives started trading only in the early 2000s; exchange traded dividend futures started

trading in the U.S. even later in 2015. Therefore, the use of dividend futures does not overcome the

critique of Bansal, Miller, Song, and Yaron (2021) that short samples might be unrepresentative

and tainted by an oversampling of recessions.

We come full circle by going back to the options data. We purchase the original data covering

the BBK sample and extend the data until the end of 2022. We thus almost double the original BBK

sample. The proportion of recessions in our sample is comparable to the historical occurrence of

recessions.1 Using public options data instead of proprietary dividend futures data allows us to

share our data.2

1Bansal, Miller, Song, and Yaron (2021) show that the long run recession frequency in the U.S. is 15% and the
frequency of severe recessions is 4%. We have National Bureau of Economic Research (NBER)-defined recessions in
9% of our sample.

2Giglio, Kelly, and Kozak (2020) and Gonçalves (2021a) estimate the equity term structure from the cross section
of equity returns. That approach extends the data back even further than by using index options, but it comes at the cost
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We take two steps to address potential measurement error in dividend strip prices. First, like

BBK, we estimate dividend strip prices from time-matched put-call pairs. This approach is sen-

sitive to the choice of the interest rate (Song 2016). Instead of using an exogenous interest rate

that could bias results (BBK use the zero curve rate), we use an option-implied interest rate (Van

Binsbergen, Diamond, and Grotteria 2022).

Second, we suggest the use of longer holding period logarithmic returns. Boguth, Carlson,

Fisher, and Simutin (2023) advocate the use of logarithmic returns to remove the measurement

error bias in average returns. We follow their advice throughout the paper. However, the use

of logarithmic returns will not produce unbiased estimates of Sharpe ratios, because measurement

error inflates return standard deviation (Blume and Stambaugh 1983) and, thus, biases Sharpe ratios

downwards. To mitigate the effect of measurement error, we use logarithmic returns over longer

holding periods. Theoretically, the measurement error vanishes asymptotically. Empirically, we

find that it disappears for holding periods longer than two years.3

In presenting our results, we start with the unconditional results for the full sample. Like

BBK, we fix the maturity of the strip at close to two years. We then measure term premia as the

difference between market and strip returns for a given holding period (as in BBK and Gormsen

2021). We find the term premia to be rather flat or insignificantly upward-sloping. This compares

to insignificantly downward-sloping term premia in BBK and insignificantly upward-sloping term

premia in Bansal, Miller, Song, and Yaron (2021).

While term premia are mostly flat, we find the term structure of Sharpe ratios (the difference

of estimating the dynamics of the economy and investor preferences. Our data provide direct estimates of dividend
strip prices and can be used as a yardstick to evaluate such alternative methods.

3Schulz (2016) challenges the BBK findings on the grounds of differential tax treatment of capital gains and
dividends. It is unclear how differential tax treatment could explain why the volatility of strip returns decreases as
we increase the holding period (see our results below). Moreover, Van Binsbergen and Koijen (2016) argue that the
estimated tax rates of Schulz (2016) are unreasonably high. Using lower tax rates from the literature (Sialm 2009),
they confirm the BBK findings. They also show that findings hold when comparing returns on dividend futures with
different maturities, which are affected by taxes in the same way.
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between market and strip Sharpe ratios) to be generally downward-sloping. For holding periods of

two to three years, where the effect of the measurement error is mitigated, dividend strip volatility

is substantially lower than market volatility, and the dividend strip Sharpe ratio is larger than the

market Sharpe ratio, with typically significant slope. We always reject the hypothesis that the

strip Sharpe ratio is zero. Our results thus compare to BBK and Van Binsbergen and Koijen

(2017), except that we find that strip Sharpe ratios are high mainly due to their low volatility

rather than due to their high returns. Results are robust to the choice of excess returns (in excess

of the risk-free rate or in excess of duration-matched Treasury bond returns) and to using constant

returns across holding periods.4 We observe the same patterns in subsamples and when we consider

methodological changes in estimating dividend strip returns (option maturity, interest rate, option

moneyness, and transaction costs).

As an alternative to extending the holding period, we estimate a market model for dividend

strip returns. Unlike Sharpe ratios, market model estimates are unaffected by the measurement

error in strip returns. Indeed, we find that market model beta is low (as in BBK) and stable across

holding periods (0.27, on average). Dividend strip alpha is positive (4% annualized and marginally

significant) and also stable across holding periods. We interpret these results as further validation

of our results and conclude that dividend strips perform well in terms of both Sharpe ratios and

market alphas.

Next, we analyze how term premia vary over time. Guided by a simple present value model, we

document that term premia are highly predictable by the market dividend-to-price ratio (henceforth

market dp-ratio) and by the scaled difference between market and strip dp-ratios (henceforth scaled

dp-ratios).5 These results hold both in- and out-of-sample.

4Except that the term structure of Sharpe ratios turn insignificant — but stays downward-sloping — when using
returns in excess of the risk-free rate in combination with constant means.

5Casella et al. (2023) link the time series variation in term premia to changes in investor optimism at long- and
short-horizons. For research that uses information on dividend strips to predict market or strip returns as opposed to

3



Like Gormsen (2021), we interpret our predictive regressions as a statement about the business

cycle (Campbell 1999). Our estimates of future realized term premia are positively associated

with the current market dp-ratio. As bad times are characterized by a high market dp-ratio, our

estimates suggest that term premia move countercyclically over the business cycle, in line with

Gormsen (2021).6 Using scaled dp-ratios or other measures of the business cycle leads to similar

results.

We extend the predictive regression approach to predict the term structure of Sharpe ratios and

market model alphas. We find that the difference in market and strip Sharpe ratios also moves

countercyclically over the business cycle. In contrast, the difference in market and strip alphas

moves procyclically over the business cycle.

All in all, after almost doubling the BBK sample period and after accounting for the effects

of measurement error, we are able to confirm BBK’s original result that dividend strips deliver

high returns for their level of risk, both in terms of Sharpe ratios and market model alphas. We

further confirm the result from Gormsen (2021) that term premia move countercyclically over the

business cycle and provide new evidence on the business cycle variation in the term structure of

Sharpe ratios and alphas.

We conclude by comparing our empirical findings to the predictions of theoretical asset pricing

models. Among the models we consider, the 2-factor model of Gormsen (2021) seems to capture

the highest number of our empirical findings. It produces a non-zero Sharpe ratio for short-term

dividend strip returns and predicts that term premia move countercyclically over the business cycle.

The habit model of Campbell and Cochrane (1999) and the long-run risk model of Bansal and

term premia, see BBK, Golez (2014), and Li and Wang (2018), among others.
6Van Binsbergen et al. (2013) and Bansal et al. (2021) focus on hold-to-maturity returns and document procyclical

behavior. Gormsen (2021) shows that the two results are not inconsistent with one another since the term structure of
hold-to-maturity returns varies both the maturity of the claims and the holding period, whereas we vary maturities of
the claims (i.e., strip vs. market) for a given holding period (see also our discussion in Section 7).

4



Yaron (2004) align with our evidence regarding the countercyclicality of the term premia, but they

predict close-to-zero strip Sharpe ratios, which we reject empirically. The value model of Lettau

and Wachter (2007) and the rare disaster model of Gabaix (2012) generate positive strip Sharpe

ratios, but they predict that term premia are either procyclical or constant across the business cycle,

which we reject empirically.

2 Data

We obtain data on European S&P 500 index options (henceforth SPX options) from the Chicago

Board of Options Exchange (CBOE). We use tick-level data for the period from January 1, 1990,

through March 31, 2004, and minute-level data from January 1, 2004, through December 31, 2022.

We aggregate the tick-level data to the minute level. The CBOE switched in the more recent data

from Central Standard Time (Chicago) to Eastern Standard Time (New York City). We moved all

time stamps to Central Standard Time. We merge the option data with the intradaily S&P 500 cash

index from the Chicago Mercantile Exchange (CME). Data for long-maturity options in the early

years are very sparse. Therefore, we follow BBK and start our analysis in January 1996. Our final

time series is from January 1996 through December 2022.

