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ABSTRACT

American options on the S&P 500 index futures that violate the stochastic domi-

nance bounds of Constantinides and Perrakis (2009) from 1983 to 2006 are identified

as potentially profitable trades. Call bid prices more frequently violate their upper

bound than put bid prices do, while violations of the lower bounds by ask prices

are infrequent. In out-of-sample tests of stochastic dominance, the writing of options

that violate the upper bound increases the expected utility of any risk-averse investor

holding the market and cash, net of transaction costs and bid-ask spreads. The results

are economically significant and robust.

WE IDENTIFY AMERICAN call and put options on the S&P 500 index futures

from 1983 to 2006 that violate the stochastic dominance upper bounds

of Constantinides and Perrakis (2007) as potentially profitable investment

opportunities—“good sell” options. We then consider the utility enhancement

that obtains from exploiting such violations by adopting the appropriate trad-

ing policy for a generic investor who holds only the market index and the risk-

free asset. In the identification of both the violations and the trading policy, we

recognize the potential early exercise of these American options. We allow for

realistic trading conditions by using only observable information and by incor-

porating transaction costs, bid-ask spreads, and trading delays (by waiting one

quote before entering the position).

The main contribution of our paper is to show that trading policies that ex-

ploit these violations lead to out-of-sample portfolio returns that stochastically

dominate (in the second order) portfolio returns that do not exploit them. This
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means that the expected utility of a generic risk-averse investor, as defined

above, increases when exploiting these violations. This result is independent

of any specific preferences, such as mean variance preferences.

Whereas we find a substantial number of violations of the call upper bound,

the corresponding put upper bound and call and put lower bounds identify

relatively few violations partly because the first two of these bounds are weak,

while there do not seem to be many violations of the put lower bound in our data.

Since violations of these bounds are too infrequent for statistical inference, we

focus on violations of the call upper bound.1 We note that we can also use our

statistical tests as a general method to investigate good buys or good sells and in

particular the goodness of alternative methods in finding such opportunities.

Finally, we show that neither a simple heuristic for trading options based

on observed option price percentiles for buying low and selling high nor an

application of the Bernardo and Ledoit (2000) bounds systematically leads to

out-of-sample portfolio returns that stochastically dominate portfolio returns

that do not trade in options. We conclude that the identification of good buy

and good sell options is difficult, yet the Constantinides and Perrakis (2007)

bounds achieve this task.

Ample evidence motivates our focus on the class of investors holding the

market and the risk-free asset. Surveys report that a large number of U.S.

investors follow indexing policies in their investments. Bogle (2005) reports

that, in 2004, index funds accounted for about one-third of equity fund cash

inflows since 2000 and represented about one-seventh of equity fund assets. The

S&P 500 index is not only the most widely quoted market index, but has also

been available to investors through exchange traded funds and index futures

for several years. Furthermore, the results are robust to the investor’s portfolio

composition. We show that the writing of good sell options may increase the

expected utility of an investor holding a portfolio that includes a wide range of

assets in addition to the index and the risk-free asset.

The bounds that identify good sell options are valid for any distribution

of the underlying asset, including the empirical ones extracted from past

data.2 Furthermore, the stochastic dominance statistical tests by Davidson and

Duclos (2000, 2006), which we employ to assess the out-of-sample profitability

of our trading policy, are valid under minimal technical assumptions about

return distributions.

Finally, the results are robust to the estimation of the bounds. Note that we

are only using the bound violations as signals for trading. Thus, the assump-

tions underlying the derivation of the bounds may be violated as long as the

signals are sufficiently informative for utility-enhancing trading.

We use the Chicago Mercantile Exchange (CME) database on S&P 500 fu-

tures options, from 1983 to 2006, which is clean and spans a long period. Much

1 In the Internet Appendix, we demonstrate the ability of the lower bounds to identify good buy

options by showing that a portfolio with long positions in options bought at artificial prices equal

to the lower bound stochastically dominates a portfolio without them.
2 In the absence of transaction costs and additional state variables, Oancea and Perrakis (2009)

show that the bounds nest the jump diffusion and stochastic volatility option pricing models.
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of the earlier empirical work on the mispricing of index options is based on

S&P 500 index option data that come from two principal sources: the Berkeley

Options Database (from 1986 to 1995), which provides relatively clean trans-

action prices but misses important events over the past 14 years, such as the

1998 liquidity crisis, the dot-com bubble, and its 2000 burst; and the Option-

Metrics database (starting in 1996), which is of uneven quality and contains

only end-of-day quotes.

Our tests are nonparametric in the sense that we do not assume any par-

ticular distribution for the underlying asset returns. Therefore, our finding of

good sell options cannot be attributed to stochastic volatility and jumps in the

index price. We use historical data on the underlying S&P 500 index returns

to estimate the bounds. We use several empirical estimates of the underly-

ing return distribution, all of them observable at the time the trading policy

is implemented. For each of these estimates, we evaluate the corresponding

bounds over the period from 1983 to 2006 and then identify the observed S&P

500 futures option prices that violate them. For each violation, we identify the

optimal trading policy of a generic investor with and without the option, using

the observed path of the underlying asset until option expiration and recogniz-

ing realistic trading conditions such as possible early exercise and transaction

costs. We identify the profitability of the pair of policies for each observed vi-

olation and then conduct several stochastic dominance tests over the entire

sample period.

A large body of finance literature addresses the mispricing of options.

Rubinstein (1994) and Jackwerth and Rubinstein (1996) observe a steep in-

dex smile in the implied volatility of S&P 500 index options that suggests

out-of-the-money (OTM) puts are too expensive. Indeed, a common hedge fund

policy is to sell OTM puts. Coval and Shumway (2001) find that buying zero

beta, at-the-money (ATM) straddles/strangles loses money. Santa-Clara and

Saretto (2009) also find that strategies to sell index options are good deals. The

results of Aı̈t-Sahalia and Lo (2000), Jackwerth (2000), and Rosenberg and En-

gle (2002) are suggestive of stochastic dominance, albeit in frictionless markets

with a representative agent. The assumption of a representative agent can be

justified if the market is complete. Aı̈t-Sahalia and Lo (2000, pp. 25–26) call for

extensions that do not rely on complete markets. Our results on stochastic dom-

inance allow for both an incomplete market (thereby removing the requirement

that a representative investor exists) and frictions.

Constantinides, Jackwerth, and Perrakis (2009) provide empirical evidence

that both European puts and calls on the S&P 500 index violate the cor-

responding stochastic dominance bounds on European options put forth by

Constantinides and Perrakis (2002). Constantinides et al. (2009) estimate the

time-series process of the index price, use this process to calculate upper and

lower stochastic dominance bounds on option prices, and report the observed

violations of the bounds by the option prices. This process is subject to model

misspecification and estimation error. Therefore, the bounds are potentially

calculated with error. The reported violations do not account for potential

error.
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We address the above concerns in this paper as follows. The claim of stochas-

tic dominance is not based on the observation of option prices violating the

bounds. Observed violation of the bounds only triggers the trading of these

options. The claim of stochastic dominance is based on the out-of-sample statis-

tical test of whether the portfolios that incorporate such options stochastically

dominate portfolios that do not incorporate them. Even if the assumptions that

lead to the theoretical development of the bounds are violated in practice, this

does not detract from the finding of stochastic dominance based on the empir-

ical tests, but instead makes the claim of stochastic dominance conservative

and implies that the estimated bounds may still be used as identifiers of good

sell options.

Unlike the results in Constantinides et al. (2009), our tests of stochastic dom-

inance do allow for error in the realized returns. The statistical tests are based

on the 1-month realized distribution of returns of these portfolios. The tests

are nonparametric and therefore free from assumptions regarding the return

distribution. The tests are not based on the estimated time-series process of

the index price and hence are free from estimation error and model misspec-

ification of the time-series process of the index price. The reported findings of

stochastic dominance are conservative because potential errors in calculating

the bounds result in a trading rule that is less efficient in spotting violations.

Finally, we estimate the bounds at time t based only on information available at

time t. Therefore, both the calculation of the bounds and the tests of stochastic

dominance are truly out of sample.

The paper is organized as follows. In Section I, we present the restrictions

on futures option prices imposed by stochastic dominance and discuss the un-

derlying assumptions. In Section II, we describe the data and the empirical

design. We present the empirical results in Section III and demonstrate their

robustness in Section IV. In Section V, we discuss the implications of our re-

sults and conclude. Additional results are reported in the appendices, and in

an Internet Appendix available at http://www.afajof.org/supplements.asp.

I. Restrictions on Futures Option Prices Imposed
by Stochastic Dominance

We summarize the model and assumptions in Constantinides and Perrakis

(2007) that lead to the bounds that signify violations of stochastic dominance.

We stress that even if these assumptions do not hold in practice, this does

not detract from the finding of stochastic dominance based on the empirical

tests reported in this paper, but instead makes the claim of stochastic dom-

inance conservative: the tests of stochastic dominance do not depend on the

assumptions made in deriving the bounds.

We allow the market to be incomplete and agents to be heterogeneous. We

investigate the restrictions on option prices imposed by one particular class

of agents that we simply refer to as “traders.” We allow for other agents to

participate in the market but this allowance does not invalidate the restrictions

on option prices imposed by the traders.
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We consider a market with several types of financial assets. First, we assume

that traders invest in only two of them, a bond and a stock with the natural

interpretation as a market index. Subsequently, we assume that traders can

invest in a third asset as well, an American call or put option on the index

futures. The bond is risk free and has total return R. The stock has ex div-

idend stock price St at time t and pays cash dividend γ St, where the divi-

dend yield γ is deterministic. The total return on the stock, (1 + γ )(St+1/St),

is assumed to be i.i.d. with mean RS. The call or put option on the index fu-

tures has strike K and expiration date T . The underlying futures contract is

settled in cash and has maturity T F , T F ≥ T . We assume that the futures

price Ft is linked to the stock price by the approximate cost-of-carry relation

Ft = (1 + γ )−(T F−t) RT F−tSt + εt, t ≤ T F , |εt| ≤ ε̄, where the basis risk εt is seri-

ally independent and independent of the stock price.

