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Recovering Stochastic Processes from Option Prices 

 
 
 
 
 
 
 
 
 
 

Abstract 
 

How do stock prices evolve over time? The standard assumption of geometric Brownian 

motion, questionable as it has been right along, is even more doubtful in light of the stock market 

crash of 1987 and the subsequent prices of U.S. index options. With the development of rich and 

deep markets in these options, it is now possible to use options prices to make inferences about 

the risk-neutral stochastic process governing the underlying index. We compare the ability of 

models including Black-Scholes, naïve volatility smile predictions of traders, constant elasticity 

of variance, displaced diffusion, jump diffusion, stochastic volatility, and implied binomial trees 

to explain otherwise identical observed option prices that differ by strike prices, times-to-

expiration, or times. The latter amounts to examining predictions of future implied volatilities.  

Certain naïve predictive models used by traders seem to perform best, although some 

academic models are not far behind. We find that the better performing models all incorporate the 

negative correlation between index level and volatility. Further improvements to the models seem 

to require predicting the future at-the-money implied volatility. However, an “efficient markets 

result” makes these forecasts difficult, and improvements to the option pricing models might then 

be limited. 



 3

Recovering Stochastic Processes from Option Prices 
 
How do stock prices evolve over time?1 Ever since Osborne (1959), the standard view has 

been that stock prices follow a geometric Brownian motion. Merton (1973) uses this assumption 

as the basis for an intertemporal model of market equilibrium, and Black and Scholes (1973) uses 

it as the basis for their option pricing model. Tests of options on stock in the early years of 

exchange-traded options more or less supported the implications of Brownian motion, see, for 

example, Rubinstein (1985). While it has long been well known that empirical return 

distributions exhibit fatter tails than implied by Brownian motion, evidence that something is not 

all right with this world is that S&P 500 index options since the crash of 1987 exhibit pronounced 

volatility smiles, see Jackwerth and Rubinstein (1996). A volatility smile describes implied 

volatilities that are largely convex and monotonically decreasing functions of strike prices.2 Such 

volatilities contradict the assumptions of geometric Brownian motion and perfect markets, which 

would imply a flat line. Another way to describe this is that the implied risk-neutral probability 

densities are heavily skewed to the left and highly leptokurtic, unlike the lognormal assumption in 

Black-Scholes. Like the equity premium puzzle, this option pricing puzzle may ultimately lead us 

to a better understanding of the determinants of security prices.  

There are three possibilities why option prices can spuriously exhibit volatility smiles:  

First, there are market imperfections, and observed option prices are always different from the 

true option prices at any time. The S&P 500 index option market is a rather deep and liquid 

market with rather unfettered access. Its daily notional volume is sizable, as reported in Table I 

for longer-term options. Even as the daily notional volume increased six-fold from $1.5 billion in 

1989 to $8.5 billion in 1995, the volatility smile did not change. Most of our results are based on 

longer-term options, which account for about 4% of the total daily notional volume in all 

maturities. However, our results do not seem to be sensitive to our focus on the longer-term 

options.  

 
                                                           
1 Li and Pearson (2008) repeated the here presented research very faithfully while updating some of the option 
pricing models. 
2 The implied volatility (σ*) causes the Black-Scholes formula to accurately price the option in the market: 
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Table I about here 
 
Since the S&P 500 index is rather high (370 dollars on average from 1986 through 1995), the 

value of an option is high compared to the bid/ask spread, which for at-the-money options is only 

some 42 cents, decreasing to 33 cents for out-of-the-money options. Moreover, we expect the true 

option price to be close to the mid-point quote for most of the time. Thus, market imperfections 

are not likely candidates to explain the volatility smile.  

The second possibility is that option prices are measured correctly but that the implied 

probabilities are calculated incorrectly. For example, the wrong interpolation or extrapolation 

method is used to obtain a dense set of option prices across strike prices. Jackwerth and 

Rubinstein (1996) show however, that the choice of method does not really matter much because 

most methods back out virtually the same risk-neutral distribution, as long as there are a 

sufficient number of strike prices, say, about 15.3  

The third possibility is that the observed option prices are systematically distorted, and that 

one can make money in the options market by exploiting such mispricing. Jackwerth (2000) takes 

this view to some extent.  

We assume instead that we see correctly measured option prices that yield meaningful 

implied risk-neutral probability distributions. The volatility smile is then a way of describing the 

relation of option prices at the same time, with the same underlying asset and the same time-to-

expiration, but with different strike prices. Option prices also provide three other types of 

comparisons that can be windows into an understanding of the stochastic process of the 

underlying assets: 

 
(1) Option prices at the same time, with the same underlying asset, and the same strike 

price, but with different times-to-expiration. 

(2) Option prices with the same underlying asset, the same expiration date, and the same 

strike price, but observed at different times. 

(3) Option prices at the same time, with the same time-to-expiration and with the same 

strike price, but with different underlying assets. 

                                                           
3 The methods differ most in the tails, where they tend to agree on the total tail probability but distribute this 
probability differently. We avoid this difficulty by focusing on the center of the distribution and not using far-away-
from-the-money option prices. Further evidence on the performance of different methods is surveyed in Jackwerth 
(1999). 
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Jackwerth and Rubinstein (1996) consider relationships among option prices at the same time 

and with the same underlying and time-to-expiration, but with different strike prices. The ultimate 

objective is to discover a single model that can explain all four relations simultaneously. For 

example, the post-crash smile of index options and the implied binomial tree model of Rubinstein 

(1994) strongly suggest that a key aspect of the “correct” model will be one that builds in a 

negative correlation between index level and at-the-money implied volatility. This can explain the 

relation in Jackwerth and Rubinstein (1996) and turns out in the post-crash period to be an 

empirical regularity of relation (2).  

While we focus here on the smile in the S&P 500 data for the U.S., Tompkins (2001) 

documents that similar smiles, albeit not as steep as the U.S. smile, are seen in the UK, Japan, and 

Germany. In addition, Dennis and Mayhew (2000) show that individual option smiles in the U.S. 

are not as steep as the index smile, a finding that likely holds for the other markets as well but 

that has not been documented. 

There are several rational economic reasons why the post-crash smile effect might obtain. 

First, corporate leverage effects imply that as stock prices fall, debt-equity ratios (in market 

values) rise, causing stock volatility to increase. Second, Kelly (1994) notes that equity prices 

have become more highly correlated in down markets, again causing an increase in volatility. 

Third, risk aversion effects can cause investors who are poorer after a downturn in the market to 

react more dramatically to news events. This would lead to increased volatility after a downturn. 

Fourth, the market could be more likely to jump down rather than up. Indeed, since the stock 

market crash period of 1987 until the end of 1998, the five greatest moves in the S&P 500 index 

have been down. Finally, as the volatility of the market increases, the required risk premium rises, 

too. A higher risk premium will in turn depress stock prices. We do not try to provide an 

economic explanation for observed smile patterns, but rather have the more limited objective of 

comparing alternative models that purport to explain relations (1) and (2). We leave to subsequent 

research an investigation of relation (3). A comparison of smile patterns for index options and 

individual stock options, as in Dennis and Mayhew (2000), provides a way to distinguish between 

leverage and wealth effects as explanations of the inverse correlation between at-the-money 

option implied volatilities and index levels. If leverage is the force behind the scenes, the 

downward slope of the smiles for index and stock options should be about the same. If the wealth 
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effect is predominant, the downward slope of the smile would be highest for index options and 

become less sloped the lower the ratio of a stock’s systematic variance to its total variance. 