We calculate realized dividends from the daily Datastream S&P 500 return index and the total

return index. We use information on indicative dividends for the S&P 500 index from S&P Dow

Jones Indices. We collect daily zero curve rates from January 1996 through December 2022 from

OptionMetrics. We download nominal constant maturity Treasury interest rates from the H.15

filing of the St. Louis Federal Reserve Bank. We obtain returns on 2- and 10-year fixed maturity

Treasuries from CRSP. We download the one-month Treasury bill rate and the market factor from

Kenneth French’s data library. For the business cycle analyses, we obtain the monthly series of
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annual consumption and the quarterly series of the output gap from the St. Louis Federal Reserve

Bank and the monthly CAPE measure (market price over ten-year earnings) from Robert Shiller’s

website. For comparison, we also download the original data from BBK from the web page of the

American Economic Review.

3 Methodology and Estimation

To study the attractiveness of dividend strips compared to the market, we need returns on both

securities. We compute market returns from S&P 500 prices and dividends. We compute dividend

strip prices from the put-call parity relation of European put and call options (SPX) on the S&P

500 index.

Put-call parity dictates that, at any given time 𝑡, the price of dividends on the underlying index

during the life of the options 𝑃 is given by:

𝑃𝜏
𝑡 = 𝑆𝑡 + 𝑝𝜏𝑡 (𝑋) − 𝑐𝜏𝑡 (𝑋) − 𝑋𝑒−𝑟 𝑓

𝜏
𝑡 𝜏, (1)

where 𝜏 is the maturity of the options at time 𝑡, 𝑆 is the value of the underlying index, 𝑝 is the

price of a European put option with strike price 𝑋 , 𝑐 is the price of a European call option with

same strike price, and 𝑟 𝑓 is the annualized continuously compounded risk-free rate of return over

the corresponding period 𝜏.

Van Binsbergen, Brandt, and Koijen (2012) estimate the price 𝑃 of the short-term dividend strip

using zero curve interest rates. Specifically, for a given day 𝑡 and maturity 𝜏, they find all intradaily

pairs of put and call options with the same strike price and match them with the intradaily values

of the index and the end-of-day values of the zero curve rate of the matching maturity. From each

combination of the data with the same maturity, they estimate a strip price, which they aggregate
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into a single daily median price.

Results may be sensitive to the use of the zero curve interest rate. First, there is a time mismatch

between end-of-day zero curve rates and intradaily data for the options and the index (Boguth,

Carlson, Fisher, and Simutin 2023). Second, funding costs of marginal investors in index options

may differ from the zero curve interest rate (Song 2016; Van Binsbergen and Koijen 2016). Ulrich,

Florig, and Wuchte (2019) find that the unconditional term premia are either downward- or upward-

sloping depending on which interest rate (OIS or LIBOR) they use as a proxy for the risk-free rate.

Even a small error in interest rates can lead to a large error in the estimated dividend strip

returns. Interest rates that are too low (high) lead to strip prices that are also too low (high) (see

Equation 1). Any mistake in the strip prices is then magnified in the calculation of strip returns.

In the Internet Appendix A, we consider a simple calibration based on a small error of negative 6

basis points (bp). The error is based on our finding that option-implied interest rates at relevant

maturities (as will be described below) are 6 bp higher than zero curve rates. We show that even

such a small error can bias half-annual dividend strip returns by 0.86% (or 24.13% in relative

terms). The elasticity of the strip return with respect to the interest rate error is large at −11.22.

3.1 Option-Implied Interest Rates

Therefore, we advocate the use of an interest rate invariant approach that relies on interest rates

internally consistent with option prices. Specifically, we can treat Equation (1) as having two

unknown variables, the dividend price 𝑃 and the risk-free rate 𝑟 𝑓 . Van Binsbergen, Diamond, and

Grotteria (2022) identify the risk-free rate by combining two put-call parity relations with different

strike prices 𝑋 into a pair.7

7As an alternative, Golez (2014) identifies the risk-free rate by combining option data with futures data (see De-
maskey and Heck (1998) for an early reference). Since standard SPX options expire on a monthly cycle and futures
expire on a quarterly cycle, his approach restricts the set of possible maturities.
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They discuss two different ways of estimating option-implied interest rates from such pairs.

We refer to the first approach as the outer product approach. For a given maturity 𝜏, we create

all possible unique combinations of put-call pairs across strike prices. We denote the number of

different put-call strike prices by 𝑁 . The number of possible combinations is 𝐴 =
𝑁 (𝑁−1)

2 . For each

put-call pair (indexed a = 1,...A), we compute an option-implied interest rate. That is, for each

𝑖 = 1, ....𝑁 and for each 𝑗 = 1...𝑁 , for which 𝑋𝑖 is greater than 𝑋 𝑗 , we compute

𝑟 𝑓𝑡,𝜏,𝑎 = −1
𝜏
𝑙𝑛

[ (
𝑝𝜏𝑡 (𝑋𝑖) − 𝑐𝜏𝑡 (𝑋𝑖)

)
−
(
𝑝𝜏𝑡

(
𝑋 𝑗

)
− 𝑐𝜏𝑡

(
𝑋 𝑗

) )
𝑋𝑖 − 𝑋 𝑗

]
. (2)

Finally, we take the median implied rate as the daily option-implied interest rate. This approach is

computationally intensive, but robust to outliers.

We refer to the second approach as the regression approach. For a given maturity 𝜏, we run the

following regression based on time-matched put-call parity relations:

𝑆𝑡 − 𝑐𝜏𝑡 (𝑋) + 𝑝𝜏𝑡 (𝑋) = 𝑃+ 𝛽𝑋 + 𝜖 . (3)

We use the estimated coefficient for the strike price 𝛽 to compute the implied risk-free rate, 𝑟 𝑓 =

−1
𝜏
𝑙𝑛

(
𝛽
)
. This is a computationally efficient method, but more sensitive to outliers than the outer

product approach. Both methods produce the same estimates asymptotically.

We use the option-implied interest rates as an input in the put-call parity relation (Equation

1) to calculate prices of the dividend strips. Over the years, option trading has substantially in-

creased. The data from the first part of the sample (1996 through 2003) are much sparser than

from the second part (2004 through 2022). On January 31, 1996, and after filtering (see below),

the number of unique option relations across all maturities is 3,271 (1,243 option relations for

maturities greater than one year). On December 31, 2022, the number of unique option relations
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is 480,253 (87,941 option relations for maturities greater than one year). As a result, the impact

of potential outliers is much larger in the first part of the sample, whereas computational speed is

more of a concern in the latter part of the sample. We therefore use the outer product approach to

estimate option-implied interest rates from 1996 through 2003 and the regression approach from

2004 through 2022. When we apply both approaches to a sample of recent data, we find that strip

prices are virtually the same.8

Like BBK, we use options only on the last business day of each month between 10 a.m. and

2 p.m. We use standard monthly options that expire on the third Friday of each month. For the

option price, we use the bid-ask midpoint and eliminate all options with bid or ask prices lower

than $3. We also eliminate options with moneyness levels below 0.5 or above 1.5 and options with

maturities of fewer than 90 days.

[Figure 1 about here]

We find that the one-year implied rate is on average 7 bp (2.82% in relative terms) higher than

the zero curve rate. To illustrate, Figure 1 plots the one-year constant maturity implied rate along

with the zero curve rate and the Treasury rate. We calculate constant maturity rates by linearly

interpolating between the rates just below and above one year. The implied rate and the zero curve

rate are substantially higher than the Treasury rate (by some 38 bp). The difference between the

zero curve rate and the implied rate in the first half of the sample is rather small and amounts

to 0.64% in relative terms. The difference between both rates increases in the second half of the

sample to 11.80% in relative terms.9 This suggests that the zero curve rate was a relatively good

8We also directly estimate the dividend prices in the outer product approach (substituting out the risk-free rate
without estimating it) and in the regression approach (using �̂� directly). In the early years of our sample period, the
direct approaches lead to somewhat noisier dividend prices than the indirect approaches, which we prefer for that
reason.

9One of the reasons the zero curve rate is lower than the option-implied interest rate in the recent sample is banks’
underreporting of borrowing costs used in the calculation of LIBOR (Gandhi et al. 2019).
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proxy for the funding costs of option investors in the earlier part of the sample (including the

BBK sample), but that the use of the zero curve rate may overestimate dividend strip returns for

recent years. We proceed to estimate dividend strip prices using our time- and maturity-matched

option-implied interest rates. For comparison, we report estimations with the zero curve rate in the

Internet Appendix B.2.

We follow BBK and estimate dividend strip prices using Equation (1). The only difference is

that we use option-implied interest rates rather than zero curve rates. In estimating dividend strip

prices, we use the same option pairs that we use in the calculation of option-implied interest rates.