Transfers to and from the cash account (bond trades) do not incur transaction

costs. Stock trades decrease the bond account by transaction costs equal to the

absolute value of the dollar transaction times the proportional transaction

costs rate, k, 0 ≤ k < 1. Transaction costs, exchange fees, and price impact are

accounted for in what we refer to as the bid and ask prices of options.

We assume that traders maximize generally heterogeneous, state indepen-

dent, increasing, and concave utility functions. We further assume that each

trader’s wealth at the end of each period is weakly monotone increasing in

the stock return over the period, as explained in Constantinides and Perrakis

(2007).3

We do not make the restrictive assumption that all market agents belong

to the class of utility-maximizing traders. Thus, our results are robust and

unaffected by the presence in the market of agents with beliefs, endowments,

preferences, trading restrictions, and transaction costs schedules that differ

from those of the utility-maximizing traders modeled in Constantinides and

Perrakis (2007).

A trader enters the market at time zero with x0 dollars in bonds and y0 dollars

in ex dividend shares of stock. We normalize the stock (or, index price) to y0

dollars so that the trader holds one share (or, one unit of the index). We consider

two scenarios. In the first scenario, the trader may trade the bond and stock but

not the options. The trader makes sequential investment decisions at discrete

trading dates t (t = 0, 1 . . . , T ′), where T ′, T ′ ≥ T F ≥ T , is the finite terminal

date. The trader’s objective is to maximize expected utility, E[uT ′(WT ′)], where

WT ′ is the trader’s net worth at date T′. Utility is assumed to be concave and

increasing and defined for both positive and negative terminal worth, but is

otherwise left unspecified. We refer to this trader as the index (and bond) trader,

and denote her maximized expected utility by V IT
0 (x0, y0).

3 For example, a trader who holds 100 shares of stock and a net short position in 200 call options

violates the monotonicity condition, while a trader who holds 200 shares of stock and a net short

position in 200 call options satisfies the condition. Essentially, we assume that the traders have a

sufficiently large investment in the stock, relative to their net short position in call options (or, net

long positions in put options), such that the monotonicity condition is satisfied.
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In the second scenario, the trader enters the market at time zero with x0

dollars in bonds and y0 dollars in ex dividend shares of stock, but immediately

writes one American futures call option with maturity T , T ≤ T F , where C are

the net cash proceeds from writing the call.4 We assume that the trader may

not trade the call option thereafter. At each trading date t (t = 0, 1 . . . , T ), the

trader is informed as to whether she has been assigned (that is, assigned to

act as the counterparty of the holder of a call who exercises the call at that

time). If the trader has been assigned, the call position is closed out, the trader

pays Ft − K in cash, and the value of the cash account decreases from xt to xt −

(Ft − K). The trader makes sequential investment decisions with the objective

of maximizing her expected utility, E[uT ′(WT ′)]. We refer to this trader as the

option (plus index and bond) trader, and denote her maximized expected utility

by V OT
0 (x0 + C, y0).

For a given pair (x0, y0), we define the reservation write price of a call as the

value of C such that V OT
0 (x0 + C, y0) = V IT

0 (x0, y0). The interpretation of C̄ is

the write price of the call at which the trader with initial endowment (x0, y0)

is indifferent between writing the call or not. Constantinides and Perrakis

(2007) state a tight upper bound on the reservation write price of an American

futures call option that is independent of the trader’s utility function and initial

endowment and independent of the early exercise policy on the calls

C̄(Ft, St, t) =
1 + k

1 − k
max[N(St, t), Ft − K], t ≤ T . (1)

The function N(S, t) is defined as follows:

N(S, t) = (RS)−1 E[max{(1 + γ )−(T F−t−1) RT F−t−1St+1

+ ε̄ − K, N(St+1, t + 1)}|St = S], t ≤ T − 1

= 0, t = T .

(2)

The economic interpretation of the call upper bound is as follows. If we

observe a call bid price above the reservation write price, C, then any trader

(as defined in this paper) can increase her expected utility by writing the call.

Transaction costs on the index have only a small effect on the up-

per bound. Without transaction costs on the index, the upper bound is

max[N(St, t), Ft − K]; with transaction costs on the index, the upper bound

increases merely by the multiplicative factor (1 + k)/(1 − k). The reason is that

this particular bound is based on a comparison of the utility of an index trader

to the utility of an option trader. Both traders follow the trading policy that is

optimal for the index trader but is generally suboptimal for the option trader.

This policy incurs very low transaction costs because trades are infrequent, as

shown in Constantinides (1986).

If we further assume that the trader can buy a call at price C̄(Ft, St, t) or less

and trade the futures and do so costlessly, we obtain the following put upper

4 The reservation write price of a call is derived from the perspective of a trader who is marginal

in the index, the bond, and only one type of call or put option at a time. Therefore, these bounds

allow for the possibility that the options market is segmented.
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bound:5

P(Ft, St, t) = C(Ft, St, t) − R−(T −t) Ft + K, t ≤ T , (3)

which has a similar interpretation. Constantinides and Perrakis (2007) derive

lower bounds on the reservation purchase price of American call and put options

on futures. We do not state these lower bounds here because the observed

frequency of their violation is too low for statistical inference.

II. Data Description and Methodology

In this section, we describe our data on index, futures, and option prices.

We explain how we calibrate a tree of the daily index return and use it to

calculate the option bounds. We describe the construction of the portfolio of the

index trader (IT) and of the option trader (OT). Finally, we explain our empirical

methodology of comparing the performance of the IT and OT portfolios in terms

of both their means and the criterion of second-order stochastic dominance.

A. Data Description and Estimation

We obtain the time-stamped quotes of the 30-calendar-day S&P 500 futures

options and the underlying nearest-to-maturity futures for the period from

February 1983 to July 2006 from the CME tapes. This results in 247 sampling

dates. We obtain the interest rate as the 3-month T-bill rate from the Federal

Reserve Statistical Release H.15. The data sources are described in further

detail in Appendix A.

For the daily index return distribution, we use the historical sample of log-

arithmic returns from January 1928 to January 1983. However, when looking

forward for each of our 247 option sampling dates, we adjust the first four mo-

ments of the index return distribution in various ways, which we now describe

in detail. We set the mean logarithmic index return at 4% plus the observed 3-

month T-bill rate instead of estimating the mean index return from the data in

order to mitigate statistical problems in estimating the mean. We implement

this by adding a constant to the observed logarithmic index returns so that

their sample mean equals the above target.

We estimate both the unconditional and conditional volatility of the index

returns. We estimate the unconditional volatility as the sample standard devi-

ation over the period January 1928 to January 1983.

We estimate the conditional volatility in three different ways. First, we es-

timate the conditional volatility as the sample standard deviation over the

preceding 90 trading days. We also estimate the conditional volatility over

5 We prove equation (3) by noting that an investor achieves an arbitrage profit by buying a call

at C̄(Ft, St, t); writing a put at P, P > P̄(Ft, St, t); selling one future; and lending K − R−(T −t) Ft.

In the proof, we ignore the daily marking to market on the futures until the exercise of the put or

the options’ maturity, whichever comes first. This matters little because the investor has a large

investment in the bond, which suffices to cover margin calls.
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Table I

Prediction Error of Monthly Volatility, 1983–2006
The errors are defined as the difference between the monthly volatility and the volatility predicted

by a given mode. The unconditional volatility is the sample standard deviation over the period

January 1928 to January 1983. The 90-day volatility is the sample standard deviation over the

preceding 90 trading days. The adjusted IV is the ATM IV on the preceding day, adjusted by the

mean prediction error for all dates preceding the given date, where we drop from the preceding days

all 21 precrash observations. The EGARCH volatility is the volatility using EGARCH coefficients

estimated for S&P 500 daily returns over January 1928 to January 1983 and applied to residuals

observed over the 90 days preceding each sample date to form projections of the volatility realized

up to the option expiration date.

Prediction Mode Mean Median St. Dev. Skew. Ex. Kurt.

Unconditional 0.0429 0.0649 0.0680 −1.7300 3.8296

90 day 0.0095 0.0076 0.0595 0.2687 5.2490

Adjusted IV −0.0005 0.0002 0.0496 −0.2625 3.4680

EGARCH 0.0177 0.0185 0.0531 0.0936 7.8302

the preceding 360 days. The results remain essentially unchanged. Second,

we estimate the conditional volatility as the ATM implied volatility (IV) on

the preceding day, adjusted by the mean prediction error for all dates preced-

ing the given date (typically some 3%).6 Finally, we estimate the conditional

volatility as the Nelson (1991) EGARCH (1, 1) model volatility using EGARCH

coefficients estimated for S&P 500 daily returns over January 1928 to January

1983 applied to residuals observed over the 90 days preceding each sample

date to form projections of the volatility realized until the option expiry date.7

We estimate the third and fourth moments of the index return as their sample

counterparts over the preceding 90 days.

In Table I, we report statistics of the prediction error of the above volatility

estimates. The best overall predictor is the adjusted ATM IV and the second-

best predictor is the 90-day historical volatility.

B. Calibration of the Index Return Tree and Calculation of the Option Bounds

We model the path of the daily index return up to the option expiration on

a T-step tree, where T is the number of trading days in the particular month.

