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Asymmetric Volatility Risk:
Evidence from Option Markets

Abstract

Asymmetric volatility concerns the relation of returns to future expected

volatility. Much is known from option prices about the marginal risk-neutral

distributions of S&P 500 returns and of relative changes in future expected

volatility (VIX). While the bivariate risk-neutral distribution cannot be in-

ferred from the marginals, we propose a novel identification based on long-

dated index options. We estimate the risk-neutral asymmetric volatility im-

plied correlation and find it to be significantly lower than its realized counter-

part. We interpret the economics of the asymmetric volatility correlation risk

premium and use asymmetric volatility implied correlation to predict returns,

volatility, and risk-neutral quantities.

1



1. Introduction

Asymmetric volatility is one of the fundamental drivers of asset prices in that returns are

typically negatively correlated with future expected volatility. Using S&P 500 returns and

relative changes in future expected volatility (as measured by VIX futures1), the average

asymmetric volatility realized correlation (AVRC) of −0.77 indicates severe concerns of

market participants about poor (good) returns that translate into elevated (subdued)

levels of future expected volatility. The high empirical standard deviation of 0.10 and

significant correlation of changes in AVRC with changes in VIX suggests that this risk

perception might be time-varying.

Our goal is to understand which role asymmetric volatility plays in asset pricing.

Thus, we are interested in the risk-neutral equivalent to AVRC, namely the asymmetric

volatility implied correlation (AVIC) between returns and future expected volatility.2

Much can be learned from short-dated option prices on the S&P 500 index and on

VIX futures. The first set of options allows us to back out the risk-neutral distribution

(RND) of index returns. The second set allows us to back out the RND of relative

changes in future expected volatility. Yet, knowing the marginal RNDs does not tell us

about the bivariate RND or about AVIC. Past research proceeded at this juncture by

identifying implied correlation from basket or exchange options, written on all marginal

quantities simultaneously.3 Unfortunately, there are no basket options on returns and

future expected volatility. Still there is a way to proceed.

We present a novel method for finding the bivariate RND in which we combine infor-

mation from short-dated index and VIX futures options with information from long-dated

index options. The basic idea is as follows. Assume that the index can only move up or

down in the first period. Using a simple example in Figure 1, the index can move from

1VIX is an option-implied volatility index based on S&P 500 out-of-the-money options.
2We stay agnostic about the source of such correlation and it could come from either diffusive or

jump components of the underlying stochastic processes.
3Driessen, Maenhout, and Vilkov (2005) use index options as basket options on stocks to find the

implied correlation across stocks; Amato and Gyntelberg (2005) investigate CDO markets; Augustin
et al. (2014) review research on CDS; and Mueller, Stathopoulos, and Vedolin (2017) look into FX
markets.
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1 up to 1.3 or down to 0.7 with equal probability, implying a first-period volatility of

0.3. Such an RND could be obtained from short-dated index options. From short-dated

options on VIX futures, we learn that second-period volatility can increase to 0.4 or

decrease to 0.1 with equal probability. Yet, we still do not know AVIC.

Assuming perfect positive AVIC in Panel A, volatility will increase to 0.4 after a first-

period high return and volatility will be very low at 0.1 after a first-period low return.

Therefore, the second-period returns should reflect this conditionality. We keep the first-

period up and down probabilities in place during the second period at 0.5 and 0.5; that is,

we assume that the shape of the conditional short-dated return RND remains the same

in every period, and that its volatility can vary according to the RND of future expected

volatility. Combining the first- and second-period returns, the two-period distribution

will be more spread out for high returns (due to the high volatility after a first-period

high return) compared to low returns. Assuming a zero interest rate and dividend yield

for simplicity, we price a two-period call option with strike price 1.2 at 0.125.

Given perfect negative correlation in Panel B, the argument reverses exactly, and

two-period returns will now be more spread out after a low first-period return and less

spread out after a high first-period return. We price the same two-period call with strike

price 1.2, but now its value is considerably lower at 0.05. Note that we can learn about

AVIC from the price of that two-period call.

In Panel C, we assume that the call is priced at 0.0875. Allowing for intermediate

correlations results in more complex mixtures of first- and second-period return distri-

butions, which again yield different two-period return RNDs. We depict the situation

with an AVIC of 0, which generates exactly the observed call price. Thus, we can use

prices of two-period options on the S&P 500 to identify the AVIC and, more generally,

the bivariate distribution RND between returns and future expected volatility.