To investigate the empirical problems, we suggest two main tests. Our first test investigates 

relation (1), using options prices at the same time and with the same underlying and strike price, 

but with different times-to-expiration. Here we find out how well different option pricing models 

are capable of simultaneously explaining option prices of different times-to-expiration. For this, 

we deduce shorter-term option prices from longer-term option prices. The volatility smile for the 

longer-term options is assumed known, and the volatility smile for the shorter-term options is 

unknown. The problem of relation (1) is to fit alternative option pricing models to the longer-term 

option prices. We can then compare the model values with the observed market prices for the 

shorter-term options and calculate pricing errors. To help understand the source of remaining 

errors, we also conduct a related experiment. We assume in addition that we also know the at-the-

money implied volatility of the shorter-term options. 

The second test investigates relation (2), using option prices with the same underlying asset, 

expiration date, and strike price, but observed at different times. In this case, we use option 

valuation models to forecast future option prices conditional on the future underlying asset price. 

We calibrate alternative models on current longer-term option prices. Then, we wait 10 and 30 

days, observe the underlying asset price, and assess the errors in our forecasts. A related test 

extends the forecasting procedure by incorporating information from both current longer-term 

and current shorter-term option prices. Again, to decompose the source of any remaining errors, 

we also assume in addition that we know in advance the future at-the-money option price. 

For all tests, we evaluate five kinds of option valuation models (nine models altogether). We 

compare deterministic models and stochastic models and naïve trader rules. Related empirical 

work is in Dumas, Fleming, and Whaley (1998), Bates (2000), and Bakshi, Cao, and Chen 

(1997). The first paper investigates only different deterministic volatility models while the other 

two compare only different stochastic models.  

The five categories of models are: first, mostly for reference, the Black-Scholes formula; 

second, two naïve smile-based predictions that use today’s observed smile directly for prediction; 

third, two versions of Cox’s (1996) constant elasticity of variance (CEV) formula; fourth, an 

implied binomial tree model; fifth, three parametric models that specify the stochastic process of 

the underlying, namely, displaced diffusion, jump diffusion, and stochastic volatility.  
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The naïve predictions do not rely on any solid theoretical basis, but we examine them 

because they are very simple and widely used by professionals. We show that they perform 

surprisingly well compared to the more rigorous academic models. We use the CEV model 

because it explicitly builds in an assumption that local volatility is negatively correlated with the 

underlying asset price and is therefore a natural candidate, given our observations. 

Implied binomial trees, which are non-parametric, have been proposed by Rubinstein (1994), 

Derman and Kani (1994), and Dupire (1994). Work on implied risk-neutral distributions that is 

closely related has been conducted by Jackwerth and Rubinstein (1996) and Aït-Sahalia and Lo 

(1998).4 We focus here on the implied binomial trees in Rubinstein (1994) and the generalizations 

in Jackwerth (1997). The generalizations allow us to incorporate information from times other 

than the end of the tree. We rely solely on the observed option prices in the market, and thus 

avoid having to specify a stochastic process a priori. 

Next, we introduce the data. Then we conduct our two tests. Sections II and III are concerned 

with inferring shorter-term option prices from concurrent longer-term option prices (relation (1)), 

with an unknown and known term structure of volatilities respectively. Sections IV and V are 

concerned with forecasting future smiles using current longer-term option prices (relation (2)), 

with an unknown and known term structure of future volatilities respectively. We conclude with 

our surprising result that the naïve trader rules work as well as the more rigorous academic 

models. 

 
Data 
 
The database includes minute-by-minute trades and quotes covering S&P 500 European 

index options, S&P 500 index futures, and S&P 500 index levels from April 2, 1986, through 

December 29, 1995. 

All option models are parameterized to price the observed longer-term options best, those 

with times-to-expiration of between 135 and 225 days. In the first test, the models are then used 

to price shorter-term options with 45 to 134 days to expiration.  

To obtain sets of option prices across several strike prices for the two times-to-expiration, we 

aggregate all daily quotes into two volatility smiles, one for the shorter- and one for the longer-

term options. Throughout each day, we calculate the implied volatilities for all options with the 

                                                           
4 A survey is in Jackwerth (1999). 
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same strike price and time-to-expiration. We compute the median implied volatilities for each 

strike price and treat this set as our representative daily volatility smile for a given time-to-

expiration.  

Interestingly, the number of available options quotes during the day does not influence the 

results very much. As in Jackwerth and Rubinstein (1996), we use only strike prices with strike 

price / index level ratios (moneyness) between 0.79 and 1.16 because of the lack of liquidity for 

the further away options. 

The dividend yield is based on the actual payments throughout the life of the option. The 

interest rate is the average of the median implied borrowing and lending rates assuming put-call 

parity of all feasible pairs of options for a given time-to-expiration on a given day. The index 

level for our representative daily sets of option prices is the average of the daily high and low of a 

futures-based index. The futures-based index is obtained by deflating all futures quotes and trades 

by the median daily implied repo rate corresponding to the time-to-maturity of the future. For 

each minute, the median of all deflated quotes and trades is computed and used as the futures-

based index for that minute.5  

There are 2074 days in the almost ten years elapsed time for which we have a sufficient 

number of longer-term options. We specify two subperiods: a pre-crash period from April 2, 

1986, through October 16, 1987, and a post-crash period from June 1, 1988, through December 

29, 1995. We avoid the period right after the crash, which is often difficult to interpret 

empirically, as the market took about half a year to get settled again. The sample size is 1953 

days: 386 days for the pre-crash period, and 1567 days for the post-crash period. For the 

empirical studies, where we need both shorter-term and longer-term options, there are 1639 days: 

372 days for the pre-crash period, and 1267 days for the post-crash period. For the smile 

forecasts, we shorten the pre-crash period so that it ends September 16, 1987. This avoids 

forecasting across the crash with associated large errors. 

To obtain the implied probability distributions as inputs for the implied binomial trees, we 

use the maximum smoothness method proposed in Jackwerth and Rubinstein (1996). As Figure 1 

shows, even though the smoothness criterion does not rely on a lognormal prior distribution, the 

implied probability distribution calculated from option prices that are based on a lognormal 

distribution is very close to the underlying lognormal distribution.  

                                                           
5 See Jackwerth and Rubinstein (1996) for a more detailed description of the data. 
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Figure 1 about here 

 
Since we use the method of Jackwerth and Rubinstein (1996) for finding implied probability 

distributions, we sample the implied distributions on equal dollar-spaced asset values. Implied 

binomial trees are generally sensitive to the spacing at the end of the tree and do not work well 

with equal spacing. Thus, we have to resample the implied probability distributions onto equally 

log-spaced asset values that are given by a standard binomial tree with the same number of steps. 