The tree is recombining with m branches emanating from each node. Each

month we calibrate the tree by choosing the number of branches, spacing,

6 We start with the 22nd month. We use the holdout sample of the first 21 months to estimate

the mean adjustment error and adjust the IV of the 22nd month. We use the holdout sample of the

first 22 months to estimate the mean adjustment error and adjust the IV of the 23rd month; and

so on.
7 We form the volatility projections by iterating from day t + 1 till the option maturity T, as

explained in Baillie and Bollerslev (1992). We use as inputs the past 90 day residuals and the model

coefficients estimated in the presample period. In the final step, we sum up the forecasted squared

residuals to derive the variance forecast for a given period. The estimated model coefficients were

as follows: κ −0.10451, ARCH (1) 0.16620, GARCH(1) 0.98799, leverage −0.05969.
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and transition probabilities at each node to match the first four moments of

the daily index return distribution, as described in the Internet Appendix. We

numerically calculate the bounds in equations (1) to (3) by iterating backward

on the calibrated tree.

C. Portfolio Construction and Rebalancing

For each monthly stock return path, we employ the following rebalancing

policies. For the index trader (who manages a portfolio of the index and the

risk-free asset in the presence of transaction costs), we employ the optimal

trading policy derived in Constantinides (1986) and extended in Perrakis and

Czerwonko (2006) to allow for a dividend yield on the stock. Essentially, this

policy consists of trading only to confine the ratio of the index value to the

bond value, yt/xt, within a no-transactions region, defined by lower and upper

boundaries.

We derive these lower and upper boundaries for the following parameter val-

ues: one-way transaction cost rate on the index, 0.5%; annual return volatility

of the index equal to the sample volatility over 1928 to 1983, 0.1856; interest

rate equal to the observed 3-month T-bill rate; risk premium, 4%; and constant

relative risk aversion coefficient, 2. For this set of parameters, the lower and

upper boundaries are y0/x0 = 1.2026 and 1.5259, respectively. At the beginning

of each month and before the trader trades in options, we set x0 = 73,300 and

y0 = 100,000, which corresponds to the midpoint of the no-transactions region,

y0/x0 = 1.3642. We normalize the index price to y0 dollars so that the trader

holds one unit of the index. In our empirical work, we verify the robustness of

our results to these parameter values and the initial portfolio composition.

For the option trader (who manages a portfolio of the option, the index, and

the risk-free asset in the presence of transaction costs), we set x0 and y0 to the

same values as for the index trader. The option trader writes or buys one call

or one put on the index futures. We normalize the size of a futures contract to

be on one unit of the index, and we normalize the size of the futures option to

be on one futures contract.

The portfolio composition changes depending on the assumed position in

futures options, as explained in Appendix B. We employ the trading policy that

is optimal for the index trader but is generally suboptimal for the option trader.

Recall that the goal is to demonstrate that there exist profitable investment

opportunities for the option trader. Given this goal, it suffices to show that there

exist profitable investment opportunities for the option trader even though the

option trader follows a generally suboptimal policy in trading the index.

We focus on the case in which the basis risk bound, ε̄, is 0.5% of the index

price. Over the years from 1990 to 2002, 95% of all observations have basis risk

less than 0.5% of the index price. In Section IV, we argue that our empirical

results are robust to the basis risk bound.

D. Empirical Methodology

For each of our methods of estimating the bounds, we obtain 247 monthly

portfolio returns for the index trader and the option trader. Our goal is to test
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whether the portfolio profitabilities of the index and option traders are statis-

tically different in the months in which we observe violations of the bounds.

We apply the criterion of second-order stochastic dominance (SSD), which

states that the dominating portfolio is preferred by any risk-averse trader,

independent of distributional assumptions, such as normality, and preference

assumptions, such as quadratic utility. Formally, the OT portfolio stochastically

dominates the IT portfolio if, for every z in the joint support of their respective

distributions, the following holds:

D2
IT(z) − D2

OT(z) ≥ 0, (4)

with strict inequality for at least one value of z, where

D2
J(z) =

∫ z

ẑ

(z − x) dFJ(x), (5)

J = OT , IT , FJ(x), is the cumulative distribution function of the portfolio re-

turn, and z is the lower bound of the common support.

First, we test the null hypothesis H0 : IT ≻2 OT against the alternative that

either OT ≻2 IT or neither one of the two distributions dominates the other.

Hence, rejection of the null hypothesis fails to rank the two distributions. We

also test the converse null hypothesis H0 : OT ≻2 IT against the alternative that

either IT ≻2 OT or neither one of the two distributions dominates the other.

For these hypotheses, we report the results of the test proposed by Davidson

and Duclos (2000) (DD (2000)), described in Appendix C. The test requires

that returns be serially uncorrelated, an assumption that holds well in all our

return series: the first-order serial correlation ranges from −0.0267 to 0.0964

and is statistically insignificant.

Second, we test the null hypothesis H0 : OT 6≻2 IT, which states that the

option trader’s portfolio return does not stochastically dominate the index

trader’s portfolio return, against the alternative hypothesis HA : OT ≻2 IT,

which states that the option trader’s portfolio return stochastically dominates

the index trader’s portfolio return. Rejection of this hypothesis means that

the option trader’s portfolio return stochastically dominates the index trader’s

portfolio return. Similarly, we test the converse null hypothesis H0 : IT 6≻2 OT

against the alternative hypothesis HA : IT ≻2 OT . For these hypotheses, we

report the results of the test proposed by Davidson and Duclos (2006) (DD

(2006)), described in Appendix C. We use the algorithm developed by David-

son (2007). Again, the test requires that returns be serially uncorrelated, an

assumption that holds well in all our return series. Nolte (2008) investigates

the power of the DD (2006) test when there are GARCH effects and finds that

the test performs well.

The power of the DD (2006) test is low, unless one trims the tails of the

paired outcomes. We therefore trim 10% of the paired outcomes in the left

tail of our sample distributions, which affects both the IT and the OT returns

similarly and is therefore innocuous. The trimming of the right tail of the dis-

tribution presents a problem. Without any trimming on the right tail, the test
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has low power. Trimming on the right, on the other hand, may bias our test

toward rejection of the null, because IT tends to produce superior results to

OT when the return of the underlying asset is high. For this reason, in

our tables we present results with 0%, 5%, and 10% trimming on the right.

In the Internet Appendix, we test the effects of such trimming on simulated

data that mirror our sample. Our simulations show that the test is, if anything,

conservative in rejecting the false null. To facilitate interpretation, we perform

all our statistical tests on annualized arithmetic returns on the wealth of OT

and IT investors.8

We choose the tests DD (2000) and DD (2006) because, unlike several alter-

natives, they apply to correlated samples and are more powerful than other

well-known tests. For further discussion, see Tse and Zhang (2003).

III. Empirical Results

In Section III.A, we describe the pattern of observed violations for the bounds

with respect to the degree of moneyness. In Section III.B, we present the main

empirical results. We compare the portfolio return of an option trader who

writes good sell calls or puts at their bid price with the portfolio return of an

index trader who does not trade in the options over the period from 1983 to 2006.

We find that the return of an option writer stochastically dominates the index

trader’s return, net of transaction costs and the bid-ask spread. Whereas we

find a substantial number of violations of the upper bounds, we find relatively

few violations of the lower bounds.

A. The Pattern of Violations

In Figure 1, we plot the four bounds for 1-month options for May 22, 1996, ex-

pressed in terms of the implied volatility, as a function of the moneyness, K/F.

We set σ = 20% and ε̄ = 0. The figure also displays the 95% confidence inter-

val, derived by bootstrapping the 90-day distribution. The call upper bound is

tighter than the put upper bound and both bounds are downward sloping. The

put lower bound is tighter than the call lower bound. The put lower bound is

downward sloping but the call lower bound is not.

In Figure 2, we display the time pattern of actual violations of the call upper

bound. The crosses display the violations of the call upper bound for the period

February 1983 to July 2006. For the adjusted IV distributions, the first 21

dates are not in the sample because they are needed to obtain the adjustment.

The solid lines are the natural logarithm of the S&P 500 index, the VIX index,

and the T-bill rate. For all different ways of estimating volatility, we observe vi-

olations after significant down moves in the index, when we expect the implied

volatility to be high.

8 We annualize returns since times to maturity vary from 28 to 31 days in our sample. Since

transaction costs are present in our economy, we derive returns for the liquidation of the risky

asset under the assumed one-way transaction costs rate of 0.5%.
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Figure 1. Illustration of upper and lower bounds on call and put options. Bounds are

derived for σ = 0.20 imposed on a 90-day past distribution of daily S&P 500 returns for May

22, 1996. 95% upper and lower confidence intervals represented by dotted lines are derived by

bootstrapping the 90-day distribution. The results exemplify the dependence of the bounds on

the third and fourth moments of the distribution because the width in the confidence intervals is

determined solely by varying the skewness and kurtosis, that is, the bootstrap changes only these

quantities.

In Table II, the violations are shown as a proportion of the quotes in each

moneyness range. We note that, for all methods of estimating the bounds,

the proportion of violations is large. For the moneyness range 1.03 to 1.08, a

large proportion of the available quotes violates the corresponding bound for

all estimation methods.

Table III shows the violations in each moneyness range as a proportion of

the total number of quotes across the whole range of moneyness. The largest

number of violations, as a proportion of the total number of quotes, is found

in the 1.01 to 1.03 moneyness range and not in the 1.03 to 1.08 range because

there are relatively few quotes in the latter range. For all estimation methods,

a majority of the identified violations are in the liquid range, 0.99 to 1.03. The

exchange regulations specify that the minimum number of available contracts

must be at least 20 for each quote. Our data also show that the average size

of the violation is between 5% and 56% of the upper bound for most methods

of estimating the bounds as we move from the 0.96 to 0.99 moneyness range

to the 1.03 to 1.08 moneyness range. In the stochastic dominance tests, the

power of the tests depends, by construction, on the proportion of months with

observed violations.
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Figure 2. Time distribution of observed violations. The crosses display the violations of the

call upper bound for the period February 1983 to July 2006. For the adjusted IV distribution, the

first 21 dates are not in the sample. To facilitate presentation, the S&P Index was transformed to

a logarithmic scale. The inception date of the VIX index was on February 4, 1986. The value for

VIX just prior to the October 1987 crash was 170% and is trimmed to facilitate presentation.