In our empirical work, we reverse-engineer the AVIC by fitting options based on the

two-period model RND to observed two-month options on the S&P 500 from July 2007

to August 2014. To find the two-period model RND, we infer the marginal RND of
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Figure 1: Illustration of Asymmetric Volatility

We depict the bivariate dependence of returns (based on index levels St at t = 0, 1, 2) and volatility (σ)
for different correlation levels. We depict in Panel A a two-period binomial tree in which volatility and
returns have perfect positive correlation. The first-period high (low) return is followed by a second-period
high (low) volatility return distribution. In Panel B, the correlation is perfectly negative. In Panel C,
the correlation is zero. All move probabilities are 0.5, and the chance of a high and a low volatility
regime is also 0.5. Call prices are for the two-period distributions with terminal nodal probabilities q,
index levels of S2, and payoffs C2, based on a strike price of 1.2, the interest rate and dividend yield are

zero.

Panel A: Perfect Positive Correlation between Returns and Future Expected Volatility

S0 = 1

σinit = 0.3

S1 = 0.7

σlow = 0.1
S2 = 0.6 q = 0.25 C2 = 0 Call Price: 0.125

S2 = 0.8 q = 0.25 C2 = 0

S1 = 1.3

σhigh = 0.4

S2 = 0.9 q = 0.25 C2 = 0

S2 = 1.7 q = 0.25 C2 = 0.5

Panel B : Perfect Negative Correlation between Returns and Future Expected Volatility

S0 = 1

σinit = 0.3

S1 = 0.7

σhigh = 0.4

S2 = 0.3 q = 0.25 C2 = 0 Call Price: 0.05

S2 = 1.1 q = 0.25 C2 = 0

S1 = 1.3

σlow = 0.1
S2 = 1.2 q = 0.25 C2 = 0

S2 = 1.4 q = 0.25 C2 = 0.2

Panel C : Zero Correlation between Returns and Future Expected Volatility

S0 = 1

σinit = 0.3

S1 = 0.7

σlow = 0.1

σhigh = 0.4

S2 = 0.3 q = 0.125 C2 = 0 Call Price: 0.0875

S2 = 0.6 q = 0.125 C2 = 0

S2 = 0.8 q = 0.125 C2 = 0

S2 = 1.1 q = 0.125 C2 = 0

S1 = 1.3

σlow = 0.1

σhigh = 0.4

S2 = 0.9 q = 0.125 C2 = 0

S2 = 1.2 q = 0.125 C2 = 0

S2 = 1.4 q = 0.125 C2 = 0.2

S2 = 1.7 q = 0.125 C2 = 0.5
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returns from one-month options on the S&P 500. We obtain the marginal RND of future

expected volatility from one-month options on VIX futures.4

The dependence structure between the two marginal RNDs is modeled by a bivariate

copula.5 Each value of the dependency parameter of the copula (θ) maps into an AVIC.

Given θ, we can build up the two-period risk-neutral return distribution, which we use

to price two-period options. Finally, we vary θ to best fit the implied volatilities of the

model options to the observed two-period option-implied volatilities. Details are collected

in Section 4.

Empirically, we compute an AVIC every week during our sample from July 2007 to

August 2014. The time-varying AVIC turns out to be −0.83 on average. We compute the

AVRC based on a 360-day historical window, over which we correlate monthly returns

with corresponding relative changes in VIX. The AVRC is at −0.77 significantly differ-

ent from AVIC. Thus, there could be a positive asymmetric volatility correlation risk

premium (AVCRP = AVRC-AVIC = 0.06) associated with asymmetric volatility risk.6

It is helpful to contrast the AVCRP with the variance risk premium (VRP). The VRP

works as a symmetric fear gauge and measures the impact of variance risk in general. The

AVCRP measures asymmetric volatility risk and is conditional on the first-period index

return. We find that the AVCRP is largely driven by the AVIC. A more negative AVIC

paired with a negative first-period return leads to a stronger increase in second-period

volatility.

We concentrate on the AVIC and find that it predicts index returns, realized index

volatility in some instances, and the ex post VRP. Also, the AVIC predicts risk-neutral

quantities, such as fatter left tails of the RND, implied skewness in some instances, and

4Alternatively, one could have looked for options on future expected volatility under the physical
measure, as opposed to options on VIX, which is the expected integrated volatility under the risk-neutral
measure. Yet such alternative options do not exist.