Each option pair gives us one estimate for the dividend price. We then take the median across

all the dividend strip prices for a given maturity on a given day. For each month-end, we obtain

estimates for dividend strip prices with maturities matching the option expiration dates.

Finally, we calculate monthly returns on dividend strips. We rely on the approach used by

BBK and calculate returns from strip prices with maturities close to two years. To account for

the availability and liquidity of longer-dated options, BBK focus on strip prices estimated from

options expiring in either June or December.10 Specifically, at the end of January of year 𝑡, we buy

a dividend strip with a maturity of around 1.9 years (based on options expiring in December of

year 𝑡 +1). We then roll this strip for six months until we rebalance again at the end of July into a

new dividend strip with 1.9 years to maturity (based on options expiring in June of year 𝑡 +2). The

only exception to this rule is July 2013 to January 2014, during which we let the strategy rely on

the strip with maturity of around 1.5 years, because the appropriate options maturing in June 2015

were not listed until September 2013.

We then calculate the monthly strip return as the sum of the strip price at month-end plus the

10The liquidity of long-dated options is driven by the CBOE issuing cycle. For options expiring in more than three
years, the CBOE initially lists December expirations, followed by June expirations. As we get closer to these expira-
tions, the CBOE eventually adds other expiration months. For longer-dated options, liquidity is thus concentrated in
the December and June expirations.
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dividends that accrue in that month, divided by the strip price at the end of the previous month.11

We refer to the resulting time-series as returns on short-term dividend strips.

We calculate monthly returns on the S&P 500 market so that we can compare them with strip

returns. Throughout, we use logarithmic returns because they are less sensitive to the standard

deviation bias and better estimate buy-and-hold returns accumulated over longer periods. We also

define the market dp-ratio
(
𝑑𝑝𝑀𝑘𝑡

)
as the logarithm of the sum of dividends over the past year

minus the logarithm of the current level of the S&P 500 index. For dividend strips, we define

the strip dp-ratio
(
𝑑𝑝𝑆𝑡𝑟𝑖𝑝

)
as the logarithm of the sum of dividends over the past year minus the

logarithm of the price of a one-year dividend strip.

3.2 Measurement Error and Sharpe Ratios

We estimate strip returns from options. Any noise in the options data can lead to biased estimates

of performance measures. Boguth, Carlson, Fisher, and Simutin (2023) argue that noise in the

data may bias average returns upward and suggest using logarithmic returns. We follow their

recommendation throughout the paper.

However, the use of logarithmic returns will not ensure unbiased Sharpe ratios. The reason

is that noise will lead to negatively autocorrelated returns (Blume and Stambaugh 1983). Such

negative autocorrelation inflates standard deviation estimates and lowers the Sharpe ratio. This

effect is present even in the case of logarithmic returns.

To illustrate, we consider a simple model of monthly log prices with additive measurement

error. The measurement error has variance 𝜎2
𝛿

that is uncorrelated with the log return variance

𝜎2
Y . See Internet Appendices C and particularly C.1 for details. The negative serial correlation

induced by the measurement error inflates the variance of measured returns 𝑣𝑎𝑟 ( ˆ𝑟𝑡,𝑡+ℎ) relative to

11This is equivalent to reinvesting monthly dividends in dividend strips.
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the variance of actual returns 𝑣𝑎𝑟 (𝑟𝑡,𝑡+ℎ) and hence depresses the measured Sharpe ratio relative to

the actual Sharpe ratio. The effect dissipates with the length of the holding period. We can express

the actual ℎ-period Sharpe ratio 𝑆𝑅(𝑟𝑡) as a function of the ℎ-period measured Sharpe ratio 𝑆𝑅(𝑟𝑡):

𝑆𝑅(𝑟𝑡) =

√︄
𝑣𝑎𝑟 ( ˆ𝑟𝑡,𝑡+ℎ)
𝑣𝑎𝑟 (𝑟𝑡,𝑡+ℎ)

𝑆𝑅(𝑟𝑡) =

√︄
1+

(
2
ℎ

)
𝜎2
𝛿

𝜎2
Y

𝑆𝑅(𝑟𝑡). (4)

For sufficiently long holding periods, the measured Sharpe ratio approaches the actual Sharpe ratio

from below. In the empirical analysis, we consider holding periods of up to 36 months.

4 Unconditional Results

Table 1 reports the annualized summary statistics for single-period (monthly) logarithmic returns.

Columns 1 and 2 presents statistics for raw market returns (8.54%) and raw dividend strip returns

(7.10%). The difference in raw returns is insignificant.12

We provide two versions of excess returns. The first version uses market and strip returns in

excess of the risk-free rate 𝑟 𝑓 , where we use the one-month Treasury bill rate. Columns 3 and 4

report the statistics for market returns in excess of the risk-free rate (6.57%) and strip returns in

excess of the risk-free rate (5.12%). The second version of excess returns matches the duration

of the risk-free returns to the duration of the asset. The latter approach corresponds to returns on

forward contracts and thus provides a comparison to studies that estimate dividend strip returns

from dividend futures (Van Binsbergen et al. 2013; Van Binsbergen and Koijen 2017).13 We

12Van Binsbergen, Brandt, and Koijen (2012) find that dividend strips offer insignificantly higher returns than the
market. In the Internet Appendix D, we replicate their results and compare them to our estimates. We find that the
difference stems from both our use of the option-implied interest rate and our extended sample. With the option-
implied interest rate, dividend strips and the market deliver similar returns during the BBK sample, but dividend strips
underperform during the extended sample (1996 through 2022).

13Since futures require no investment upfront, returns on dividend futures are already in excess of the returns on a
bond with matching maturity.
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subtract 2-year Treasury returns from dividend strip returns and 10-year Treasury returns from

market returns.14 Columns 5 and 6 give the market returns in excess of the 10-year Treasury rate

(4.60%) and strip returns in excess of the 2-year Treasury rate (4.22%). The returns are closer to

each other as the 10-year Treasury rate is higher than the 2-year Treasury rate.

[Table 1 about here]

[Figure 2 about here]

Figure 2 plots the cumulative returns for rolling over investments in the dividend strip or the

market. $1.00 invested in the market for 27 years grows to $9.97, whereas $1.00 invested in the

dividend strip grows to $6.76 (Panel A). Returns in excess of the risk-free rate (Panel B) grow to

$5.86 and $3.97. Returns in excess of the Treasury rate (Panel C) grow to $3.45 and $3.11. Thus,

accounting for the risk-free rate and, in particular, for the Treasury term structure matters for the

comparison of market and strip returns, but neither the difference between the average returns nor

the difference between the average excess returns are statistically significant.

Monthly dividend strip returns are approximately twice as volatile (32%) as monthly market

returns (16%, 18% if we subtract Treasury returns). Monthly dividend strip returns also exhibit a

strong negative autocorrelation of -0.33. This means that lagged strip returns explain 11% of the

variation in monthly returns. In comparison, the AR(1) coefficient for the market return is close to

zero at 0.02 (0.08 if we subtract Treasury returns).15

14Results are qualitatively similar if we subtract 20-year Treasury returns instead.
15When we check for a higher-order autocorrelation, we find that, of all AR coefficients out to six lags for both the

strip and the market, only the AR(1) coefficient of the strip is significant.
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4.1 Longer Holding Periods and Sharpe Ratios

A high standard deviation of single-period strip returns combined with strong negative serial cor-

relation in returns is indicative of measurement error in dividend strip prices. In the Internet Ap-

pendix C.1, we show that the effect of measurement error should decline as the holding period

increases over which we measure Sharpe ratios.

We consider holding periods of 1 through 36 months. That is, we sum the logarithmic returns

for dividend strips and, separately, for the market over a given holding period: 𝑟ℎ𝑡 =
∑ℎ

𝑗=1 𝑟𝑡+1− 𝑗 , for

ℎ = 1, ...,36.16 Figure 3 presents annualized standard deviations across different holding periods.

Table 2 reports the corresponding summary statistics. Panels A always refer to returns in excess of

the risk-free rate; Panels B refer to returns in excess of the Treasury rates.

[Table 2 about here]

[Figure 3 about here]

We note a drastic decrease in the annualized standard deviation for the dividend strip return in

excess of the risk-free rate (Panel A) from 32% for monthly returns to 14% for annual returns be-

fore stabilizing at around 12% for holding periods beyond two years. This suggests that obtaining

stable estimates for the standard deviation of dividend strip returns requires holding periods of at

least two years. In comparison, the standard deviation for the market return in excess of the risk-

free rate increases slightly from 16% (monthly) to 17% (annual) and then further to 18% (beyond

two years). Overall, these patterns are consistent with a strong negative serial correlation for the

dividend strip and a slightly positive serial correlation for the market. The patterns are very similar

for returns in excess of Treasury bond returns (Panel B).