Table II

Percentage of Call Quotes with Violations of the Upper Bound
The table displays the percentages of call bids violating the call upper bound out of all bid quotes

observed in each respective moneyness bracket.

Moneyness (K/F) Range

Volatility Prediction Mode 0.96–0.99 0.99–1.01 1.01–1.03 1.03–1.08

Unconditional 3.3 5.8 8.6 20.6

90 day 4.8 16.1 32.2 45.4

IV adjusted 4.1 15.2 30.5 30.3

EGARCH 2.3 6.5 14.1 24.3

We further investigate how the incidence of calls violating the upper bound

relates to characteristics of the options (moneyness, ATM implied volatility,

volume of trade, and put-call ratio), the index (return, momentum, presence of

jumps between trading dates, dividend yield, skew, and trading volume), the

term structure, and the default spread. For each of the four volatility predic-

tion methods, we sort the sample of calls into terciles and report the average
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Table III

Percentage of Call Quotes with Violations of the Upper Bound Out of
the Total Number of Quotes

The table displays the percentages of call bids violating the call upper bound in each respective

moneyness bracket out of the total number of observed bid quotes.

Volatility #Months

Prediction with Viol.
Moneyness (K/F) Range

Mode (#Months) 0.96–0.99 0.99–1.01 1.01–1.03 1.03–1.08 All

Unconditional 43 (247) 0.4 1.7 3.5 3.8 9.4

90 day 100 (247) 0.5 4.8 13.2 8.4 26.9

IV adjusted 120 (226) 0.3 4.6 12.9 5.9 23.7

EGARCH 65 (247) 0.3 1.9 5.8 4.5 12.5

fraction of violations in the top and bottom terciles. The results are reported in

Table IV. The incidence of violations is higher when the Moody Baa-Aaa default

spread is high, when the futures open interest is high, and also when momen-

tum is high—situations that suggest investor uncertainty is rather high. This

nervousness might well transmit to the option market and increase the likeli-

hood of observing violating options. For all other characteristics, we do not find

a consistent pattern of violations because the incidence of violations depends

on the prediction method of the volatility as an input to the derivation of the

bounds.

B. Empirical Evidence on Stochastic Dominance

We apply our statistical tests to all months in the sample, even though there

are months in which the OT trader does not trade in options and the returns

in these months are identical for the OT and IT portfolios, thereby making it

harder for us to establish profitable (utility-improving) trading opportunities.

In Table V, Panels A and B, we present the cases of call and put bid prices

violating their upper bound, when we set the basis risk bound at 0.5% of the

index price. We find a higher frequency of violations of the call upper bound

than of the upper put bound because the call upper bound is tighter than the

put upper bound, as we observed in Figure 1.9

In our first test of stochastic dominance, we consider the hypothesis

H0 : OT ≻2 IT, which states that the option trader’s return dominates the

index trader’s return. We apply the DD (2000) test and obtain p-values that

exceed 10% for both the call upper bound and the put upper bound.

In our second test, we consider the hypothesis H0 : IT ≻2 OT, which states

that the index trader’s return dominates the option trader’s return. Again, we

apply the DD (2000) test. In Table V, Panel A, the p-values are lower than 1%

9 The theory in Constantinides and Perrakis (2007) has not produced a tight upper bound for

put futures options. The bound in (3) is a weak filter extracted from the combination of the call

upper bound and put-call parity.
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Table IV

Pattern of Bounds Violations
The classified variable is the ratio of the quotes in violation of the call upper bound to the overall

number of call bid quotes observed in a given cross-section. The number of cross-sections is 247 for

all volatility prediction modes except for Adjusted IV, where it is 226. The overall means (std) of

the classified variable for each volatility prediction mode are: unconditional 0.13 (0.32), 90 day 0.22

(0.35), Adjusted IV 0.24 (0.32), and EGARCH 0.13 (0.29). Option characteristics: mean K/F is the

average moneyness of call bid quotes, ATM IV is the average implied volatility of several bid and

ask quotes for calls and puts closely bracketing a K/F ratio of 1, call and put volume (open interest)

is the natural logarithm of the respective volume (open interest) recorded on the previous day net

of the natural logarithm of the average of the respective volume (open interest) over the past 90

calendar days, put-call ratio is the put volume divided by the call volume, and put-call ratio open

interest is the put open interest divided by the call open interest with both values recorded on the

previous day. Index characteristics: return is the S&P 500 index excess return over the previous

month, momentum is the ratio of the previous-day S&P 500 index level to its average level over

the past year, negative (positive) jumps represent the number of S&P 500 daily returns lower than

−4% (greater than 4%) recorded over the past 30 calendar days (15 (16) occurrences for negative

(positive) jumps in total), yield is the ratio of dollar dividends over the past year to the previous-

day S&P 500 index level, left (right) skew is the implied volatility for the K/F ratio of 0.96 net of

ATM IV (ATM IV net of the implied volatility for the K/F ratio of 1.04), and futures volume (open

interest) is the natural logarithm of the futures volume (open interest) recorded on the previous

day net of the natural logarithm of the average of the futures volume (open interest) over the past

90 calendar days. Interest characteristics: interest rate is the 3-month T-bill rate, yield slope is

the difference between the yield of 10- and 1-year to maturity CRSP indices for government bonds,

and Moody’s Baa − Aaa is the difference between the baskets of Baa- and Aaa-ranked corporate

bonds.

Volatility Prediction Mode

Unconditional 90 day Adjusted IV EGARCH

Bottom Top Bottom Top Bottom Top Bottom Top

Tercile Tercile Tercile Tercile Tercile Tercile Tercile Tercile

Option Characteristics

Mean K/F 0.042 0.278 0.087 0.331 0.248 0.185 0.074 0.194

ATM IV 0.000 0.385 0.100 0.373 0.243 0.182 0.028 0.275

Call volume 0.109 0.178 0.117 0.298 0.303 0.205 0.082 0.186

Put volume 0.110 0.137 0.161 0.263 0.288 0.227 0.127 0.097

OTM put volume 0.103 0.152 0.188 0.241 0.309 0.230 0.105 0.078

Call open interest 0.130 0.186 0.172 0.271 0.255 0.250 0.109 0.172

Put open interest 0.139 0.152 0.180 0.274 0.267 0.246 0.090 0.162

OTM put open interest 0.138 0.167 0.221 0.185 0.240 0.249 0.102 0.198

Put call ratio 0.150 0.124 0.167 0.225 0.234 0.234 0.126 0.066

Put call ratio, 0.228 0.079 0.226 0.197 0.225 0.275 0.211 0.064

open interest

Index Characteristics

Return 0.244 0.093 0.357 0.156 0.226 0.261 0.146 0.192

Momentum 0.045 0.312 0.242 0.286 0.184 0.229 0.099 0.223

Negative jumpsa 0.095 0.784 0.211 0.302 0.248 0.115 0.119 0.343

Positive jumpsa 0.109 0.639 0.224 0.010 0.251 0.006 0.135 0.000

Yield 0.172 0.116 0.219 0.208 0.186 0.381 0.126 0.145

Left skew 0.121 0.189 0.166 0.255 0.341 0.117 0.103 0.159

Right skew 0.042 0.276 0.160 0.261 0.357 0.150 0.118 0.189

Futures volume 0.090 0.184 0.155 0.301 0.267 0.252 0.118 0.151

Futures open interest 0.066 0.212 0.159 0.290 0.218 0.284 0.098 0.193

(continued)
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Table IV—Continued

Volatility Prediction Mode

Unconditional 90 day Adjusted IV EGARCH

Bottom Top Bottom Top Bottom Top Bottom Top

Tercile Tercile Tercile Tercile Tercile Tercile Tercile Tercile

Interest Characteristics

Interest rate 0.150 0.128 0.205 0.231 0.292 0.281 0.124 0.149

Yield slope 0.107 0.134 0.191 0.178 0.239 0.292 0.098 0.101

Moody’s Baa − Aaa 0.033 0.274 0.205 0.258 0.134 0.317 0.104 0.208

aInstead of terciles, the classified variable was split for dates without and with jumps in the

preceding 30 calendar days.

Table V

Returns of Call Trader and Index Trader
The equally weighted average of all violating options equivalent to one option per share traded at

each date. The symbols ∗ and ∗∗ denote a difference in sample means of the OT and IT traders

significant at the 5% and 1% levels in a one-sided bootstrap test with 9,999 trials. Maximal t-

statistics for the Davidson and Duclos (2000) test are compared to critical values of the Studentized

Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%,

and 10% with k = 20 and ν = ∞. The p-values for H0 : OT ≻2 IT are greater than 10%, the highest

nominal level available in the Stoline and Ury (1979) tables. The p-values for the Davidson and

Duclos (2006) test are based on 999 bootstrap trials. The p-values for H0 : IT 6≻2 OT are equal to

1.