5We use the Frank (1979) copula, which is particularly well-suited for the typically negative depen-
dence we find in the data. It fits the data better than Gaussian and Student’s t copulas, yet results are
robust compared to using those alternative copulas; see Sections 4.3 and 6.

6Our AVCRP should not be confused with the risk premium for correlation between assets discussed
in Buraschi, Trojani, and Vedolin (2014); Mueller, Stathopoulos, and Vedolin (2017); Buss, Schoenleber,
and Vilkov (2018); and others.
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implied volatility. Thus, a time-varying AVIC seems to be an important determinant

of the future investment opportunities and should potentially be considered in modeling

asset prices.

In terms of applications for our method of inferring the dependency between returns

and future expected volatility, we know that their bivariate RND helps pricing contracts

written on both quantities simultaneously. Also, term structures of the AVIC can be

found from longer-dated options. Moreover, VIX-type contracts have recently been in-

troduced in stock indices, individual stocks, commodity and country ETFs, interest rates,

currencies, and volatilities. In 2011, the SEC was asked to permit options on 40 such

contracts. Once they are available, our method could also be applied to all these new

markets.

After putting our work into perspective with respect to the literature in Section 2,

we introduce our data (Section 3) and methodology (Section 4). We present our results

in Section 5 and show in Section 6 that they are robust to our choice of copula. We

conclude in Section 7.

2. Literature

We use option and historical prices to relate returns to future expected volatility. This

relates us directly to three large areas of research: first, the study of asymmetric volatility,

which investigates the relation of returns and future expected volatility. Our paper uses

this definition for all quantities concerned. Second is the literature concerning the relation

of returns and contemporaneous volatility, which is often called the leverage effect.7 Third

is the study of recovering information implied in option prices.

7We thank a referee for pushing us to make this clarification, as the terminology in the literature at
times deviates from our labeling.
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2.1 Lead-lag “Asymmetric Volatility” Effect

Our work relates returns to future expected volatility. We label this lead-lag structure

asymmetric volatility. Black (1976b) and Christie (1982) were the first to study stock

returns and subsequent changes in stock return volatility.8 Their empirical studies mo-

tivated discrete-time models with asymmetric volatility, such as the EGARCH model of

Nelson (1991) and the asymmetric GARCH model of Glosten, Jagannathan, and Run-

kle (1993). These GARCH models assume constant parameters. We contribute to this

literature by showing that asymmetric volatility is time-varying and different under the

physical and risk-neutral probability measures.

Later papers try to explain the asymmetric volatility effect, in which Bekaert and Wu

(2000) empirically use realized volatility, while Dennis, Mayhew, and Stivers (2006) use

implied volatility. Figlewski and Wang (2000) question whether asymmetric volatility is

really driven by the firm’s leverage, and Hasanhodzic and Lo (2011) look at all-equity-

financed firms to conclude that asymmetric volatility is not driven by financial leverage.

We stay agnostic about the causes of asymmetric volatility but show that its time-varying

nature constitutes a source of priced risk for investors.

2.2 Contemporaneous “Leverage” Effect

While discrete models often use a lead-lag structure of asymmetric volatility, many

continuous-time models work with constant instantaneous correlation between returns

and volatility, which we label the leverage effect (e.g., Bardgett, Gourier, and Leippold,

2017; Branger, Kraftschik, and Völkert, 2014; Christoffersen, Heston, and Jacobs, 2009;

and Song and Xiu, 2016). Then, by Girsanov’s theorem, the AVIC needs to equal the

AVRC, and any AVCRP is necessarily zero, in contrast to our empirical findings. This

rigidity in modeling is consistent with recent research documenting that the options on

VIX futures cannot be priced properly using continuous-time models solely fitted to

8Confusingly, even though they use a lead-lag structure, they used the term “leverage effect,” which
we reserve for the contemporaneous relation of returns with volatility.
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S&P 500 index options (e.g., Fuertes and Papanicolaou, 2014; Bates, 2012; Duan and

Yeh, 2012; and Carr and Madan, 2013).