[Figure 4 about here]
16Note that, as we change the holding period, we do not change the maturity of the underlying asset.
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These shifts in the standard deviation profoundly affect annualized Sharpe ratios (see Figure

4, Panel A for returns in excess of the risk-free rate). Specifically, the dividend strip Sharpe ratio

increases from 0.16 for the monthly holding period to 0.48 for the three-year holding period. In

contrast, the market Sharpe ratio decreases from 0.42 to 0.35. We test for the difference in Sharpe

ratios using the heteroskedasticity- and autocorrelation-consistent (HAC) test proposed by Ledoit

and Wolf (2008) using the asymptotically efficient QS kernel of Andrews (1991). We find that

the strip Sharpe ratio is significantly different from the market Sharpe ratio for any holding period

longer than 24 months. For holding periods beyond 6 months, we can also reject the null that

the dividend strip Sharpe ratios are zero.17 Since the measurement error is minimized at longer

holding periods, we find that the dividend strip outperforms the market in terms of Sharpe ratios.

Patterns for returns in excess of the Treasury bond returns are qualitatively similar, except that the

Sharpe ratios are overall lower, see Panel B.

4.2 Longer Holding Periods and Mean Returns

One observation requires additional consideration. The documented changes in Sharpe ratios go

beyond the changes in return volatility and are also due to changes in mean returns. For the market,

the mean return in excess of the risk-free rate decreases from 6.57% to 6.22% as we increase the

holding period. For the strip, the mean return in excess of the risk-free rate increases from 5.12%

to 5.78%. These changes are driven by the fact that, for longer holding periods and when using

overlapping observations, we place more weight on the observations from the center years of the

sample period and less weight on early and late years. The mean return of each asset at different

holding periods thus depends on how the asset performance at the center of the sample compares

17We test against zero by setting the market mean return equal to the risk-free rate 𝑟 𝑓 , thus creating a hypothetical
asset with zero Sharpe ratio and market volatility.
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to the performance at the end points of the sample.

To isolate the effect of the changing mean, we recalculate Sharpe ratios by always using the

mean of the monthly observations (ℎ = 1).18 We thus ensure that any changes in Sharpe ratios are

driven by changes in the return volatility and not by changes in mean returns. We report the results

for Sharpe ratios with constant mean along with the base case results in Table 2. The general

pattern of Sharpe ratios with constant mean follows the pattern of the Sharpe ratios in the base

case. There is a large increase in Sharpe ratios as we increase the holding period. In Panel A, the

strip Sharpe ratio at the three year holding period is higher than the market Sharpe ratio, but the

difference is small (0.37 vs 0.42) and not statistically significant.19 Still, the strip Sharpe ratio with

constant mean remains statistically significantly different from zero for longer holding periods.

In Panel B, even the difference between the market Sharpe ratio and the strip Sharpe ratio with

constant mean remains significant at longer holding periods.

As an alternative to isolating the effect of the changing mean, we wrap the data by connecting

the last return with the first (the same approach is used in the circular bootstrap of Politis and

Romano 1992). We then repeat our analysis using each month as a starting point. While unrealistic

from the point of view of an investor, this approach ensures that the average return across the

samples is the same regardless of the holding period. We repeat the main results from Table 2,

Figure 3, and Figure 4 from the paper and report them in the Internet Appendix E. The general

patterns are the same. The strip Sharpe ratio is sizable and statistically significantly different from

zero. The strip Sharpe ratio is also higher than the market Sharpe ratio but insignificantly so.

18We thank an anonymous referee for this suggestion.
19We calculate p-values by demeaning at the given holding period and then adding back the constant mean (ℎ = 1).
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4.3 Longer Holding Periods and Robustness

The Internet Appendix B reports robustness results concerning (i) the choice of the dividend strip

maturity, (ii) the use of the zero curve interest rate instead of the option-implied interest rate, (iii)

the choice of option moneyness, and (iv) the effect of transactions costs by holding the strip to

maturity instead of monthly rebalancing. Results are very similar to the results in the base case

in that the strip Sharpe ratio always increases with the holding period. The strip Sharpe ratios are

also comparable to the base case. The exception is case (ii). When using the zero curve interest

rate instead of the option-implied interest rate, we overestimate strip returns and, thus, strip Sharpe

ratios are overall higher.

4.4 Longer Holding Periods and Sharpe Ratios: Subsamples

Figure 5 plots dividend strip Sharpe ratios and market Sharpe ratios for different subsamples. Panel

A plots the annualized Sharpe ratios using returns in excess of the risk-free rate. The left panel

shows that strip Sharpe ratios are significantly higher than market Sharpe ratios at longer holding

periods during the BBK period from January 1996 through October 2009, see the corresponding

Panel A in Table F1 in the Internet Appendix F. The right panel shows that strip Sharpe ratios

are similar to market Sharpe ratios at longer holding periods for the period from December 2004

through December 2022 (in Bansal et al. (2021), the time period is from December 2004 to Febru-

ary 2017), see the corresponding Panel A in Table F2. We note that the null of many leading asset

pricing models (e.g., Campbell and Cochrane 1999 and Bansal and Yaron 2004) is that the Sharpe

ratio of the short-term dividend strip should be close to zero, which we strongly reject. Panel B

of Figure 5 plots the annualized Sharpe ratios for the market and the strip for returns in excess of

Treasury bond returns, see Panels B in Tables F1 and F2 in the Internet Appendix F. Here, the strip
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Sharpe ratio is always significantly higher than the market Sharpe ratio at longer holding periods.

[Figure 5 about here]

We are concerned about ending the first subsample in the middle of the global financial crisis.

We thus let the first subsample run from January 1996 to November 2007. We report results in

the Internet Appendix F in Table F3 and Figure F1 (left). Excluding the global financial crisis

increases mean returns, yet the general patterns remain the same as in the base case. The strip

Sharpe ratio is always higher than the market Sharpe ratio at longer holding periods.

We are also concerned about ending the second subsample after the Covid-related recession.

We thus let the second subsample run from December 2004 to January 2020. We report results in

the Internet Appendix F in Table F4 and Figure F1 (right). The general patterns remain the same

as in the base case. The strip Sharpe ratio is always higher than the market Sharpe ratio at longer

holding periods.

4.5 Longer Holding Periods and the Market Model

So far, we have focused on Sharpe ratios, which are important for the pricing of the market. Now,

we estimate betas of dividend strips from a market model, which are important for pricing in the

cross-section of stocks (Van Binsbergen, Brandt, and Koijen 2012; Gonçalves 2021b; Gormsen

and Lazarus 2023). An added benefit of the market model is that the estimates of market risk are

unbiased in the presence of measurement error. Specifically, we can write the market model for

strip returns as:

ˆ
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡,𝑡+ℎ − 𝑟 𝑓𝑡,𝑡+ℎ = 𝛼𝑡,𝑡+ℎ + 𝛽𝑡,𝑡+ℎ (𝑟𝑀𝑘𝑡
𝑡,𝑡+ℎ − 𝑟 𝑓 ) + 𝑒𝑟𝑟𝑜𝑟𝑡 , (5)
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where 𝑟 𝑓 is the constant risk-free rate, ˆ
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡,𝑡+ℎ is the ℎ-period strip return, and 𝑟𝑀𝑘𝑡
𝑡,𝑡+ℎ the ℎ-period

market return. We use the hat symbol ˆ𝑆𝑡𝑟𝑖𝑝 to denote that monthly strip prices are observed with

measurement error. Market prices do not contain measurement error. All returns are in logarithms

to ensure that mean returns are not affected by measurement error. Since the measurement error

does not affect the independent variable, the beta estimates are also unbiased (the Internet Ap-

pendix C.2 provides the details).20 We thus expect betas to be relatively stable across the different

holding periods. While measurement error does not introduce a bias in the estimated coefficients,

it does affect the statistical significance of these estimates, even in the case of non-overlapping ob-

servations. We show in the Internet Appendix C.2 that confidence intervals around beta are wider

in the presence of measurement error when compared to standard OLS confidence intervals of es-

timates without measurement error. We use Newey-West standard errors with 6 lags to correct for

the autocorrelation in error terms induced by the measurement error. For longer holding periods,

when ℎ exceeds 6, we set the number of lags to ℎ.