Volatility # Months DD (2000)

DD (2006) p-Value H0 : OT 6≻2 IT

10% Trimming in Left Tail,

Trimming in Right Tail as Below:

Prediction with Viol. µ̂OT − µ̂IT p-Value No 5% 10%

Mode (# Months) (Annualized) H0 : IT ≻2 OT Trimming Trimming Trimming

Panel A: Call Upper Bound

Unconditional 43 (247) 0.0031 <0.01 0.244 0.024 0.000

90 day 100 (247) 0.0043 <0.01 0.166 0.007 0.002

Adjusted IV 120 (226) 0.0066∗ <0.01 0.119 0.029 0.000

EGARCH 65 (247) 0.0062∗∗ <0.01 0.079 0.000 0.000

Panel B: Put Upper Bound

Unconditional 23 (247) 0.0009 >0.1 0.399 0.203 0.154

90 day 16 (247) −0.0008 >0.1 1 1 1

Adjusted IV 4 (226) n/a n/a n/a n/a n/a

EGARCH 9 (247) n/a n/a n/a n/a n/a

and the hypothesis is rejected when the option trader writes good sell calls.

In the first two rows of Panel B, the p-values exceed 10% but that is largely

because there are very few months in which we observe violations of the put

upper bound.
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In our third test, we consider the hypothesis H0 : IT 6≻2 OT, which states

that either the option trader’s return dominates the index trader’s return

or neither return dominates the other. We apply the DD (2006) test and

obtain p-values of one for both the call upper bound and the put upper

bound.

Finally, we consider the hypothesis H0 : OT 6≻2 IT, which states that either

the index trader’s return dominates the option trader’s return or neither return

dominates the other. As we explained earlier, the power of the DD (2006) test

is low, unless we trim the tails of the paired outcomes. Therefore, we trim 10%

of the paired outcomes in the left tail of our sample distributions. Without

trimming on the right tail, the test has low power and the p-values are high

in the two panels of Table V. Without trimming, we reject at the 10% level

for one case in Panel A. In Panel A, with either 5% or 10% trimming on the

right tail, the null is rejected. In Panel B, the results are inconclusive largely

because there are few months in which we observe violations of the put upper

bound.

In Table V, the reported annualized return difference between the portfolios

of the OT and IT traders appears low because the written call is a small fraction

of the dollar investment in the portfolio: for each unit of the index held in the

portfolio, the OT trader writes only one call. In fact, the identified good sell call

options provide average monthly returns of 12.3% to 43.2% to an investor who

writes them at their bid price. The range 12.3% to 43.2% corresponds to the

four different ways of estimating the volatility; in three out of these four cases,

the average returns are statistically significant according to the bootstrap test

with 9,999 trials.

We repeat our run for the subset of OTM good sell calls with little change in

the results. To put these results in perspective, the average monthly returns

of all call options written at their bid price is 7.7% and this return is not

statistically significantly different from zero.

A second reason for the rather low portfolio returns is that we report the

average return difference of all months, including the months in which there

are no violations of the bounds and no option writing. For example, suppose

that there are violations in n months and no violations in m months; further

suppose that the option writing over the n months increases the annualized

return in these months by x% on average. In the table, we report the annualized

return difference as xn/(n + m)% and not as x%. As shown in the table, even the

largest number of dates with violations is still less than half the total number of

dates in our sample. Therefore, the excess returns attributable to the options

strategies should be multiplied by a factor greater than two. The economic

significance can be further raised by employing portfolios with more than one

call option per unit of the underlying future. We defer the presentation of these

results until Section IV.B and Table VII, which detail the robustness of our

approach.

Overall, the results in Table V show that the relatively large number of vi-

olations of the call upper bound by call bid prices leads to a trading policy

where the option trader’s return stochastically dominates the index trader’s
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Table VI

Robustness Tests of the Initial Portfolio Composition
The equally weighted average of all violating options equivalent to one option per share was

traded at each date. The symbols ∗ and ∗∗ denote a difference in sample means of the OT and

IT traders significant at the 5% and 1% levels in a one-sided bootstrap test with 9,999 trials.

Maximal t-statistics for the Davidson and Duclos (2000) test are compared to critical values of

the Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal

levels of 1%, 5%, and 10% with k = 20 and ν = ∞. The p-values for H0 : OT ≻2 IT are greater than

10%, the highest nominal level available in the Stoline and Ury (1979) tables. The p-values for the

Davidson and Duclos (2006) test are based on 999 bootstrap trials. The p-values for H0 : IT 6≻2 OT

are equal to 1. MSCI denotes Morgan Stanley Capital Index (in Panel E, data are absent for the

first four dates in our sample). REIT denotes real estate investment fund. HML and SMB denote

Fama and French (1993) factors, that is HML denotes a portfolio long in two value portfolios and

short in two growth portfolios and SMB denotes a portfolio long in three small cap portfolios and

short in three large cap portfolios. See Fama and French (1993) for details.

Volatility # Months DD (2000)

DD (2006) p-Value H0 : OT 6≻2 IT 10%

Trimming in Left Tail, Trimming in

Right Tail as Below:

Prediction with Viol. µ̂OT − µ̂IT p-Value No 5% 10%

Mode (# Months) (Annualized) H0 : IT ≻2 OT Trimming Trimming Trimming

Panel A: 100% CRSP Value-Weighted Index in Stock Account

Unconditional 43 (247) 0.0031 <0.01 0.244 0.001 0.001

90 day 100 (247) 0.0043 <0.01 0.174 0.007 0.000

Adjusted IV 120 (226) 0.0066∗ <0.01 0.124 0.014 0.000

EGARCH 65 (247) 0.0062∗∗ <0.01 0.084 0.000 0.000

Panel B: 100% MSCI in Stock Account

Unconditional 43 (247) 0.0031 <0.05 0.244 0.031 0.000

90 day 100 (247) 0.0043 <0.01 0.174 0.015 0.003

Adjusted IV 120 (226) 0.0066∗ <0.01 0.124 0.019 0.010

EGARCH 65 (247) 0.0062∗∗ <0.01 0.084 0.003 0.000

Panel C: 60% of S&P 500 and 40% of CRSP Zimen REIT Value-Weighted Index in Stock Account

Unconditional 43 (247) 0.0031 <0.05 0.244 0.038 0.002

90 day 100 (247) 0.0043 <0.01 0.175 0.018 0.000

Adjusted IV 120 (226) 0.0066∗ <0.01 0.124 0.050 0.006

EGARCH 65 (247) 0.0062∗∗ <0.01 0.083 0.000 0.000

Panel D: 60% of S&P 500, 20% of HML, and 20% of SMB in Stock Account

Unconditional 43 (247) 0.0031 <0.05 0.244 0.126 0.038

90 day 100 (247) 0.0043 <0.01 0.149 0.056 0.012

Adjusted IV 120 (226) 0.0066∗ <0.01 0.133 0.052 0.000

EGARCH 65 (247) 0.0062∗∗ <0.01 0.072 0.006 0.000

Panel E: 60% of S&P 500 and 40% of Barclays Aggregate U.S. Bond Index in Stock Account

Unconditional 33 (212) 0.0026 <0.05 0.288 0.100 0.031

90 day 84 (212) 0.0056∗ <0.01 0.150 0.018 0.000

Adjusted IV 94 (212) 0.0060 <0.01 0.162 0.094 0.000

EGARCH 48 (212) 0.0065∗ <0.01 0.087 0.003 0.000

Panel F: 60% of S&P 500 and 40% of Moody’s Commodity Index in Stock Account

Unconditional 43 (247) 0.0031 <0.05 0.244 0.106 0.042

90 day 100 (247) 0.0043 <0.01 0.175 0.034 0.001

Adjusted IV 120 (226) 0.0066∗ <0.01 0.124 0.061 0.021

EGARCH 65 (247) 0.0062∗∗ <0.01 0.085 0.000 0.000
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return. Furthermore, the observed violations of the call upper bound are

economically significant: we find that stochastic dominance evades rejection

only after we artificially decrease the price of the written calls by 10% to

15%.

The statistical significance of violations of the put upper bound by put bid

prices is weak because there are few months in which we observe violations of

the put upper bound. Since several earlier studies such as Bondarenko (2003)

and Driessen and Maenhout (2007) identify short puts as highly attractive

investments, we further investigate the issue of the existence of good sell put

options by testing the policy of shorting straddles and strangles triggered by

observing call options that violate their upper bounds at the same or similar

strike price. The results, reported in the Internet Appendix, are consistent with

put mispricing documented in these earlier studies.

IV. Robustness Tests

We address the robustness of the results to the composition of the trader’s

initial portfolio (Section IV.A), the number of written options (Section IV.B),

the rebalancing of the portfolio (Section IV.C), and the determination of the

bounds (Section IV.D). We find that the results presented in Table V are ro-

bust. In Section IV.E, we demonstrate that the option upper bounds produce

trading results superior to both a naı̈ve trading policy and a policy based on

the Bernardo and Ledoit (2000) bounds.

A. Robustness to the Initial Portfolio Composition

We test the sensitivity of the results to the assumption that the index trader

does not hold any assets other than the risk-free asset and the index. We vary

the composition of the IT portfolio by adding a broad range of risky assets

and investigate whether the trader improves her utility by writing the earlier-

identified good sell calls. The bounds that we rely upon are no longer strictly

valid because they are derived under the assumption that the index trader

does not hold any additional assets beyond the index and the risk-free asset.

Nevertheless, we rely on these bounds to find good sell calls, thereby making

it more challenging to find a profitable OT strategy.

In Table VI, we consider several cases where the IT portfolio differs from

a portfolio invested in the S&P 500 index and the risk-free asset either by

replacing the investment in the S&P 500 index with an investment in different

indices (Panels A to C) or by varying the percentage investment in the index

and broadening the portfolio to include the “high minus low” (HML) and “small

minus big” (SMB) excess returns of Fama and French (1993) and a real estate

fund (Panels D to F); in the Internet Appendix, we also consider cases of open

option positions. In all cases, we find that the portfolio return of the option

trader who writes good sell calls stochastically dominates the return of the

modified index trader.
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Table VII

Robustness Tests of the Number of Written Calls
The equally weighted average of all violating options was traded at each date. The symbols ∗ and ∗∗

denote a difference in sample means of the OT and IT traders significant at the 5% and 1% levels

in a one-sided bootstrap test with 9,999 trials. Maximal t-statistics for the Davidson and Duclos

(2000) test are compared to critical values of the Studentized Maximum Modulus Distribution

tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, and 10% with k = 20 and ν = ∞.