To construct the standard binomial tree, we have to specify the volatility parameter, which we set 

equal to the implied volatility of the longer-term at-the-money option. For the resampling, we use 

piecewise-linear interpolation in the cumulative probabilities. The use of cubic splines improves 

performance only marginally but at a significantly higher computational cost.  

The resulting probability distribution overprices options only slightly, with a median absolute 

error of about 3 cents for a test of 23 semiannual observations, even if the log spacing spans as 

few as 80 values. We could detect no pricing bias across strike prices. 

Each model used to derive the shorter-term options is calibrated on the same set of longer-

term options, although the different models imply different (risk-neutral) probability distributions 

for the longer-term options. Figure 2 depicts these distributions for the implied binomial tree, the 

Black-Scholes model, and the CEV model for a representative day after the crash. The implied 

binomial tree and the CEV models show rather similar implied distributions, but the implied 

binomial tree is more flexible. 

 
Figure 2 about here 

 
 
Looking Backward (Unknown Term Structure of Volatilities) 
 
The first test investigates otherwise similar options but with different times-to-expiration 

(relation (1)). We look backward in that we fit the models to concurrent longer-term option 

prices. Then, we price the shorter-term options using the fitted models. 

 
Alternative Option Pricing Models 
 
The simplest model is Black-Scholes, which suggests that the volatility smile is truly flat 

(“flat smile” model). That is, we price shorter-term options according to a flat smile, which is 
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determined by the at-the-money implied volatility of the concurrent longer-term options. We 

repeat this calibration each day for all models. Note that the resulting parameters will vary from 

day to day. Such recalibrations are typical for how practitioners use the models and take account 

of the fact that the volatility smile moves from day to day.  

Two other models, the displaced diffusion model of Rubinstein (1983) and the jump 

diffusion of Merton (1976), produce empirical results very similar to the Black-Scholes model in 

all tests, so we do not report these results separately. Neither of these models is flexible enough to 

generate volatility smile patterns that are sufficiently different from the flat smile of the Black-

Scholes model.  

The second set of predictions is often used by traders to accommodate observed non-flat 

smile patterns. These assume that the longer-term smile is the best guess for the shorter-term 

smile. There are two different versions depending on if the smile is defined across moneyness or 

strike price. One version is the “relative smile” prediction, which traders call the “sticky delta” 

method.6 Here we assume that each shorter-term option with a given moneyness has an implied 

volatility equal to the corresponding longer-term option with the same moneyness. In a second 

version, we consider the “absolute smile” prediction, which traders call the “sticky vol” method. 

Here we assume that a shorter-term option with a given strike price has an implied volatility 

equal to the corresponding longer-term option with the same strike price. 

For the relative and absolute smiles, we need to interpolate the longer-term implied 

volatilities to arrive at the corresponding implied volatilities for the shorter-term options. We use 

piecewise-linear interpolation since it gives very similar results to more sophisticated methods 

such as cubic spline or polynomial interpolation. We extrapolate for values (of moneyness or 

strike prices) outside the longer-term smile by assuming that all lower values have the same 

implied volatility as the lowest observable value and all higher values those of the highest 

observable value.7 

Next, we examine two versions of the constant elasticity of variance model. The formula is 

based on a diffusion process specifying the instantaneous volatility σ(S,t) as: 

 
                                                           
6 See Reiner (1998) who analyzes single-factor models that exhibit such “sticky delta” or “sticky vol” behavior. He 
finds that such processes would not be diffusion processes, which could cause problems in hedging such options. 
7 The typical smile is u-shaped, so we will introduce some bias in the far-away-from-the-money options which will 
be undervalued. While the effect should not be too large as those options have low option premia, it stacks the tests 
somewhat against the naïve methods.  
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     1'),( −= ρσσ StS      (1) 
 
where: σ’ = volatility parameter; 
  S = index level; and 
  ρ = 1 + elasticity of variance with respect to index level. 
 
Several well-known processes are nested in the CEV such as the absolute process (ρ = 0), the 

square-root process (ρ = 0.5), and the standard process underlying the Black-Scholes formula (ρ 

= 1). If the parameter ρ is less than one, then the index level and the instantaneous volatility are 

inversely related, consistent with empirical findings. We measure a correlation between S&P 500 

index level and at-the-money implied volatility of -0.72 for the 1880 observations from June 6, 

1988, through December 28, 1995, so we impose an upper bound on ρ at 1. Options priced under 

this parameterization will exhibit a downward-sloping volatility smile.  

We allow for two different lower bounds on ρ. In the restricted version, a lower bound of 

zero is chosen, corresponding to the absolute process. This limits the chance of bankruptcy to 

plausible levels. In a second version, we leave the ρ parameter unrestricted. Although this is 

mathematically legitimate, it may have undesirable economic implications (which we discuss 

later). 

The CEV model has two additional parameters that need to be specified, the elasticity ρ − 1 

and the volatility σ’. We choose both parameters in an optimal fashion by minimizing the pricing 

error of the longer-term options. We then price the shorter-term options while using these two 

optimal parameters. 

For the implied binomial tree model (Rubinstein, 1994), the natural starting point is the end 

of the tree, where we assume that all ending probabilities and asset nodal values are known from 

the method of Jackwerth and Rubinstein (1996).8 In order to allow for subsequent generalizations, 

we use the notation of Jackwerth (1997). Let S ,  be the nodal asset value at step i = 0, ..., n and at 

level j = 0, ..., i. Let P,  be the corresponding nodal probability. The recursive method is then, 

starting at the end of the tree: 

 

                                                           
8 We prefer the implied binomial tree of Rubinstein (1994) to the Derman and Kani (1994) tree because it is less 
susceptible to numerical instabilities resulting from negative probabilities within the tree. Even the improvements by 
Barle and Cakici (1998) do not eliminate all the instabilities of the Derman-Kani tree. 



 12

    ┌─────── P, , S ,  
    │ 
P , , S ,  ───────┤ 

    │ 
    └─────── P, , S ,  
 
Step One:    P w P w Pi j i j i j i j i j− + += − +1 1 11, , , , ,( )     (2)  

Step Two:    p w
P
Pi j i j

i j

i j
− +

+

−

=1 1
1

1
, ,

,

,

    (3) 

Step Three:   S p S p S ri j i j i j i j i j
t n

− − − += − +1 1 1 11, , , , ,
/[( ) ] / ( / )δ   (4) 

 
where: wi,j = (j / i) is the transition probability weight of going down as we move  
    to the prior step; 
  r = 1 + annualized interest rate; 
  δ = 1 + annualized dividend yield; 
  t = time-to-expiration in years; and 
  n = number of steps. 
 
To price shorter-term options, we find the step i* of the implied binomial tree corresponding 

in time: 

 

     ]5.0[integer* n
t
ti s+=     (5) 

 
where: ts  = time-to-expiration of the shorter-term options; and 
  t = time-to-expiration of the longer-term options. 
 