[Table 3 about here]

We use the S&P 500 index for the aggregate market and the one-month T-bill rate for the risk-

free rate. Consistent with Van Binsbergen, Brandt, and Koijen (2012), we find that the estimated

betas are relatively low (at around 0.27), see Table 3. We also find that betas are rather stable

across holding periods. Beta starts at 0.32 at the monthly holding period, then decreases to 0.24

at the 24-month holding period, and increases again to 0.29 at the 36-month holding period. It

is statistically significant at the 10% level at short (up to 18 months) and very long (36 months)

holding periods, while it is insignificant at intermediate holding periods. The estimated annualized

alpha is 4% across holding periods (3% at the monthly horizon) and significant at the 10% level

20We thank an anonymous referee for this suggestion and the argument that market estimates are unbiased in the
presence of measurement error when mean returns are unbiased.
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for holding periods of 12 months and longer.

We conduct two robustness checks. First, using a broader proxy for the market from the Fama-

French data library, we verify in Table F5 in the Internet Appendix F that results are similar to the

main results. Second, in line with the literature standard, we repeat our market model using raw

returns (not in logarithms).21 Results in Table F6 in the Internet Appendix F are very similar to the

main results. The exception is the alpha for short holding periods, which is upward biased (8% at

the monthly holding period).

The fact that market model betas for dividend strips are low and stable across horizons is

consistent with our argument that the high strip volatility for short holding periods is due to mea-

surement error. In fact, if strip volatility were driven by systematic discount rate fluctuations, a

strip volatility higher than the market volatility would necessitate betas above one at short holding

periods. Still, we cannot rule out the possibility that the strip volatility at short holding periods

could be driven by its own unique discount-rate variation.

5 Predictability of Realized Term Premia

In this section, we investigate whether realized term premia (i.e., market returns minus strip re-

turns) are predictable by dividend-to-price ratios. There is a long tradition of predicting market

returns using the market dp-ratio (Campbell and Shiller 1988). Gormsen (2021) analyzes how

term premia vary with the market dp-ratio and the ratio of strip and market prices. Among other

specifications, Van Binsbergen, Brandt, and Koijen (2012) use the strip dp-ratio to predict returns

on dividend strips. We relate term premia to the market dp-ratio and to the scaled difference be-

tween the market and strip dividend-to-price ratios (i.e., scaled dp-ratios). We motivate our analysis

21We used logarithmic returns in the base case to preserve the mean return in the presence of measurement error.
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with a simple present value model.

5.1 Present Value Model

We assume that the market is infinitely lived, whereas the dividend strip lives only for one period.

They both share the same dividend growth process. We assume expected changes in log dividends

𝐸 (Δ𝑑𝑡+1) = 𝑔𝑡 to be an AR(1) process:

𝑔𝑡 = 𝛾0 +𝛾1𝑔𝑡−1 + Y𝑔𝑡 , (6)

We allow the expected returns on the market to follow a different process from the expected returns

on the dividend strip. Specifically, we assume that expected market returns 𝐸
(
𝑟𝑀𝑘𝑡
𝑡+1

)
= `𝑀𝑘𝑡

𝑡 follow

an AR(1) process:

`𝑀𝑘𝑡
𝑡 = 𝛿0 + 𝛿1`

𝑀𝑘𝑡
𝑡−1 + Y`,𝑀𝑘𝑡

𝑡 . (7)

For expected strip returns, we do not impose any specific dynamics, 𝐸
(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+1

)
= `

𝑆𝑡𝑟𝑖𝑝
𝑡 . Under

these assumptions and using the Campbell and Shiller (1988) decomposition, we can write the

logarithm of the market dp-ratio as (Van Binsbergen and Koijen 2010):

𝑑𝑝𝑀𝑘𝑡
𝑡 = ^ +

(
1

1− 𝜌𝛿1

)
`𝑀𝑘𝑡
𝑡 −

(
1

1− 𝜌𝛾1

)
𝑔𝑡 , (8)

where 𝜌 =
𝑒𝑥𝑝(−𝑑𝑝)

1+𝑒𝑥𝑝(−𝑑𝑝) . The logarithm of the strip dp-ratio is 𝑑𝑝
𝑆𝑡𝑟𝑖𝑝
𝑡 = `

𝑆𝑡𝑟𝑖𝑝
𝑡 − 𝑔𝑡 . The difference

between expected market and strip returns is:

𝐸

(
𝑟𝑀𝑘𝑡
𝑡+1

)
−𝐸

(
𝑟
𝑆𝑡𝑟𝑖𝑝

𝑡+1

)
= −𝐴^ +

[
𝐴𝑑𝑝𝑀𝑘𝑡

𝑡 − 𝑑𝑝
𝑆𝑡𝑟𝑖𝑝
𝑡

]
+𝐵𝑔𝑡 , (9)
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where 𝐴 = (1− 𝜌𝛿1), 𝐵 =

(
𝜌𝛾1−𝜌𝛿1
1−𝜌𝛾1

)
. Thus, the term structure of expected returns is related to the

variation in both the scaled dp-ratios and the expected growth rate.

5.2 In-Sample Predictability

We use Equation (9) to motivate our predictive regressions. We regress differences in market and

strip returns (i.e., term premia) over the next ℎ periods on predictor variables 𝑋𝑡 :

ℎ∑︁
𝑗=1

(
𝑟𝑀𝑘𝑡
𝑡+ 𝑗 − 𝑟

𝑆𝑡𝑟𝑖𝑝

𝑡+ 𝑗

)
= 𝛼+ 𝛽𝑋𝑡 + Y𝑡 , (10)

where ℎ = 12, ..,36 months. All variables are in logarithms. For the predictor variables 𝑋𝑡 , we use

the market dp-ratio (𝑑𝑝𝑀𝑘𝑡
𝑡 ) and the scaled dp-ratios (𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 − 𝑑𝑝
𝑆𝑡𝑟𝑖𝑝
𝑡 , where the scaling factor

𝐴ℎ =
(
1− 𝜌𝛿ℎ1

)
depends on 𝜌, 𝛿1, and ℎ). During our sample period, the coefficient 𝜌 is 0.9824.

To estimate the persistence of expected returns, we follow Golez and Koudijs (2023) and infer the

persistence of expected returns \ (ℎ) from a predictive regression of market returns over the next

ℎ months on lagged values of the market dp-ratio as \ (ℎ) = 1−𝛿ℎ/12
1

1−𝛿1
\ (12). We estimate \̂ (36) =

0.91 and \̂ (12) = 0.35, which implies an annual persistence of expected returns of 𝛿1 = 0.85. We

are concerned about measurement error in strip prices feeding into the strip dp-ratio and causing

spurious predictability.22 As in Van Binsbergen, Brandt, and Koijen (2012), we therefore average

the strip dp-ratios of the last three months.23

We also consider adding a proxy for expected dividend growth to our set of predictors. Specifi-

cally, we use the logarithm of indicated dividends over the 12-month trailing sum of dividends. The

indicated dividends over the next year are provided by S&P Dow Jones Indices. They are based

22We thank an anonymous referee for pointing out this concern.
23As expected, our predictability results are stronger when we do not average the strip dp-ratios, see Table F7 in the

Internet Appendix F.
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on announced dividends, or, if dividends have not yet been announced, they are the last announced

dividends projected into the future.

We report the results in Table 4. Newey-West t-statistics appear in parentheses, with the number

of lags equal to ℎ. In brackets are the average t-statistics from ℎ non-overlapping samples starting

in months 1,2, ..., ℎ. For each non-overlapping sample, we estimate the Newey-West t-statistic

with three lags (to account for any residual effect of the measurement error on standard errors).

[Table 4 about here]

The market dp-ratio is positively associated with future realized term premia. It best predicts

the realized term premia over longer holding periods (coefficients are statistically significant at the

5% level for holding periods longer than 18 months). The estimated coefficient on the scaled dp-

ratios is also positive and significant at any holding period. The R-squared varies from 17% at the

annual holding period to 46% at the three-year holding period.24 When we add indicated dividend

growth as an additional predictor, the R-squared increases to 24% at the annual holding period

and to 49% at the three-year holding period. The estimated coefficient for the indicated dividend

growth is negative, which is consistent with the notion that expected returns are more persistent

than expected growth rates (Golez and Koudijs 2023).25

6 Conditional Results

This section analyzes how term premia, Sharpe ratios, and alphas vary over the business cycle.