The p-values for H0 : OT ≻2 IT are greater than 10%, the highest nominal level available in the

Stoline and Ury (1979) tables. The p-values for the Davidson and Duclos (2006) test are based on

999 bootstrap trials. The p-values for H0 : IT 6≻2 OT are equal to 1.

Volatility # Months DD (2000)

DD (2006) p-Value H0 : OT 6≻2 IT

10% Trimming in Left Tail,

Trimming in Right Tail as Below:

Prediction with Viol. µ̂OT − µ̂IT p-Value No 5% 10%

Mode (# Months) (Annualized) H0 : IT ≻2 OT Trimming Trimming Trimming

Panel A: One and Half Calls per Unit of Index

Unconditional 43 (247) 0.0046 <0.01 0.244 0.089 0.000

90 day 100 (247) 0.0064 <0.01 0.166 0.055 0.006

Adjusted IV 120 (226) 0.0099∗ <0.01 0.122 0.053 0.000

EGARCH 65 (247) 0.0092∗∗ <0.01 0.097 0.018 0.000

Panel B: Two Calls per Unit of Index

Unconditional 43 (247) 0.0062 <0.01 0.242 0.125 0.026

90 day 100 (247) 0.0086 <0.01 0.166 0.084 0.025

Adjusted IV 120 (226) 0.0132∗ <0.01 0.121 0.055 0.006

EGARCH 65 (247) 0.0123∗∗ <0.01 0.095 0.031 0.000

Panel C: Three Calls per Unit of Index

Unconditional 43 (247) 0.0093 >0.1 0.221 0.203 0.203

90 day 100 (247) 0.0128 >0.1 0.125 0.161 0.177

Adjusted IV 120 (226) 0.0198∗ >0.1 0.363 0.363 0.363

EGARCH 65 (247) 0.0185∗∗ >0.1 0.169 0.179 0.185

B. Robustness to the Number of Written Options

The bounds stated in Constantinides and Perrakis (2007) are derived under

the restriction that the number of written calls does not exceed the number

of units of the index held in the portfolio. In Table VII, we show that with

an increase in the ratio to 1.5 options per unit index, the return gains to the

OT portfolio range from 0.46% to 0.99%, while for a ratio of 2 these gains

become 0.62% to 1.32%; in both cases the tests show dominance of OT over IT.

Only when the ratio increases to 3 do the tests fail to establish dominance at

conventional significance levels.

C. Robustness to Portfolio Rebalancing

In Section II.C, we described the portfolio rebalancing policy of the index

trader and the option trader. The policy depends on the assumed risk aversion
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Table VIII

Robustness Tests of Buy-and-Hold Portfolio with 50% in S&P 500
The equally weighted average of all calls violating the upper bound was traded at each date. The

symbols ∗ and ∗∗ denote a difference in sample means of the OT and IT traders significant at

the 5% and 1% levels in a one-sided bootstrap test with 9,999 trials. Maximal t-statistics for the

Davidson and Duclos (2000) test are compared to critical values of the Studentized Maximum

Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, and 10%

with k = 20 and ν = ∞. The p-values for H0 : OT ≻2 IT are greater than 10%, the highest nominal

level available in the Stoline and Ury (1979) tables. The p-values for the Davidson and Duclos

(2006) test are based on 999 bootstrap trials. The p-values forH0 : IT 6≻2 OT are equal to 1.

Volatility # Months DD (2000)

DD (2006) p-Value H0 : OT 6≻2 IT

10% Trimming in Left Tail,

Trimming in Right Tail as Below:

Prediction with Viol. µ̂OT − µ̂IT p-Value No 5% 10%

Mode (# Months) (Annualized) H0 : IT ≻2 OT Trimming Trimming Trimming

Unconditional 43 (247) 0.0031 <0.01 0.244 0.032 0.000

90 day 100 (247) 0.0048 <0.01 0.175 0.012 0.002

Adjusted IV 120 (226) 0.0065∗ <0.01 0.124 0.034 0.000

EGARCH 65 (247) 0.0065∗∗ <0.01 0.086 0.000 0.000

of the trader. For the results presented in Table V, we applied the portfolio

rebalancing policy that is optimal for a trader with risk aversion coefficient

equal to two. We stress that neither the bounds nor the empirical tests depend

on the risk aversion of the trader.

We examine the robustness of our results to the trader’s rebalancing policy

in three ways. First, we replace the optimal rebalancing policy with a buy-

and-hold policy, essentially equivalent to assuming that the transaction cost

is infinite. Since the upper and lower stochastic dominance bounds on option

prices are independent of the trader’s utility, we observe the same number of

violations as we do in Table V. The results of the stochastic dominance tests

are displayed in Table VIII and are virtually identical to those in Table V.

Second, we set the relative risk aversion coefficient at 10 instead of 2. The

change in the risk aversion coefficient only affects the portfolio rebalancing

policy. The test results are again virtually identical to those in Table V and are

reported in the Internet Appendix. The reason for this robustness is that the

no-transactions region is wide and rebalancing is infrequent, irrespective of the

degree of risk aversion and irrespective of an exogenously imposed buy-and-

hold policy. Third, the test results are virtually unchanged when the starting

portfolio is at either boundary of the no-transactions region.

D. Robustness to the Determination of the Bounds

In Table V, the bounds are calculated under the assumption that the futures

basis risk is within 0.5% of the index price, consistent with the observation

that 95% of all observations over 1990 to 2002 have basis risk within 0.5% of

the index price. As a robustness check, we suppress the basis risk and present

the results in the Internet Appendix. The bounds become tighter and there
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appear to be more violations. Since the call and put upper bounds are lower,

the options trader is less selective than before in writing options that violate

their upper bounds. As in Table V, the DD (2000) test does not reject the

hypothesis H0 : OT ≻2 IT and rejects the hypothesis H0 : IT ≻2 OT . With 10%

trimming, the DD (2006) test rejects the hypothesis H0 : OT 6≻2 IT. We conclude

that the results in Table V are robust to basis risk.

Next, we set the expected premium on the index at 6% instead of 4%. Since the

call and put upper bounds are higher, the options trader is more selective than

before in writing options that violate these bounds. We also set the premium

at 2%. The results are reported in the Internet Appendix. In all cases, the

stochastic dominance results in writing calls are as strong as in Table V. We

conclude that the results in Table V are robust to the assumption that the

expected premium on the index is 4%.

Finally, we examine whether the unusually high implied volatility after

the October 1987 crash affects our results by presenting unusually profitable

utility-improving trading opportunities. We exclude from the sample the 7

months from October 1987 to April 1988 and find that the test results are

essentially the same as in Table V.

E. Comparison to Alternative Trading Rules

One may downplay our test results in identifying good sell options, argu-

ing that they are a consequence of the widely accepted view that OTM index

calls and puts are “expensive” and that even the naı̈ve trading rule of indis-

criminately writing all OTM calls and puts is “profitable.” We address this

concern by showing that neither a simple heuristic for trading options based

on observed option price percentiles for buying low and selling high nor an ap-

plication of the Bernardo and Ledoit (2000) bounds lead to out-of-sample port-

folio returns that stochastically dominate portfolio returns that do not trade in

options.

We compare the portfolio return of an index trader with the portfolio return

of an option trader who indiscriminately writes all available calls or puts on

index futures every month. The results are presented in the first two lines of

Table IX, Panel A. Both the DD (2000) and DD (2006) tests are weakly sup-

portive of the hypothesis that the call option trader’s returns stochastically

dominate the index trader’s returns. This conclusion is not supported in Panels

B and C, where the trader, respectively, writes the top 10% and 2.5% of the

calls, because of the reduced sample size.

Next, we compare the portfolio return of an index trader with the portfolio

return of a naı̈ve option trader who indiscriminately writes all available puts

on index futures every month. The results are presented in the second line of

Table IX, Panel A. The DD (2006) test, with any amount of trimming of the

right-hand tail, does not reject the hypothesis that the OT portfolio does not

dominate the IT portfolio. This suggests that indiscriminate writing of puts

does not improve the portfolio return in terms of the stochastic dominance

criterion.
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Table IX

Returns of Naı̈ve Options Trader and Index Trader
The equally weighted average of all violating options equivalent to one option per share was traded

at each date. The symbols ∗∗∗ denotes a difference in sample means of the OT and IT traders

significant at the 1% level in a one-sided bootstrap test with 9,999 trials. Maximal t-statistics for

the Davidson and Duclos (2000) test are compared to critical values of the Studentized Maximum

Modulus Distribution tabulated in Stoline and Ury (1979) for nominal levels of 1%, 5%, and

10% with k = 20 and ν = ∞. The p-values for H0 : OT ≻2 IT are greater than 10%, the highest

nominal level available in the Stoline and Ury (1979) tables. The p-values for the Davidson and

Duclos (2006) test are based on 999 bootstrap trials. The p-values forH0 : IT 6≻2 OT are equal

to 1.