We can now price all shorter-term options using the formula: 
 

    C K P S K rm i j i j m
j

i
ts( ) ( max[ ; ]) /*, *,

*

= −
=

∑ 0
0

   (6) 

 
where: Km  = strike price of the shorter-term option m. 
 
We use implied binomial trees with 200 steps. Binomial trees are rather insensitive to the 

number of steps used. Even trees with as few as 80 steps yield pricing errors that are only 4 cents 

worse than the errors for 200 step trees which vary from 24-83 cents across different tests. 

Increasing the number of steps beyond 200 does not improve the fit of the trees significantly. 
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The last model is the stochastic volatility model of Heston (1993). Volatility is modeled as a 

mean-reverting square-root process. In his exact notation for the risk-neutral process:9 

 

    
)()()]([)(

)()()(

2
**

1

tdztvdttvtdv

tdzStvrSdttdS

σθκ +−=

+=
   (7) 

 
where: κ*  = mean reversion; 
  θ* = long-run variance; 
  v(t) = current variance; 
  ρ = correlation of z1(t) and z2(t); 
  σ = volatility of volatility parameter; 
  r = interest rate. 
 
Again, we fit the first five parameters by minimizing the error of the longer-term options and 

then keep the parameters to price the shorter-term options.  

More complex models incorporate stochastic interest rates and stochastic jumps in addition 

to stochastic volatility. Evidence in Bakshi et al. (1997), however, suggests that adding jumps 

only slightly improves on the stochastic volatility model for short-term options. Adding 

stochastic interest rates only slightly improves on the stochastic volatility model for long-term 

options. In both cases, there is no difference for hedging performance. Bates (2000) finds that 

adding jumps slightly improves performance over the stochastic volatility model, but that the 

implied probability distributions are inconsistent. Thus, we focus on the simpler stochastic 

volatility model since it seems to account for the lion’s-share of performance improvement over 

the Black-Scholes model.  

One model we do not include is the GARCH option pricing model of Duan (1995). Since 

some GARCH models converge to stochastic volatility models as the discrete time steps grow 

small (Heston and Nandi, 2000), we believe that we capture much of the effect by investigating 

the stochastic volatility model. 

 
Empirical Results 
 
Our empirical results are stated in terms of pricing errors. To evaluate the performance of the 

alternative option models we use the root mean squared error in cents: 

                                                           
9 Some of the variable names are used in other models, too, but we wanted to keep them as in the original model. 
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where: Cobserved = midpoint option price observed in the market;  
  Ki  = strike price for the observed option i; and 
  Cmodel  = option price derived from an option valuation model. 
 
Thus, the pricing error is an aggregate measure across all strike prices for options of a given 

time-to-expiration. Expressed in cents, the relative impact is less for a call option with a low 

strike price than for a call option with a high strike price. Choosing March 16, 1990, as an 

example, a typical day for the post-crash period, the at-the-money option (strike price = 34500 

cents) is worth 975 cents. A low pricing error of 20 cents corresponds to 2%, and a high pricing 

error of 100 cents corresponds to 10%. The corresponding percentages for the 6%-in-the-money 

call (strike price = 32500) with price 2442 are 1% and 4%. The corresponding percentages for the 

6%-out-of-the-money call (strike price = 36500) with price 148 are 14% and 68%.  

There are two reasons we use cent errors. First, because we translate all puts into calls 

through put-call parity, we are concerned that expressing relative errors in terms of call prices 

might have adverse consequences for the corresponding put prices. The cent errors are unaffected 

however: if the put is over-priced by a cent, then the put-call-parity implied call is also over-

priced by a cent. Second, the alternative of expressing errors in terms of implied volatilities 

means that for in-the-money calls small cent errors translate into large volatility errors. 

Tables II and III exhibit the pricing errors for the alternative models.10 Table II reports the 

pre-crash errors and Table III the post-crash pricing errors. 

 
Table II about here 

 
Table III about here 

 
Discussion 
 
In the pre-crash period, assuming an unknown term structure of implied volatilities, the 

Black-Scholes formula yields median errors of 21 cents (Table II). These errors compare quite 

                                                           
10 If any model cannot be evaluated on a given date, that date is eliminated from the sample. Thus, the number of 
observations for the two periods vary from table to table. 
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favorably with typical bid/ask spreads of 40 cents. Since pre-crash smiles are almost flat, there is 

no benefit to using the relative or absolute smile predictions.  

The CEV model yields marginally lower errors because of the greater flexibility in choosing 

the ρ parameter, but it converges to the Black-Scholes formula as the parameter ρ takes on an 

optimal value of 1. This occurs for most days in the pre-crash period since the observed option 

prices imply probability distributions that are about lognormal. Moreover, the bound on ρ at zero 

for the restricted CEV model is almost never binding. This means that the two versions of the 

CEV model are virtually indistinguishable.  

Implied binomial trees do slightly worse, with a median error of 22 cents. This is surprising, 

because the implied binomial tree nests the Black-Scholes formula if the ending probability 

distribution is lognormal. The implied probability distributions are not perfectly lognormal, 

however. The method used to derive them fits the implied probability distribution to match 

midpoint option prices that do not necessarily observe a flat smile, even in the pre-crash period. 

Although a flat smile usually prices all options within their bid/ask spreads, Jackwerth and 

Rubinstein (1996) argue in favor of using midpoints for numerical reasons in deriving the implied 

distributions.11 Finally, the implied distribution has to be resampled onto a log-spacing that 

introduces a small error in the order of a few cents.12  

Similarly, the stochastic volatility model also converges to the Black-Scholes model in the 

pre-crash period. 

The post-crash period produces more interesting results. Black-Scholes does the worst, with 

a median error of 125 cents. The relative and absolute smile predictions are best, with median 

errors of 51 and 54 cents, respectively. The implied binomial tree holds the middle ground with a 

median error of 78 cents.  

The performance of the CEV depends strongly on restriction in the choice of the ρ 

parameter, with median errors of 110 (restricted) and 57 cents (unrestricted). Limiting ρ to values 

between 0 and 1 causes the CEV to come in second-to-last, while the unrestricted version is a 
                                                           
11 Since we are fitting midpoints, we have to be concerned about overfitting. Therefore, we also use implied 
probability distributions with a lower penalty parameter that produces smoother distributions with less fit. Finally, we 
use the (very smooth and unimodal) probability distribution implied in the CEV model after fitting the CEV model to 
observed option prices. The errors do not change significantly with the degree of smoothness in the probability 
distributions, so we use the original implied probability distributions throughout. 
12 One further concern is that the number of known options could influence the error since each incremental option 
embodies some additional information that could be used in implying option prices. Empirically, we find that the 
error is virtually uncorrelated with the number of known options. 
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relatively good model apart from its high standard deviation. The unrestricted version of the CEV 

model is questionable on economic grounds, however. 