24The scaled dp-ratios also predict realized term premia out-of-sample, see Internet Appendix G.
25In Equation (9), the coefficient 𝐵 is negative iff 𝛿1 > 𝛾1.
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6.1 Term Premia over the Business Cycle

Gormsen (2021) argues that the predictive regression of term premia on the current value of the

market dp-ratio reveals how term premia vary over the business cycle. The idea goes back to

Campbell (1999), who argued that a high dp-ratio reflects high risk premia that arise due to a

high price of risk. A high market dp-ratio thus signals bad times, whereas a low market dp-ratio

signals good times. Gormsen (2021) finds a positive relation between the market dp-ratio and the

term premia measured over the next 12 months and interprets that as evidence for term premia

that move countercyclically over the business cycle. Above in Table 4, Panel A, the term premia

measured over the next 12 to 36 months are positively related to the current value of the market

dp-ratio. The relation is even stronger if we use the scaled dp-ratios (Panel B). Our evidence is

thus consistent with Gormsen (2021) and suggests that term premia move countercyclically over

the business cycle.26 In Table F8 in the Internet Appendix F, we use alternative measures of good

and bad times. We use the market ten-year earnings-to-price ratio (the inverse of Robert Shiller’s

Cyclically Adjusted Price Earnings (CAPE) ratio), the change in consumption, and the output gap.

While the results are not as strong as those with the dp-ratios, they all point in the direction of

countercyclical term premia.

6.2 Sharpe Ratios over the Business Cycle

Next, we test how Sharpe ratios vary over good and bad times. We consider the same predictive

regressions as before, except that we replace the term premia with the difference between market

26Our measure of term premia (i.e., the difference between market and strip returns) is the same as in Gormsen
(2021), and, thus, our results are comparable. In contrast, Van Binsbergen et al. (2013) and Bansal et al. (2021) focus
on hold-to-maturity returns and document procyclical behavior. Gormsen (2021) shows that the two results are not
inconsistent with one another since the term structure of hold-to-maturity returns varies both the maturity of the claims
and the holding period, whereas we vary maturities of the claims (i.e., strip vs. market) for a given holding period (see
also our discussion in Section 7).
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and strip Sharpe ratios:

𝑆𝑅𝑀𝑘𝑡
𝑡,𝑡+ℎ − 𝑆𝑅

𝑆𝑡𝑟𝑖𝑝

𝑡,𝑡+ℎ = 𝛼+ 𝛽𝑋𝑡 + Y𝑡 , (11)

where ℎ = 12, ..,36 months. We calculate Sharpe ratios as the difference between the mean returns

in excess of the risk-free rate and the volatility of excess returns over the next ℎ months. For the

predictors, we use either the market dp-ratio (𝑑𝑝𝑀𝑘𝑡
𝑡 ) or the scaled dp-ratios (𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 − 𝑑𝑝
𝑆𝑡𝑟𝑖𝑝
𝑡 ).

Results are reported in Table 5. We find that the term structure of Sharpe ratios also moves

countercyclically over the business cycle and, based on the market dp-ratio, significantly so at the

5% level out to 30 months. As with the term premia, the difference in Sharpe ratios is even more

strongly related to the scaled dp-ratios and significantly so at all holding periods. In the Internet

Appendix F, we confirm that results are similar if we use returns in excess of Treasury returns

(Table F9) and qualitatively the same when we use alternative measures for good and bad times

(Table F10).

[Table 5 about here]

6.3 Market Model Alphas over the Business Cycle

Finally, we test how market model alphas vary over good and bad times. We consider the same

predictive regressions as before, except that we replace the term premia with the difference in

market and strip alpha (where market alpha is zero by construction):

𝛼𝑀𝑘𝑡
𝑡,𝑡+ℎ −𝛼

𝑆𝑡𝑟𝑖𝑝

𝑡,𝑡+ℎ = −𝛼𝑆𝑡𝑟𝑖𝑝

𝑡,𝑡+ℎ = 𝛼+ 𝛽𝑋𝑡 + Y𝑡 , (12)

where ℎ = 12, ..,36 months. We calculate strip alphas according to Eq. (5) over the next ℎ months.

For the predictors, we use either the market dp-ratio (𝑑𝑝𝑀𝑘𝑡
𝑡 ) or the scaled dp-ratios (𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 −
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𝑑𝑝
𝑆𝑡𝑟𝑖𝑝
𝑡 ).

Results are reported in Table 6. We find that the term structure of alphas is negatively related

to the dp-ratios and thus moves procyclically over the business cycle. The relationship is strongest

for longer holding periods. In the Internet Appendix F, we confirm that the results are qualitatively

the same when we use alternative measures for good and bad times (Table F11).

[Table 6 about here]

7 Discussion of Results

We collect our main empirical findings in Table 7. We investigate three economic aspects of

equity returns: (i) term premia, (ii) the term structure of Sharpe ratios, and (iii) the term structure

of market model alphas. For each economic aspect, we analyze the unconditional slope and the

movement over the business cycle. We also note in Table 7, which of these economic aspects have

been considered in the literature already.

[Table 7 about here]

The literature uses different term structures. We define term premia as the difference between

market and strip returns for a given holding period. That is, for a given holding period, we only

vary the maturity of the asset. This is similar to BBK and Gormsen (2021) but different from

Van Binsbergen et al. (2013), Van Binsbergen and Koijen (2017), and Bansal et al. (2021), who

focus on hold-to-maturity returns and compare returns on assets with different maturities over their

respective maturities. Hence, they vary both the maturity of the assets and the holding period.27

27Gormsen (2021) provides a detailed discussion of these differences and shows that they are important (e.g., coun-
tercyclical term premia that vary only the maturity of the asset can be consistent with procyclical term premia of
hold-to-maturity returns).

26



To ensure comparability, we mainly relate our empirical results to those reported in BBK and

Gormsen (2021).

Our main findings can be summarized as follows. We find that strips with close to two years

maturity deliver significant Sharpe ratios and alphas. While term premia are rather flat and insignif-

icantly sloped, Sharpe ratios and alphas are significantly downward-sloping. Over the business

cycle, term premia move countercyclically, as do differences in Sharpe ratios, whereas differences

in alphas move procyclically. The latter two aspects are new to the literature.

We next assess five theoretical models and their predictions concerning our empirical findings.

We gather the theoretical predictions of these models from BBK (in particular Figures 5 and 6 of

BBK), Table 1 from Gormsen (2021), and Van Binsbergen and Koijen (2017). For these models,

we mostly have slope predictions for term premia (and also some level predictions for strip returns),

Sharpe ratios, and alphas while we have few cyclicality predictions.

7.1 Bansal and Yaron (2004) long-run risk and Campbell and Cochrane

(1999) habit formation models

Both the long-run risk and the habit formation models fail to capture unconditional quantities.

According to the models, strip excess returns and, thus, the strip Sharpe ratio are close to zero,

while, empirically, they are significantly positive. Moreover, the models predict an upward-sloping

term structure of Sharpe ratios, while, empirically, it is downward-sloping. However, both models

do predict the countercyclicality of term premia, which is borne out empirically.
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7.2 Gabaix (2012) rare disaster model

The rare disaster model predicts flat term premia and a downward-sloping term structure of Sharpe

ratios, consistent with the data. Yet it also predicts that term premia do not vary over the business

cycle, while, empirically, they move countercyclically.

7.3 Lettau and Wachter (2007) value premium model

The value premium model predicts non-negligible premia for short-term strips, consistent with the

data. However, it predicts downward-sloping instead of the rather flat term premia. Moreover, it

predicts term premia to move procyclically over the business cycle as opposed to our empirical

finding of countercyclical movement. The predicted downward-sloping term structure of Sharpe

ratios is consistent with the data.

7.4 Gormsen (2021) 2-factor model

The final model we consider is the 2-factor model of Gormsen (2021). The model predicts

downward-sloping instead of the rather flat term premia that we find in the data. But, consis-

tent with our empirical evidence, it predicts non-negligible premia for short term strips, and it

predicts term premia to move countercylically over the business cycle.

We conclude that different models capture different aspects of the equity term structure but no

model fits them all. We hope that our empirical findings can help guide the development of new

theoretical models.
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8 Concluding Remarks

We estimate dividend strip prices from intradaily data for options on the S&P 500 index from 1996

through 2022. We almost double the existing time series of strip prices, use an option-implied

interest rate to avoid biases because of the use of exogenous interest rates, and advocate the use of

longer holding period returns to minimize the effect of measurement error in dividend strip prices.