Trade Type or # Months DD (2000)

DD (2006) p-Value

H0 : OT ≻2 IT 10%

Trimming in Left Tail,

Trimming in Right Tail as

Below:

or Volatility with Viol. µ̂OT − µ̂IT p-Value

Est. Mode (# Months) (Annualized) H0 : IT ≻2 OT 0% 5% 10%

Panel A: All Quantiles

Short call 247 (247) 0.0060 <0.01 0.207 0.093 0.007

Short put 247 (247) 0.0078 <0.01 0.280 0.186 0.060

Long call 247 (247) −0.0403∗∗∗ <0.01 1 1 1

Long put 247 (247) −0.0292∗∗∗ <0.01 1 1 1

Panel B: 10th or 90th Critical Quantile

Short call 58 (243) 0.0041 <0.01 0.195 0.146 0.023

Short put 67 (243) 0.0034 <0.01 0.331 0.232 0.100

Long call 73 (243) −0.0149∗∗∗ >0.1 1 1 1

Long put 95 (243) −0.0058 >0.1 1 1 1

Panel C: 2.5th or 97.5th Critical Quantile

Short call 32 (243) 0.0057 <0.01 0.073 0.069 0.094

Short put 36 (243) 0.0022 >0.1 0.359 0.225 0.051

Long call 27 (243) −0.0038 >0.1 1 1 1

Long put 45 (243) 0.0000 >0.1 0.482 0.477 0.345

The results presented in the last two lines of Table IX, Panels A, B, and

C, confirm the obvious, that there is no evidence that indiscriminate buying of

calls or puts leads to portfolio returns that stochastically dominate the portfolio

return of the index trader.

Overall, the naı̈ve trading rules work well in a quarter of the cases: they

work well in writing calls but work poorly in writing puts, buying calls, or

buying puts. Thus, the limited success of the naı̈ve trading rules appears to

be fortuitous. By contrast, the trading rules based on stochastic dominance

bounds work well in practically all cases: they identify good sell calls and puts

and find very few good buy calls and puts.

Finally, we compare the portfolio return of an index trader with the portfolio

return of an alternative call trader who identifies good buy and sell calls by
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applying the Bernardo and Ledoit (BL, 2000) bounds. We apply the BL pro-

gram specified for the Monte Carlo approach. We simulate the terminal distri-

bution for the S&P futures price under the risk-neutral measure for the future

volatility estimates as before. Then, for a given gain-loss ratio we derive the

lower or upper bounds on call prices by applying a respective maximization or

minimization program to a BL replicating portfolio constrained to satisfy this

given gain-loss ratio. Since we apply BL bounds only to calls, neglecting the

early exercise feature is innocuous for futures options. Having estimated these

bounds, we use them to search for the respective violations of the lower and

upper bounds as before. Note that deriving BL bounds for American put options

presents technical difficulties beyond the illustrative scope of our application.

The application of the BL bounds requires as input an exogenous parameter,

the gain-loss ratio. In Table X, Panels A and C, we report results for a gain-loss

ratio of 2. The results for the upper bound are similar to those obtained for

the Constantinides and Perrakis (2007) upper bound in Table V; however, the

results for the lower bound are disastrous. Even when we increase the gain-loss

ratio to 4 (Panels B and D), which by design results in fewer good buys and sells,

these results for the lower bound prevail when volatility is estimated uncon-

ditionally. At the same time, we observe no evidence for stochastic dominance

for the upper bound except for 90-day volatility estimation mode; furthermore,

in two cases we observe negative excess returns to OT.

V. Concluding Remarks

We introduce a novel approach for empirical research in option pricing and

apply it to S&P 500 index futures options. We search for good sell and good

buy American call and put options on S&P 500 index futures by employing

stochastic dominance upper and lower bounds on the option prices. We find a

substantial number of violations of the call upper bounds, but relatively few

violations of the put upper bounds and even fewer of the call and put lower

bounds. Since violations of these bounds are too infrequent for statistical in-

ference, we focus on violations of the call upper bounds. We observe that the

highest proportion of violations occurs in the region of OTM calls, where the

bounds are tight. We also find, however, that the largest number of violations

are in the close-to-the-money region and hence likely correspond to liquid op-

tions.

We compare the portfolio return of an option trader who writes good sell

calls at their bid price with the portfolio return of an index trader who does

not trade in the options over the period 1983 to 2006. In out-of-sample tests,

our main result is that the return of a call writer stochastically dominates

the index trader’s return, net of transaction costs and the bid-ask spread. The

dominance holds under a variety of methods for estimating the underlying

return distribution. It also holds when the trader is allowed to vary her portfolio

position by adding other risky assets beyond the index to her portfolio.

Our results are consistent with equilibrium in a segmented market along

the following lines. Mutual funds exert price pressure on OTM index puts
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Table X

Good Buy and Good Sell Calls Using the Bernardo and Ledoit (2000)
Method

The equally weighted average of all violating options equivalent to one option per share was

traded at each date. The symbols ∗, ∗∗, and ∗∗∗ denote a difference in sample means of the OT and

IT traders significant at the 10%, 5%, and 1% levels in a one-sided bootstrap test with 9,999 trials.

Maximal t-statistics for the Davidson and Duclos (2000) test are compared to critical values of

the Studentized Maximum Modulus Distribution tabulated in Stoline and Ury (1979) for nominal

levels of 1%, 5%, and 10% with k = 20 and v = ∞. The p-values for H0 :OT ≻2 IT are greater than

10%, the highest nominal level available in the Stoline and Ury (1979) tables. The p-values for the

Davidson and Duclos (2006) test are based on 999 bootstrap trials. The p-values for H0 :IT ≻2 OT

are equal to 1.

Volatility # Months DD (2000)

DD (2006) p-Value H0 : OT 6≻2 IT

10% Trimming in Left Tail,

Trimming in Right Tail as Below:

Prediction with Viol. µ̂OT − µ̂IT p-Value No 5% 10%

Mode (# Months) (Annualized) H0 : IT ≻2 OT Trimming Trimming Trimming

Panel A: Upper Bound (Gain to Loss Ratio = 2)

Unconditional 46 (247) 0.0008 <0.01 0.436 0.150 0.000

90 day 141 (247) 0.0012 <0.01 0.426 0.190 0.048

Adjusted IV 162 (226) 0.0082 <0.01 0.153 0.083 0.013

EGARCH 91 (247) 0.0063 <0.01 0.152 0.056 0.011

Panel B: Upper Bound (Gain to Loss Ratio = 4)

Unconditional 20 (247) −0.0012 >0.1 1 1 1

90 day 57 (247) 0.0039 <0.01 0.203 0.102 0.014

Adjusted IV 75 (226) 0.0013 <0.01 0.387 0.325 0.135

EGARCH 27 (247) −0.0036 >0.1 1 1 1

Panel C: Lower Bound (Gain to Loss Ratio = 2)

Unconditional 156 (247) −0.0248∗∗∗ >0.1 1 1 1

90 day 43 (247) −0.0080 >0.1 1 1 1

Adjusted IV 11 (226) −0.0014 >0.1 1 1 1

EGARCH 64 (247) −0.0123∗ >0.1 1 1 1

Panel D: Lower Bound (Gain to Loss Ratio = 4)

Unconditional 104 (247) −0.0163∗∗ >0.1 1 1 1

90 day 7 (247) n/a n/a n/a n/a n/a

Adjusted IV 2 (226) n/a n/a n/a n/a n/a

EGARCH 13 (247) −0.0015 >0.1 1 1 1

because they buy them as insurance, and overoptimistic speculators exert price

pressure on OTM calls because they buy them as a leveraged bet. Furthermore,

Garleanu, Pedersen, and Poteshman (2009) argue that dealers inflate the prices

of options. As we show in the paper, this presents opportunities for individual

investors to write good sell calls and enhance their portfolio returns, net of
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transaction costs, in terms of the criterion of stochastic dominance. This can be

an equilibrium if the number of such traders and the scale of their trades are

sufficiently small that they do not eliminate the overpricing. Large investors

such as hedge funds who can potentially eliminate the overpricing do not write

these good sell options on a large scale because, as Santa-Clara and Saretto

(2009) point out, they face obstacles including margin calls and lack of market

depth.

Appendix A: Data

S&P 500 futures have maturities only in months in the March quarterly cycle.

Options on the S&P 500 futures have maturities either in a month in the March

quarterly cycle (“quarterly options”) or in a month not in the March quarterly

cycle (“serial options”). We consider 1-month quarterly options written on 1-

month futures and 1-month serial options written on futures with the shortest

maturity. We obtain the time-stamped quotes of the 1-month S&P 500 futures

options and the underlying 1-month futures for the period February 1983 to

July 2006 from the CME tapes.

From futures prices, we calculate the implied S&P 500 index prices by ap-

plying the cost of carry relation Ft = (1 + γ )−(T F−t) RT F−tSt + εt, assuming away

basis risk, εt ≡ 0. Recall that our goal is to compare the investment policies of

the index trader and the option trader. Since both policies stipulate approxi-

mately the same stock component, the effects of this component cancel each

other out. Also, it is common in empirical work to derive the index value from

the index futures; see, for example, Jackwerth and Rubinstein (1996).

We obtain the daily dividend record of the S&P 500 index over the period

1928 to 2006 from the S&P 500 Information Bulletin and convert it to a con-

stant dividend yield for each 30-day period. Before April 1982, dividends are

estimated from monthly dividend yields. We obtain the interest rate as the

3-month T-bill rate from the Federal Reserve Statistical Release H.15. We es-

timate the variance of the basis risk, var(εt), from the observed futures prices

and the intraday time-stamped S&P 500 record obtained from the CME.

We rescale the index price St by the multiplicative factor 100, 000/S0 so that

the index price at the beginning of each 30-day period is 100,000. Accordingly,

we rescale the futures price, index futures option price, and strike by the same

multiplicative factor.