Three lines of argument support a restriction on the parameter ρ. First, several empirical 

studies using S&P 500 index returns find that estimates of ρ are mostly confined to the interval 

between 0 and 1.13 We note that such estimates stem from the actual return process and not the 

risk-neutral process, which we use in our option pricing model.14  

Second, Bates (1996) argues that for stock market indices it is inconceivable that there is a 

significant probability of bankruptcy; with ρ sufficiently negative, however, this is possible. Let 

us consider ρ = -4, which is the closest integer to the mean optimal unrestricted CEV coefficient 

in the post-crash period. For three scenarios of interest rates, dividend yields, volatilities, and 

times-to-expiration that are typical for that period, the CEV model suggests a probability of 

bankruptcy for the S&P 500 (index = 0) over the next 4 to 7 month’s of between 2 and 304 out of 

10,000. Typical values tend to lie in the center of this range and seem rather high, given the 

implication that the whole U.S. economy would be destroyed.  

Third, He and Leland (1993) derive a condition that any stochastic diffusion process of asset 

prices has to meet for the economy to be in equilibrium. They assume a pure exchange economy 

with dynamically complete asset markets where investors maximize their expected utility of 

future consumption and have nonrandom exogenous income. This condition will hold if ρ = 1, 

which corresponds to the Black-Scholes process. The condition will also hold if, unrealistically, 

the expected return of the market equals plus or minus the risk-free return. If we accept this as a 

viable approximation of the U.S. economy, we must conclude that the CEV process is not 

compatible with that economy in general. 

 
Looking Backward (Known Term Structure of At-the-Money Volatilities) 
 
Continuing the test of relation (1), we still investigate otherwise similar options but with 

different times-to-expiration. We again look backward in that we price shorter-term options using 

several methods based on concurrent longer-term option prices. In this case, we want to 

incorporate a known term structure of at-the-money volatilities. We can then assess how much 

                                                           
13 Beckers (1980), Gibbons and Jacklin (1988), and Christie (1982). 
14 See Jackwerth (2000) for more empirical evidence that the risk-neutral process can be quite different from the 
actual process. 
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failure of the models to incorporate the term structure of implied volatilities contributes to overall 

pricing errors. To do this, we need generalized versions of the models. 

 
Alternative Option Pricing Models 
 
We generalize the Black-Scholes model by assuming a flat volatility smile that is determined 

solely by the at-the-money implied volatility of the shorter-term options, which we assume is 

known. For the relative smile prediction, we again assume that the implied volatility for identical 

levels of moneyness remains the same as for the longer-term options, but we also shift the smile 

vertically by a constant amount so that we match the implied volatility of the shorter-term at-the-

money option. For the absolute smile prediction, we shift the smile vertically by a constant 

amount in a similar way. 

To generalize use of the CEV model, we keep the shape parameter ρ constant, as determined 

by the best fit of the longer-term options, but allow the volatility parameter σ’ to be chosen 

optimally so as to fit the shorter-term at-the-money option. Then we price the other shorter-term 

options using the adjusted parameters. 

In order to incorporate a known term structure of volatilities into an implied binomial tree, 

we use the generalized binomial tree as described in Jackwerth (1997). We can use the same 

three-step algorithm used for the implied binomial tree, but a generalized binomial tree allows for 

arbitrary weight functions (instead of the linear weight function associated with a standard 

implied binomial tree) while preserving no-arbitrage in the interior of the tree. Matching of the 

volatility term structure is achieved by choosing a weight w(0.5) between 0 and 1. We know that 

w(0) = 0 and w(1) = 1. We then use a piecewise linear function to fit through the three points. 

This is illustrated for w(0.5) = 0.75 in Figure 3. 

 
Figure 3 about here 

 
We can now select a weight w(0.5) that causes the at-the-money shorter-term option value to 

equal its observed market price. Then, all other shorter-term options are priced using this optimal 

w(0.5).  

Finally, for the stochastic volatility model, we calibrate the parameters to the longer-term 

options, and then reset the parameter for the current volatility of the stock price v(t) to fit the 

shorter-term at-the-money option.  
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Empirical Results and Discussion 
 
Tables IV and V show the pricing errors for the alternative models: Table IV the pre-crash 

pricing errors and Table V the post-crash pricing errors. 

 
Table IV about here 

 
Table V about here 

 
Assuming a known term structure of at-the-money volatilities now means that the at-the-

money shorter-term option is properly priced. The median error for the Black-Scholes formula 

improves to 13 cents. The relative and absolute smile predictions perform nearly as well, with 

median errors of 15 and 16 cents, respectively. For the CEV model, the ρ parameter is 1 for most 

days, again. Both the restricted and the unrestricted CEV model therefore converge to the Black-

Scholes formula.  

The generalized binomial tree produces a negligible improvement in the median error 

compared to the unknown term structure of volatilities. The reason for this disappointing 

performance in the pre-crash period is closely related to the problem of fitting the longer-term 

options too well, and thus implying distributions that are not perfectly lognormal. Adjusting the 

trees according to these distributions to match the shorter-term at-the-money option can result in 

excessive adjustments that improve the fit for some of the shorter-term options (particularly the 

at-the-money and near-the-money options) and harm the fit of other options. Thus, the overall 

effect is either no improvement or even worse performance compared to the assumption of an 

unknown term structure of volatilities.  

The stochastic volatility model also converges to the Black-Scholes model and performs 

almost as well. In the pre-crash period overall, where the implied probability distributions are 

about lognormal and the volatility smiles almost flat, using the Black-Scholes formula remains 

the superior method. 

In the post-crash period, assuming a known term structure of at-the-money volatilities, the 

Black-Scholes formula is again the worst-performing model, with a median error of 121 cents. 

The relative and absolute smile predictions again do well, with median errors of 42 cents in both 

cases.  
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Again, the restricted CEV does almost as poorly as the Black-Scholes model with 101 cents. 

The unrestricted CEV does much better, with a median error of 40 cents, but the objections to a 

negative parameter ρ still apply. Generalized binomial trees do very well, with median error 38 

cents, and so does the stochastic volatility model with 43 cents.  

Note that the better models now perform very similarly to one another. This is an indication 

that, after adjusting for the level of the shorter-term smile, there is little advantage in one model 

over the others.  

We conclude that the observed term structure of volatilities is more complex than the models 

allow. From the present research, it is not clear if a better model of the term structure of volatility 

can remain deterministic, or if extension to a stochastic volatility structure are needed.  

  
Looking Forward (Unknown Term Structure of Volatilities) 
 
The second empirical test investigates the same options but at different times (relation (2)). 

Here, we evaluate forecasts of smiles 10 or 30 days in the future. We focus first on incorporating 

information from the current longer-term option prices. The results from incorporating the 

shorter-term options turn out to be very similar. 

 
Alternative Option Pricing Models 
 
For the purpose of forecasting, we use the flat, relative, and absolute smiles as first defined. 

All smile predictions are based on the current longer-term options, and after waiting for 10 and 30 

days we then measure the prediction errors. For the CEV models, we use the first approach again. 

After estimating the parameters ρ  and σ’ from the longer-term options, and potentially restricting 

ρ, we use these estimates for our smile forecasts. 