We show that strip Sharpe ratios are at least as large as market Sharpe ratios, as long as we focus

on longer holding periods, where the effect of the measurement error is marginal. These results

hold when we use returns in excess of the short-term risk-free rate or when we match the duration

of equity and bond returns. The Sharpe ratio results are matched by a significantly positive strip

alpha from a market model. Over the business cycle, the term premia and the term structure of

Sharpe ratios move countercyclically, whereas the term structure of alphas moves procyclically.

Overall, our results are most consistent with the predictions of the 2-factor model of Gormsen

(2021), which predicts a downward-sloping term structure for Sharpe ratios and term premia that

move countercyclically over the business cycle.
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The replication code and data are available in the Harvard Dataverse at:

Jackwerth, Jens, 2023, "Replication Data for: Holding Period Effects in Dividend Strip Re-

turns", https://doi.org/10.7910/DVN/D5LGGT, Harvard Dataverse, DRAFT VERSION
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Tables and Figures

Table 1: Monthly Returns (Annualized)

Market Strip Market Strip Market Strip
Log Return Minus rf Minus Treasury ret.

Mean 8.54% 7.10% 6.57% 5.12% 4.60% 4.22%
Std. dev. 15.68% 31.98% 15.71% 31.99% 18.08% 31.98%
Sharpe ratio 0.42 0.16 0.25 0.13
AR(1) 0.02 -0.33 0.02 -0.33 0.08 -0.33
N 323 323 323 323 323 323

Table 1 presents summary statistics for the monthly returns. Returns are continuously compounded
(in logarithms), annualized, and expressed as a percentage. Risk-free rate (rf) is the one-month
Treasury bill rate. For returns in excess of Treasury returns, we subtract 10-year Treasury bond
returns from the market returns and 2-year Treasury bond returns from the strip returns. The period
is from January 1996 through December 2022.
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Table 2: Holding Period Returns and Sharpe Ratios (Annualized)

1m 6m 12m 18m 24m 30m 36m

Panel A: Returns in excess of the risk-free rate
Market-ret. - rf
Mean 6.57% 6.67% 6.85% 6.91% 6.75% 6.48% 6.22%
Std. dev. 15.71% 16.41% 17.29% 17.75% 18.08% 17.85% 17.68%
Sharpe ratio 0.42 0.41 0.40 0.39 0.37 0.36 0.35
Sharpe ratio (Const. mean) 0.42 0.40 0.38 0.37 0.36 0.37 0.37
Strip ret. - rf
Mean 5.12% 5.71% 5.72% 5.89% 5.91% 5.88% 5.78%
Std. dev. 31.99% 18.48% 14.39% 13.22% 12.46% 12.09% 12.10%
Sharpe ratio 0.16 0.31 0.40 0.45 0.47 0.49 0.48
Diff. (p-val.) (0.21) (0.62) (0.99) (0.49) (0.06) (0.00) (0.01)
Diff. wrt. zero [p-val.] [0.40] [0.06] [0.00] [0.00] [0.00] [0.00] [0.00]
Sharpe ratio (Const. mean) 0.16 0.28 0.36 0.39 0.41 0.42 0.42
Diff. (p-val.) (0.21) (0.53) (0.84) (0.83) (0.39) (0.23) (0.32)
Diff. wrt. zero [p-val.] [0.40] [0.10] [0.00] [0.00] [0.00] [0.00] [0.00]
N 323 318 312 306 300 294 288

Panel B: Returns in excess of the Treasury bond returns
Market ret. - 10y Treasury ret.
Mean 4.60% 4.38% 4.35% 4.18% 3.94% 3.58% 3.29%
Std. dev. 18.08% 19.60% 20.00% 20.51% 20.77% 20.10% 19.56%
Sharpe ratio 0.25 0.22 0.22 0.20 0.19 0.18 0.17
Sharpe ratio (Const. mean) 0.25 0.23 0.23 0.22 0.22 0.23 0.24
Strip ret. - 2y Treasury ret.
Mean 4.22% 4.71% 4.67% 4.77% 4.76% 4.70% 4.59%
Std. dev. 31.98% 18.78% 14.72% 13.65% 13.06% 12.78% 12.78%
Sharpe ratio 0.13 0.25 0.32 0.35 0.36 0.37 0.36
Diff. (p-val.) (0.55) (0.87) (0.34) (0.01) (0.00) (0.00) (0.00)
Diff. wrt. zero [p-val.] [0.50] [0.09] [0.00] [0.00] [0.00] [0.00] [0.00]
Sharpe ratio (Const. mean) 0.13 0.22 0.29 0.31 0.32 0.33 0.33
Diff. (p-val.) (0.55) (0.95) (0.59) (0.16) (0.00) (0.01) (0.01)
Diff. wrt. zero [p-val.] [0.50] [0.13] [0.00] [0.00] [0.00] [0.00] [0.00]
N 323 318 312 306 300 294 288
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Table 2 presents summary statistics for the holding period returns ranging from ℎ = 1 month
through ℎ = 36 months. Returns are continuously compounded (in logarithms), annualized, and
expressed as a percentage. Risk-free rate (rf) is the one-month Treasury bill rate. Panel A reports
results for returns in excess of the risk-free rate. Panel B reports results for returns in excess of
the Treasury bond returns. Sharpe ratio for a holding period ℎ is the mean excess return over the
standard deviation of excess returns, measured for the same holding period ℎ. Sharpe ratio (Const.
mean) is calculated as the mean excess return at the monthly holding period ℎ = 1 over the standard
deviation of excess returns at a given holding period ℎ. In parentheses are p-values for the HAC
test of Ledoit and Wolf (2008) for the difference in Sharpe ratios between excess returns for the
strip and the excess returns for the market. In brackets are the p-values for the same HAC test
based on demeaned excess market returns. The period is from January 1996 through December
2022.
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Table 3: Holding Period Returns and the Market Model (Annualized Returns)

1m 6m 12m 18m 24m 30m 36m

𝑎𝑙 𝑝ℎ𝑎 0.03 0.04 0.04 0.04 0.04 0.04 0.04
𝑡 − 𝑠𝑡𝑎𝑡. (0.81) (1.46) (1.79) (1.87) (1.85) (1.84) (1.77)
𝑏𝑒𝑡𝑎 0.32 0.29 0.27 0.24 0.24 0.26 0.29
𝑡 − 𝑠𝑡𝑎𝑡. (1.80) (2.19) (2.10) (1.65) (1.52) (1.55) (1.68)
𝑅2 0.03 0.07 0.11 0.10 0.12 0.14 0.18
N 323 318 312 306 300 294 288

Table 3 presents market model estimates for dividend strip returns in excess of the risk-free rate
for holding periods ranging from ℎ = 1 month through ℎ = 36 months. Returns are continuously
compounded (in logarithms), annualized, and expressed as a percentage. We use the S&P 500 in-
dex as a proxy for the market. The risk-free rate is the one-month Treasury bill rate. In parentheses
are the Newey-West t-statistics with 𝑚𝑎𝑥(ℎ,6) lags, where ℎ is the holding period expressed in
months. The period is from January 1996 through December 2022.
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Table 4: Predicting the Realized Term Premia

12m 18m 24m 30m 36m

Panel A:
𝑑𝑝𝑀𝑘𝑡

𝑡 0.28 0.45 0.65 0.76 0.86
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (1.83) (2.04) (2.53) (2.66) (2.85)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [1.91] [2.41] [3.52] [3.36] [3.09]

𝑅2 0.10 0.16 0.25 0.31 0.37

Panel B:
𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 − 𝑑𝑝
𝑆𝑡𝑟𝑖 𝑝
𝑡 0.69 0.95 1.21 1.34 1.46

𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (2.89) (2.83) (3.42) (4.25) (5.84)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [2.47] [2.31] [3.53] [3.90] [4.73]

𝑅2 0.17 0.24 0.33 0.39 0.46

Panel C:
𝐴ℎ𝑑𝑝𝑀𝑘𝑡

𝑡 − 𝑑𝑝
𝑆𝑡𝑟𝑖 𝑝
𝑡 1.04 1.36 1.56 1.53 1.64

𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (4.74) (4.46) (5.08) (5.38) (7.20)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [3.42] [3.42] [4.37] [3.67] [4.36]