We consider options maturing in 30 calendar days, which results in 247

sampling dates. The 30-day rule eliminates the observation of the October

1987 crash from our sample. Therefore, we use one 40-day period for October

1987 in order to observe the crash. Our results remain unchanged. Since the

first maturity of serial options was in August 1987, the first 19 periods occur

with quarterly periodicity. Overall, we record 36,921 raw call quotes and 42,881

raw put quotes. After eliminating obvious data errors, we apply the following

filters: minimum 15 cents for a bid quote and 25 cents for an ask quote; K/F

ratio within 0.96 to 1.08 for calls and within 0.92 to 1.04 for puts; and matching

the underlying futures quote within 15 seconds. Part of the data are lost due
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to the CME rule of flagging quotes, that is bids (asks) are flagged only if a bid

(ask) is higher (lower) than the preceding bid (ask); in addition, no transaction

data are flagged. We recover a large part of the data by analyzing the sequence

between consecutive bid-ask flags; however, this recovery is not possible in

all cases. As a result of the applied filters, we obtain 29,822 quotes for calls

and 30,281 quotes for puts in our final sample. These quantities translate into

roughly 60 data points for all strikes for either bid or ask prices for an average

day.

Appendix B: Trading Policy

We consider calls with moneyness (K/F) within the range 0.96 to 1.08 and

puts within the range 0.92 to 1.04. If we observe n call bid prices violating

the call upper bound, each with different strike price, then the option trader

writes 1/n calls of each type with the underlying futures corresponding to

the index value of y0. The trader transfers the proceeds to the bond account:

x = x0 +
∑n

i=1 Ci/n and y = y0.

If we observe n put ask prices violating the put lower bound, each with

different strike price, the option trader buys 1/n puts of each type and finances

the purchase out of the bond account: x = x0 −
∑n

i=1 Pi/n and y = y0.

However, when there is a violation of the put upper bound and the option

trader writes puts, the trader also sells one futures contract for each written

put. The intuition for this policy may be gleaned from the observation that the

combination of a written put and a short futures amounts to a synthetic short

call. In fact, the put upper bound in equation (3) is derived from the call upper

bound in equation (2) through the observation that if we can write a put at a

sufficiently high price we violate the call upper bound by writing a synthetic

call.

Finally, when there is a violation of the call lower bound and the option trader

buys calls, the trader also sells one futures contract for each purchased call.

The intuition is the same as above.

The early exercise policy of a call is based on the function N in equation (2).

However, whenever the option trader is short an option, each period we derive

the function N based on the forward-looking distribution of daily returns, that

is, this function is derived under the empirical distribution of the daily index

returns between the option trade and the option maturity. Effectively, we endow

the counterparty of the option trader with information on the second, third, and

fourth moments of the forward distribution, while imposing the first moment.

The early exercise policy of a call or put is simplified by the observation that

the decision is a function only of time and the ratio of the strike price to the

index level.

Appendix C: The Davidson and Duclos (2000, 2006) Tests

The sample counterpart of conditions (4) and (5), applied to the two distribu-

tions drawn from their respective populations, is that we must have for every
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z in the joint support

D̂2
IT(z) − D̂2

OT(z) > 0, (C.1)

where

D̂2
J(z) =

1

N

N
∑

i=1

(z − WJi)+, (C.2)

N is the number of paired outcomes, WJi is the ith outcome of the sample J, and

(x)+ ≡ max(x, 0). See DD (2000) for further details. Clearly, if (C.1) is violated at

any point in the interior of the joint support, the null of nondominance cannot

be rejected. On the other hand, by definition (C.1) becomes an equality at one

or both endpoints of the support. The DD (2006) test deals with this problem

by restricting the set of points over which (C.1) and (C.2) are estimated.

DD (2000) provide a test of the null hypothesis H0 : OT ≻2 IT in terms of the

maximal and minimal values of the extremal test statistic T̂ (z), defined below.

The null is not rejected if the maximal value of the statistic is positive and

statistically significant and the minimal value of the statistic is either positive

or negative and statistically insignificant. As opposed to DD (2006), this test

may provide evidence for stochastic dominance even if we observe a negative

statistic T̂ (z).

The variable z denotes the annualized arithmetic return of a trader, where

the subscripts IT and OT distinguish between the index trader and the option

trader. The statistic T̂ (z) is defined as follows:

T̂ (z) =
D̂2

IT
(z) − D̂2

OT
(z)

√

V̂ 2(z)

, (C.3)

where the numerator is given by (C.1) and (C.2), and

V̂ 2(z) = V̂ 2
IT(z) + V̂ 2

OT(z) − 2V̂ 2
IT ,OT (z), (C.4)

V̂ 2
I (z) =

1

N

[

1

N

N
∑

i=1

(z − WIi)
2
+ − D̂2

I (z)2

]

, I = IT , OT , (C.5)

and

V̂ 2
OT ,IT (z) =

1

N

[

1

N

N
∑

i=1

(z − WIT i)+(z − WOT i)+ − D̂2
IT(z)D̂2

OT(z)

]

. (C.6)

The maximal and minimal values of the statistic are calculated as a maxi-

mum and minimum of (C.3) over a set of points of z, as explained below. Stoline

and Ury (1979) provide tables for the nonstandard distribution of the maximal

and minimal value of T̂ (z) at the 1%, 5%, and 10% levels. In principle, the

number of points in this joint support over which the test may be performed
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needs to be restricted since a “large” number of these points violate the indepen-

dence assumption between the T̂ (z)’s. Therefore, we compute these statistics

for 20 points equally spaced in the joint support of WIT and WOT (including the

endpoints), which corresponds to k = 20 in the Stoline and Ury (1979) tables.

By contrast, DD (2006) develop the concept of restricted stochastic dominance

in testing the null hypothesis H0 : OT 6≻2 IT. The test derives the minimal

T̂ (z)-statistic over a suitably restricted interval in the joint support for IT and

OT. The restriction for the testing interval comes from the observation that a

minimal T̂ (z)-statistic may not be significant by any distributional standards in

the tails of the distribution, be it a sample or a population. It can be easily shown

that the leftmost t-statistic is approximately equal to 1, by construction. The

numerator of the rightmost t-statistic is simply given by (C.1), the difference of

the sample means, which implies that testing for SSD at the largest observed

outcome corresponds to testing for the significance in the difference in the

sample means; this condition is much stronger than necessary for SSD. Having

derived the minimal T̂ (z)-statistic in a restricted interval, the DD (2006) test

applies a bootstrap procedure to the entire data to derive the p-value for the

test as described below.

A necessary condition for applying DD (2006) is that condition (C.1) holds for

our sample. By our trading strategies, condition (C.1) holds over the left side

of the return distribution. Its validity, therefore, needs to be tested only over

the right side, in which case it corresponds to the positivity of the difference

of the means of the two samples. We verify this positivity in all cases and,

wherever it is satisfied in the sample, we subject it to further verification by

block bootstrapping 10 years of results from our data. In almost all cases, the

bootstrap results confirm the sign of the means’ difference.

The test statistic T̂ (z) is the same as in DD (2000) and is given by (C.3) to

(C.6). This statistic is computed for the values of z that are sample points within

the restricted interval, that is, in this interval we have coupled observations of

WIT and WOT, transformed to annualized arithmetic returns. As opposed to the

DD (2000) test, there is no restriction on the number of these points and we

compute the minimal value of T̂ (z) in the restricted interval. It can be shown

that T̂ (z) is monotonic between the sample points; therefore, the minimal value

of T̂ (z) may be found only at a sample point. If the minimal value is negative

anywhere in the full support, the null of nondominance is accepted with p-

value of 1. In this regard, the DD (2006) test is more conservative than the

DD (2000) test. The latter test verifies whether an extreme negative T̂ (z) is

significant for the null H0 : IT ≻2 OT while the former test accepts the null of

nondominance. Otherwise, we apply the bootstrap approach for the derivation

of the p-values for the null hypothesis, as described in detail in DD (2006) and

Davidson (2007). These are simply the number of cases for which the minimal

T̂ (z) under the bootstrap distribution exceeds the minimum T̂ (z) of our sample

divided by the number of bootstraps.

In our tests, we use 999 bootstrap replications in order to derive the p-values

in the tables. The bootstrap procedure samples all observed coupled values of

WIT and WOT under artificial probabilities derived for the empirical likelihood
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maximization under the condition that the T̂ (z) is set equal to zero at the

sample point at which it attains its minimum. See Davidson (2007) for further

details.

There is a cost in adopting the DD (2006) null, because, as can be analyti-

cally shown, this null cannot be rejected over the entire support of the sample

distribution. DD (2006) overcome this problem by restricting the interval over

which the null may be rejected to the interior of the support, excluding points

at the edges. They then show by simulation that inference on the basis of this

restricted interval constitutes the most powerful available inference on the ex-

istence of stochastic dominance. In the case of correlated (coupled) samples, the

procedure for restricting the interval in the right tail is to start by trimming

two pairs of data points: one with the maximal WIT and the corresponding

WOT, and one with the maximal WOT and the corresponding WIT. We continue

in a similar way until the desired degree of trimming is reached. An analogous

procedure is implemented in the left tail. Note that the DD (2006) test results

for such a procedure are more conservative than those resulting from trimming

pairs of observations in the extremes of the tails of the distribution, irrespective

of the sample (OT or IT) to which these extremes belong.

In the Internet Appendix, using simulated data with characteristics that

mirror our sample, we compute the rejection probabilities of the null hypothesis

when it is true as well as when it is false. DD (2006) is a weak test without

trimming, since it has very low probabilities of rejection of the nondominance

null even when it is false. With 5% trimming, the test is still conservative as far

as rejecting the false nondominance null. Problems with rejection of the null

when it is true occur only for deep OTM options. For this reason, we repeat the

stochastic dominance tests for the call upper bound in Panel A of Table V for

a restricted moneyness range, that is by removing violating OTM calls outside

the range from the sample. The results remain essentially unchanged.
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