We build the implied binomial trees based on the longer-term options. We then wait 10 or 30 

days, and we assess which node (i, j) in the tree is closest to the index level on that future day. If 

we can now determine the risk-neutral probability distribution, conditional on being at node (i, j), 

then we can price options expiring at the end of the remaining tree. 

There is an easy way to obtain the conditional probabilities. First, we go out for, say, 10 days 

into the future, and find the closest underlying asset value on the step of the tree closest in time to 

the observed asset value. The corresponding node (i, j) is the future node. Due to coarseness of 

the tree, the time and asset value at node (i, j) are likely to be a bit off the observed values. To 



 20

correct for this, we update the observed option prices by assuming that the implied volatilities 

remain constant for small changes in the asset value and time. Then we choose the asset value to 

be exactly the one at node (i, j) in the tree and the time to be exactly the one of the selected step i. 

In addition, we use the interest rate and dividend yield that we use for the original tree. Given all 

this information and the implied volatilities of the observed options, we now calculate 

hypothetical option prices (with slightly different time-to-expiration and stock price), which 

replace the observed options.  

The final step is to evaluate the options according to the tree. Here we need conditional 

probabilities (P’) which we obtain by setting P, 1 since we know with probability one that in 

10 days we arrived at that node (i, j). We can easily calculate the probability of an up- and down-

move from node (i, j) as: 

 

     p w
P

Pi j i j
i j

i j
, ,

,

,

= + +
+ +

1 1
1 1        (9) 

 
where: p ,   = probability of moving up from node (i, j); and 
  1 – p ,  = probability of moving down from node (i, j). 
 
We can then recursively develop a tree of the conditional probabilities P’ as we go forward 

from node (i, j): 
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The conditional probabilities at the end of the tree P ,  are then used to price the set of 

observed options through: 
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where: Km  = strike price of the observed option m; 
  r = 1 + interest rate; 
  t = time-to-expiration of the original tree; and 
  i = step corresponding to the forecasting node (i, j). 
 
Note that this procedure can adjust properly for small deviations in time, especially since a 

200-step tree corresponds to about one day per step. The change in the index from one level to the 

next, even in a 200-step tree, however, can be coarse enough to affect the results when we update 

the observed smile by setting the index to its closest match observed in the tree.  

There is an elegant way around this problem. Rather than building a tree of conditional 

probabilities starting at the closest index level, we start the tree of conditional probabilities at two 

nodes simultaneously. We choose the nodes just above and below the observed index level. Next 

we assign conditional probabilities P,  and P,  to the upper and lower node (summing to one), 

which causes the expected index level to coincide with the observed index level. At this point we 

unravel the conditional probability tree to the end. This method proves to be much more stable 

than the original version. 

For the stochastic volatility model, we again calibrate the parameters κ* ,θ* , v(t), ρ, and σ to 

the longer-term options. We then wait for 10 or 30 days and use those parameters to forecast the 

option prices at those times. 

 
Empirical Results and Discussion 
 
Sometimes it is not possible to wait for 10 or 30 days because there are no data available. In 

this case, for the shorter wait we search for the closest wait to 10 days between 7 and 13 days; for 

the longer wait we search for the closest wait to 30 days between 20 and 40 days. Tables VI and 

VII exhibit the pre-crash and post-crash pricing errors for the various models, based on knowing 

current longer-term option prices only.  

 
Table VI about here 

 
Table VII about here 
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Table VI confirms the result that in the pre-crash world with about flat smiles, the lognormal 

Black-Scholes model performs well, with a 38 cent error for 10 day predictions and with a 72 

cent error for 30 day predictions. All other models collapse into the nested special case of the 

Black-Scholes model. 

In the post-crash period in Table VII, the Black-Scholes model and the restricted CEV model 

perform worst, with 172 and 136 cent errors for 10 day predictions and 172 and 145 cent errors 

for 30 day predictions. The implied trees trail the relative smile, the unrestricted CEV, and the 

stochastic volatility models, which perform equally well. The best model is the absolute smile, 

with a 44 cent error for 10 day predictions and a 63 error for 30 day predictions. To investigate 

this rather surprising result, we graph results for four models in Figure 4. 

 
Figure 4 about here 

 
We can see that the absolute smile model incorporates the fact that index level and implied 

volatility are negatively correlated. Thus, as the index goes up over the next 30 days, the absolute 

smile updates the future at-the-money volatility with the current volatility of an option with the 

same strike price as the future stock price. Such an option is currently an out-of-the-money call 

option. Its implied volatility tends to be lower than the current at-the-money volatility because of 

the negative slope of the typical post-crash smile. 

We can tie the CEV model nicely into this framework. We have established already that the 

restricted CEV model yields (and predicts) smiles similar to the Black-Scholes model. In 

addition, regressing the error on the unrestricted CEV forecasts against the relative smile model 

yields a correlation of 0.997. Thus, those two models behave almost identically. 

 
Incorporating Known Current Shorter-Term Option Prices 
 
The initial notion was that we could improve our forecasts of option prices by extending the 

models to incorporate both current shorter-term and longer-term option prices. For the Black-

Scholes formula and the relative and absolute smile models, we combine the shorter-term and 

longer-term implied volatilities in order to find the forward term structure of implied volatilities, 

and we base our forecasts on this term structure. For the CEV and the stochastic volatility 

models, the parameters are chosen so as to minimize the pricing error of the shorter-term and 

longer-term options simultaneously. These optimal parameters are then used for the forecasts. 
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We again use the generalized binomial tree, where we match the shorter-term options by 

minimizing the pricing error through choosing a weight w(0.5) between 0 and 1.15 We can then 

use the conditional probability tree to forecast option prices and measure the pricing error.  

It turns out that adding the information incorporated in shorter-term options does not help us 

in forecasting future option prices. The results are 1 to 4 cents worse than the pricing errors 

reported in tables VI and VII, where we use only the longer-term options. The only model that 

uses the additional information in a meaningful way is the generalized binomial tree in the post-

crash period, which drops from an error of 67 cents for 10-day predictions to an error of 59 cents.  

 
Looking Forward (Known Term Structure of At-the-Money Volatilities) 
 
To continue the test of relation (2), we investigate again the same options but at different 

times. We then incorporate a known term structure of at-the-money future volatilities. This allows 

us to untangle the pricing errors related to the models from the impact of the shift in future at-the-

money implied volatility. We use a simple vertical shift to each model’s forecasted volatility 

smile to fit the future at-the-money implied volatility correctly.  

Tables VIII and IX present the pricing errors for the alternative models: Table VIII the pre-

crash pricing errors, and Table IX the post-crash pricing errors. 

 
Table VIII about here 

 
Table IX about here 

 
For the pre-crash period reported in Table VIII, assuming a known term structure of future 

at-the-money volatilities, all methods perform very similarly. Pricing errors are around 21 cents 

for 10- and 30-day predictions.  

More interesting is the post-crash period reported in Table IX. The Black-Scholes and the 

restricted CEV model are predictably the worst-performing models. All other models, except for 

the generalized binomial tree, perform similarly well, with 22-27 cent errors for the 10-day 

predictions and 30-33 cent errors for the 30-day predictions.  