𝑔𝐼𝑛𝑑𝑡 -1.35 -1.74 -1.68 -1.08 -1.13
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (-5.13) (-7.10) (-7.00) (-4.31) (-4.04)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [-2.85] [-2.80] [-3.33] [-1.82] [-1.56]

𝑅2 0.24 0.33 0.40 0.41 0.49
N 310 304 298 292 286

Table 4 presents the results of the predictive regressions for the difference between market and
strip returns for holding periods ranging from ℎ = 12 month through ℎ = 36 months. In panel A, the
predictor variable is the market dp-ratio. In Panel B, the predictor variable is the scaled difference
between the market and strip dp-ratios. In panel C, we add a control for indicative dividend growth.
We take the average for the strip dp-ratios over the last three months. In parentheses are t-statistics
based on the Newey-West (1987) correction with h lags. In brackets are the average t-statistics
from ℎ non-overlapping samples starting in months 1, ..., ℎ. For each non-overlapping sample,
we set the number of lags for the Newey-West correction equal to 3. 𝑁 reports the number of
overlapping observations. The period is from January 1996 through December 2022.
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Table 5: Predicting the Term Structure in Sharpe Ratios

12m 18m 24m 30m 36m

Panel A:

𝑑𝑝𝑀𝑘𝑡
𝑡 7.30 10.00 12.81 12.82 13.31
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (2.27) (2.15) (2.44) (1.97) (1.81)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [2.32] [2.74] [2.93] [2.42] [1.94]

𝑅2 0.11 0.15 0.20 0.20 0.21

Panel B:

𝐴ℎ𝑑𝑝𝑀𝑘𝑡
𝑡 − 𝑑𝑝

𝑆𝑡𝑟𝑖 𝑝
𝑡 13.93 20.87 26.00 26.24 26.05

𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (3.17) (3.67) (5.12) (5.70) (5.79)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [2.67] [2.67] [3.79] [4.49] [4.90]

𝑅2 0.12 0.22 0.32 0.34 0.35
N 310 304 298 292 286

Table 5 presents the results of the predictive regressions for the difference between market and
strip Sharpe ratios for holding periods ranging from ℎ = 12 month through ℎ = 36 months. In panel
A, the predictor variable is the market dp-ratio. In Panel B, the predictor variable is the scaled
difference between the market and strip dp-ratios. We take the average for the strip dp-ratios over
the last three months. In parentheses are t-statistics based on the Newey-West (1987) correction
with h lags. In brackets are the average t-statistics from ℎ non-overlapping samples starting in
months 1, ..., ℎ. For each non-overlapping sample, we set the number of lags for the Newey-West
correction equal to 3. 𝑁 reports the number of overlapping observations. The period is from
January 1996 through December 2022.
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Table 6: Predicting the Term Structure in Market Model Alphas

12m 18m 24m 30m 36m

Panel A:

𝑑𝑝𝑀𝑘𝑡
𝑡 -0.01 -0.03 -0.05 -0.06 -0.06
𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (-1.22) (-1.59) (-1.82) (-1.92) (-1.97)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [-0.91] [-1.52] [-1.88] [-2.51] [-2.85]

𝑅2 0.06 0.11 0.15 0.17 0.18

Panel B:

𝐴ℎ𝑑𝑝𝑀𝑘𝑡
𝑡 − 𝑑𝑝

𝑆𝑡𝑟𝑖 𝑝
𝑡 -0.01 -0.02 -0.04 -0.06 -0.08

𝑡 − 𝑠𝑡𝑎𝑡 (𝑂𝑣𝑒𝑟𝑙𝑎𝑝.) (-0.80) (-0.97) (-1.26) (-2.09) (-3.20)
𝑡 − 𝑠𝑡𝑎𝑡 (𝑁𝑜𝑛𝑜𝑣𝑒𝑟𝑙𝑎𝑝.) [-0.60] [-0.90] [-1.12] [-1.70] [-2.24]

𝑅2 0.01 0.02 0.04 0.07 0.11
N 310 304 298 292 286

Table 6 presents the results of the predictive regressions for the term structure of market model
alphas (market minus strip alpha) for holding periods ranging from ℎ = 12 month through ℎ = 36
months. In panel A, the predictor variable is the market dp-ratio. In Panel B, the predictor variable
is the scaled difference between the market and strip dp-ratios. We take the average for the strip dp-
ratios over the last three months. In parentheses are t-statistics based on the Newey-West (1987)
correction with h lags. In brackets are the average t-statistics from ℎ non-overlapping samples
starting in months 1, ..., ℎ. For each non-overlapping sample, we set the number of lags for the
Newey-West correction equal to 3. 𝑁 reports the number of overlapping observations. The period
is from January 1996 through December 2022.
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Table 7: Summary of Results

Main Economic
Aspect

Dimension Finding Literature
(unless new result)

Term Premia Slope Rather flat (if anything,
insignificantly upward)

BBK: Downward-sloping,
insignificant

Term Structure of
Sharpe Ratios

Slope Downward-sloping BBK: Downward-sloping

Term Structure of
Alphas

Slope Downward-sloping BBK: Downward-sloping

Term Premia Cyclicality Countercyclical Gormsen (2021):
Countercyclical

Term Structure of
Sharpe Ratios

Cyclicality Countercyclical –

Term Structure of
Alphas

Cyclicality Procyclical –

Table 7 covers three main economic aspects: (i) term premia (i.e., market minus strip returns), (ii)
term structure of Sharpe ratios (i.e., market minus strip Sharpe ratio), and (iii) term structure of
alphas (i.e., market minus strip alpha). We assess each economic aspect across the dimensions of
slope and its behavior over the business cycle (cyclicality). We record both our empirical findings
and older findings in the literature. We compare our empirical results to those reported in BBK
and Gormsen (2021), since they use the same definition of term premia.
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Figure 1: Interest Rates
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Figure 1 plots the 12-month maturity interest rates. The option-implied rate is based on put-call

parity pairs of S&P 500 index options. The zero curve rate is from OptionMetrics. The constant

maturity Treasury rate is from the H.15 filing of the St. Louis Federal Reserve Bank. All interest

rates are continuously compounded and expressed as a percentage. The period is from January

1996 through December 2022.
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Figure 2: Cumulative Returns

Panel A: Cumulative returns
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Panel B: Cumulative returns in excess of the risk-free rate
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Panel C: Cumulative returns in excess of Treasury returns
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Panel A in Figure 2 plots the cumulative returns for a hypothetical one dollar investment in the

dividend strip and the market. Panel B plots the cumulative excess returns of the strip in excess of

the risk-free rate and the market in excess of the risk-free rate. Risk-free rate (rf) is the one-month

Treasury bill rate. Panel C plots the cumulative excess returns of the strip in excess of the two-

year Treasury return and the market in excess of the 10-year Treasury return. The period is from

January 1996 through December 2022.
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Figure 3: Annualized Standard Deviation Across Different Holding Periods

Panel A: Returns in excess of the risk-free rate
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Panel B: Returns in excess of Treasury bond returns
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Figure 3 plots the annualized standard deviation for excess market and strip returns for holding

periods of 1, 6, 12, 18, 24, 30, and 36 months. The returns are in excess of the risk-free rate (Panel

A) and in excess of the Treasury returns (Panel B). The period is from January 1996 through

December 2022.
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Figure 4: Annualized Sharpe Ratio Across Different Holding Periods
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Panel B: Returns in excess of Treasury bond returns

1 6 12 18 24 30 36

Holding period in months

0.1

0.2

0.3

0.4

0.5

A
nn

ua
liz

ed
 S

ha
rp

e 
ra

tio

Market - Treasury 10y
Dividend strip - Treasury 2y

48



Figure 4 plots the annualized Sharpe ratio for excess market and strip returns for holding peri-

ods of 1, 6, 12, 18, 24, 30, and 36 months. The returns are in excess of the risk-free rate (Panel A)

and in excess of the Treasury returns (Panel B). The period is from January 1996 through December

2022.
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Figure 5: Annualized Sharpe Ratios: Subsamples

Panel A: Returns in excess of the risk-free rate
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Panel B: Returns in excess of Treasury bond returns
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Figure 5 plots the annualized Sharpe ratio for holding periods of 1, 6, 12, 18, 24, 30, and

36 months. The returns are in excess of the risk-free rate (Panel A) and in excess of the Treasury

returns (Panel B). The period is from January 1996 through October 2009 (left) and from December

2004 through December 2022 (right).
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