                                                           
15 An extension to this method is to choose two points on the weight function, say, w(0.33) and w(0.66), and again 
get the best fit with the shorter-term options. This additional complexity of the weight function does not improve the 
performance of the binomial trees, so we use the simple adjustment w(0.5) throughout. 
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We also investigate the median pricing error outside the bid/ask spread, where we still 

assume that we know the future at-the-money implied volatility. We do not report the details, as 

all these errors are rather small: 7 cents pre-crash and 12 cents post-crash for the better-

performing models. This is again an indication that, after incorporating the level of the future 

smile, there is little advantage in one model over another. It seems that most models can generate 

the general shape of the smiles equally well, except for the rigid Black-Scholes and the restricted 

CEV models. All models seem to struggle with getting the level of the smile right, however. 

This work suggests that we could improve the performance of all option pricing models if we 

were able to develop good forecasts of future implied volatility. Some preliminary studies reveal 

several problems. 

Implied volatilities are very persistent, so we investigate models in levels and in differences 

of implied volatilities. The most important effect is the negative relation to log returns, but this 

effect is already captured in the better-performing models; they all build in the negative 

correlation between the stock price and volatility.  

We also investigate the explanatory power of various macroeconomic factors such as default 

risk (credit spread), change in the term structure of interest rates, inflation, industrial production, 

and consumption growth. None of these factors has explanatory power. Nor do NYSE trading 

volume or interest rates. 

Finally, we use time-to-expiration, past index levels (1, 30, and 60 days), past implied 

volatility levels (1, 30, and 60 days), past log returns (30 and 60 days), and day-of-the-week 

dummies. Again, none of these variables has explanatory power. Neither does it help to take 

logarithms of times-to-expiration, index levels, or implied volatilities.  

This suggests an “efficient markets results” for implied volatilities. Today’s implied 

volatility seems to incorporate all the information publicly available at that time. Such result, 

while making it difficult to improve on option pricing models, does make sense economically; 

implied volatilities are nothing but scaled option prices, and option prices should not be 

predictable in efficient markets. 

 
Conclusion 
 
We have asked what we can learn from option prices about the risk-neutral stochastic process 

of the S&P 500 index. This question has been partially addressed by others, but we believe we are 
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the first to compare implied tree models with parametric models and naïve trader rules and for 

pre- and post-crash subperiods.  

In our first test, we choose the parameters of nine different option valuation models to best fit 

the observed market prices of longer-term options. We then price shorter-term options using 

those parameters, assuming the term structure of at-the-money volatilities is unknown. If the term 

structure of volatilities is known, we allow one parameter to be chosen so that the at-the-money 

shorter-term option is priced properly. In a second test, we calibrate our models to the longer-

term options and predict 10- and 30-day future volatility smiles. We rerun the test where we 

assume that we know the future at-the-money implied volatility.  

First, in the pre-crash period, all models match the performance of the Black-Scholes model. 

The reason is that the volatility smiles were almost flat pre-crash, and the additional flexibility of 

the more complex models is not needed.  

Second, in the post-crash period, the naïve trader rules perform best. In the backward-looking 

test the relative smile model has a median error of 51 cents, and the absolute smile model an error 

of 54 cents. In the forward-looking test, the absolute smile model has a median error of 44 cents. 

As the standard deviation of these errors is rather large, it is difficult to distinguish the different 

models economically. This could well be why options traders use the naïve methods instead of 

the more complicated academic models.  

Third, all models, except the Black-Scholes and the restricted CEV model, perform very 

similarly. The incorporation of the inverse relation between index level and volatility achieves 

this superior performance. Beyond the models however, there is considerable information 

incorporated in the level of the smile, as all models improve significantly when we add 

information about the at-the-money implied volatility of the shorter-term or the future option. It 

would seem fruitful to devote more research to incorporation of future at-the-money implied 

volatility into option pricing models. Our attempts at modeling future at-the-money implied 

volatility suggest an “efficient markets result” which could make it impossible to forecast these 

future volatilities. Such result fundamentally limits the possibilities to improve on option pricing 

models. 
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Figure 1 
Lognormal and Implied Probability Distributions 

In this figure, we graph a lognormal distribution with an annualized volatility of 0.1602, which 
perfectly prices a set of 15 hypothetical options with strike prices in the range from 0.86 to 1.08. 
Given those option prices, we can derive the corresponding implied probability distribution 
according to the maximum smoothness criterion, graphed as well. The interest rate and dividend 
yield are chosen to match the observed options with 189 days-to-expiration on March 16, 1990. 
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Figure 2 
Implied, Lognormal, and CEV Probability Distributions 

For the options with time-to-expiration of 189 days on March 16, 1990, we graph the implied 
probability distribution, the lognormal distribution based on the volatility of the at-the-money 
option, and the CEV model implied distribution where the (unrestricted) CEV parameters are 
chosen to fit the observed option prices best. 
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Figure 3 
Piecewise Linear Weight Function for a Generalized Binomial Tree 

In a standard binomial tree, the weight function is the diagonal of the unit square. A generalized 
binomial is parameterized by any continuous function across the corners. Here, we use a 
piecewise linear specification that is determined by the weight at the halfway point. 
 

 
 

0

0,2

0,4

0,6

0,8

1

1,2

0 0,2 0,4 0,6 0,8 1 1,2

w(j / i)

up weight
(1- w(j / i))

down weight
w(j / i)

j / i

w(.5) = .5

w(.5) = .75



 32

Figure 4 
Observed Future Smile and Predictions  

Black-Scholes, Relative Smile, and Absolute Smile Models  
For options with time-to-expiration of 150 days on October 16, 1990, we graph the predicted 
future smiles on November 15, 1990, 30 days into the future. The predictions are based on the 
Black-Scholes, the relative smile, and the absolute smile model. We also graph the future smile as 
we observe it 30 days later.  
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Table I 
Daily Notional Volume 

Daily notional volume (in million $) across moneyness and time, based on 252 trading days per 
year. Time-to-expiration is 135-225 days.  
 
Year  ----------------------------------------- Moneyness ------------------------------------------- 
  less than 0.91  0.91 – 0.97  0.97 – 1.03  more than 1.03   
  Calls Puts  Calls Puts  Calls Puts  Calls Puts 
-------------------------------------------------------------------------------------------------------------------- 
1986-87   84      247      53      152      78        76      93      44  
1988-89   16     433      29    231    118    296     284    85  
1990-91   32    942      41    877    637    700     829  345  
1992-93   20  1534      73  1113    495    629     999  103  
1994-95   53  2242    109  1937    613  1954    1401  233  
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Table II 
Pricing Errors for Pre-Crash Period  

(Unknown Term Structure of Volatilities) 
This table uses seven methods to price shorter-term options, given concurrent longer-term option 
prices. The sample covers the pre-crash period from April 2, 1986, through October 16, 1987, 
where there are 360 observations. 
 
     -------------------------- Cent Error ------------------------- 
Pricing method   Mean   Median  Std. Dev. 
-------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula   27    21    21 
Relative smile prediction   27    21    21 
Absolute smile prediction   28    22    21 
CEV restricted formula   26    20    21 
CEV unrestricted formula   26    20    21 
Implied binomial tree    29    22    21  
Stochastic volatility    27    21    22 
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Table III 
Pricing Errors for Post-Crash Period  

(Unknown Term Structure of Volatilities) 
This table uses seven methods to price shorter-term options, given concurrent longer-term option 
prices. The sample covers the post-crash period from June 1, 1988, through December 31, 1994, 
where there are 1278 observations. 
 
     -------------------------- Cent Error ------------------------- 
Pricing method   Mean   Median  Std. Dev. 
-------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula  126   125    40 
Relative smile prediction    54     51    24 
Absolute smile prediction    57     54    24 
CEV restricted formula  110   110    41 
CEV unrestricted formula    75     57    57 
Implied binomial tree     82     78    37 
Stochastic volatility     78     73    61 
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Table IV 
Pricing Errors for Pre-Crash Period 

(Known Term Structure of At-the-Money Volatilities) 
This table uses seven methods to price shorter-term options, given concurrent longer-term option 
prices. The sample covers the pre-crash period from April 2, 1986, through October 16, 1987, 
where there are 360 observations. 
 
     -------------------------- Cent Error ------------------------- 
Pricing method   Mean   Median  Std. Dev. 
-------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula   16    13    12 
Relative smile prediction   17    15    12 
Absolute smile prediction   18    16    12 
CEV restricted formula   15    12    11 
CEV unrestricted formula   15    12    11 
Generalized binomial tree    28    21    21  
Stochastic volatility    17    15    14 
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Table V 
Pricing Errors for Post-Crash Period 

(Known Term Structure of At-the-Money Volatilities) 
This table uses seven methods to price shorter-term options, given concurrent longer-term option 
prices. The sample covers the post-crash period from June 1, 1988, through December 31, 1994, 
where there are 1278 observations. 
 
     -------------------------- Cent Error ------------------------- 
Pricing method   Mean   Median  Std. Dev. 
-------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula  124   121    40 
Relative smile prediction    43     42    17 
Absolute smile prediction    43     42    17 
CEV restricted formula  102   101    38 
CEV unrestricted formula    43     40    26 
Generalized binomial tree     42     38    27 
Stochastic volatility     51     43    58 
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Table VI 
Pricing Errors for Pre-Crash Period 

 (Unknown Term Structure of Volatilities) 
This table uses seven methods to predict future option prices, given current longer-term option 
prices and the future underlying asset price. The cent errors correspond to evaluations of options 
closest to 10 (+/-3) days into the future, the cent errors in parentheses to evaluations of options 
closest to 30 (+/- 10) days into the future. The sample period covers the pre-crash period from 
April 2, 1986, through September 16, 1987, where there are 363 (363) observations. 
 
     -------------------------- Cent Error ----------------------------- 
Forecasting Method   Mean   Median  Std. Dev. 
------------------------------------------------------------------------------------------------------------------ 
Black-Scholes formula   50 (81)   38 (72)   36 (54) 
Relative smile prediction   51 (82)   42 (71)   34 (52) 
Absolute smile prediction    52 (84)   42 (73)   35 (54) 
CEV restricted formula   49 (80)   40 (71)   35 (53) 
CEV unrestricted formula   50 (80)   40 (72)   35 (53) 
Implied binomial tree    54 (87)   44 (69)   40 (64) 
Stochastic volatility    50 (81)   40 (71)   34 (54) 
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Table VII 
Pricing Errors for Post-Crash Period 

(Unknown Term Structure of Volatilities) 
This table uses seven methods to predict future option prices, given the current longer-term 
option prices and the future underlying asset price. The cent errors correspond to evaluations of 
options closest to 10 (+/-3) days into the future, the cent errors in parentheses to evaluations of 
options closest to 30 (+/- 10) days into the future. The sample period covers the post-crash period 
from June 1, 1988, through November 30, 1994, where there are 1553 (1553) observations. 
 
     -------------------------- Cent Error ------------------------------ 
Forecasting Method   Mean   Median  Std. Dev. 
------------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula  175 (181)  172 (172)   58 (  71) 
Relative smile prediction    73 (102)    56 (  78)   61 (  83) 
Absolute smile prediction    56 (  76)    44 (  63)   43 (  55) 
CEV restricted formula  139 (154)  136 (145)   54 (  68) 
CEV unrestricted formula    74 (102)    56 (  77)   60 (  83) 
Implied binomial tree     83 (116)    67 (  97)   62 (  79) 
Stochastic volatility     75 (111)    57 (  83)   66 (132) 
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Table VIII 
Pricing Errors for Pre-Crash Period 

(Known Term Structure of Future At-the-Money Volatilities) 
This table uses seven methods to predict future option prices, given current longer-term option 
prices, the future at-the-money volatility, and the future underlying asset price. The cent errors 
correspond to evaluations of options closest to 10 (+/-3) days into the future, the cent errors in 
parentheses to evaluations of options closest to 30 (+/- 10) days into the future. The sample 
period covers the pre-crash period from April 2, 1986, through September 16, 1987, where there 
are 353 (353) observations. 
 
     -------------------------- Cent Error ---------------------------- 
Forecasting Method   Mean   Median  Std. Dev. 
----------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula  21  (20)   19  (18)   11  (10) 
Relative smile prediction  26  (26)   22  (23)   14  (14) 
Absolute smile prediction  27  (28)   23  (24)   15  (16) 
CEV restricted formula  22  (21)   19  (19)   12  (11) 
CEV unrestricted formula  22  (21)   19  (19)   13  (11) 
Generalized binomial tree   24  (24)   21  (21)   13  (13) 
Stochastic volatility   24  (23)   20  (20)   13  (13) 
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Table IX 
Pricing Errors for Post-Crash Period 

(Known Term Structure of Future At-the-Money Volatilities) 
This table uses seven methods to predict future option prices, given current longer-term option 
prices, the future at-the-money volatility, and the future underlying asset price. The cent errors 
correspond to evaluations of options closest to 10 (+/-3) days into the future, the cent errors in 
parentheses to evaluations of options closest to 30 (+/- 10) days into the future. The sample 
period covers the post-crash period from June 1, 1988, through November 30, 1994, where there 
are 1267 (1267) observations. 
 
     -------------------------- Cent Error ---------------------------- 
Forecasting Method   Mean   Median  Std. Dev. 
----------------------------------------------------------------------------------------------------------------- 
Black-Scholes formula  163  (156)   167  (159)   45  (43) 
Relative smile prediction    30  (  37)     23  (  31)   24  (23) 
Absolute smile prediction    30  (  37)     23  (  31)   24  (23) 
CEV restricted formula  125  (122)   131  (128)   41  (39) 
CEV unrestricted formula    32  (  37)     27  (  33)   21  (19) 
Generalized binomial tree     34  (  53)     28  (  51)   24  (27) 
Stochastic volatility     32  (  38)     22  (  30)   31  (49) 
 