Andersen, Bondarenko, and Gonzalez-Perez (2015) review the problems of estimating

the correlation between index returns and contemporaneous volatility (realized as well

as a version based on a corridor-version of VIX) using high-frequency data. Kalnina and

Xiu (2015) provide a theoretical base for such estimators. Aı̈t-Sahalia, Fan, and Li (2013)

concentrate on econometric issues and biases in estimating the leverage effect; Wang and

Mykland (2014) estimate the leverage effect using high-frequency data; and Aı̈t-Sahalia

et al. (2017) split the leverage effect into continuous and discontinuous parts.

2.3 Recovering Information Implied in Market Prices

We recover the AVIC by semi-parametrically modeling the bivariate distribution between

returns and future expected volatility. We thereby touch on recovering separate marginal

RNDs of S&P 500 returns and relative changes in VIX futures. While we go on to analyze

the joint distribution, there is a large body of literature on the extraction of marginal

RNDs, for example, the surveys of Jackwerth (2004) and Christoffersen, Jacobs, and

Chang (2011).

A distinct rich literature backs out implied risk-neutral moments from option prices,

rather than the complete RND. Carr and Wu (2009) study implied variance and combine

it with realized variance to build the variance risk premium (VRP). Bollerslev, Tauchen,

and Zhou (2009) develop a model in which the VRP and equity risk premium share a

common component, thus explaining why the VRP works empirically very well in predict-

ing market returns. Our point of departure is that variance risk is inherently symmetric,

while we explicitly investigate asymmetric volatility, which is larger conditional on a neg-

ative first-period return. Indeed, our empirical results suggest the presence of asymmetric

volatility risk. Moreover, the particular functional form of asymmetric volatility matters,

with the Frank copula fitting the data better than Student’s t or Gaussian copulas.
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Skinzi and Refenes (2004) and Driessen, Maenhout, and Vilkov (2005) infer the im-

plied correlation between stocks in the index. Buss, Schoenleber, and Vilkov (2018)

show both theoretically and empirically that the risk premium on such implied correla-

tion between stocks and the VRP complement each other in predicting market returns.

The VRP measures the fear of high volatility, especially due to jumps (Bollerslev and

Todorov, 2011); the risk premium on correlation between stocks measures the risk of

losing diversification. In contrast, we are interested in the asymmetric volatility effect,

which assesses how volatile second-period returns are conditional on first-period returns.

Chang, Christoffersen, and Jacobs (2012) suggest market skewness as an alternative

related factor. We document in our empirical work that we can also predict returns,

volatility, and risk-neutral quantities, while documenting that the AVIC is different from

variance and skewness risk.

3. Data and Definition of Variables

The Chicago Board of Options Exchange (CBOE) launched options on VIX futures in

2006, so we start the data collection on that date and end in August 2014. To create our

weekly sample, we first find all short-dated (one-month) S&P 500 index option expiration

dates. We also collect the matching short-dated (monthly) VIX futures option expiration

dates and the long-dated (two-month) S&P 500 index option expiration dates, which

expire one month later.9 We then create four observation dates by going back two, three,

four, and five weeks from the expiration date of the short-dated S&P 500 option. This

procedure gives us about 400 weekly observation dates; however, due to limited data

quality for VIX options, we drop some early data and select all dates from July 2007 to

August 2014, which gives us 345 weekly observation dates in total.

9During our sample, short-dated S&P 500 options expire on the Saturday following the third Friday of
a particular month. Long-dated S&P options expire similarly but one month later. VIX futures options
expire on the Wednesday that is 30 days prior to the third Friday of the calendar month immediately
following the expiring month.
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3.1 Data on Index Returns

We obtain end-of-day underlying and options data on the S&P 500 index from Option-

Metrics.10 We work with midpoint implied volatilities inferred from raw option prices.

We also record the S&P 500 dividend yields and interpolate the certificate of deposit

rates from OptionMetrics to match the exact days-to-maturity of our S&P 500 options.

On each observation date, we collect out-of-the-money short-dated and long-dated

S&P 500 index options, in which four related observation dates share the same expiration

dates as detailed above. We eliminate options with zero bids and filter for moneyness

(=strike price/index futures level) to lie between 1± 5 at-the-money implied volatilities

observed on a given day and adjusted for the maturity of the options; see Andersen,

Bondarenko, and Gonzalez-Perez (2015).11 We normalize all option strikes by the index

price. In order to compute RNDs and risk-neutral moments, we require at least eight

index option prices to exist at any given observation date. We compute model-free values

for implied variance and implied skewness following Bakshi, Kapadia, and Madan (2003).

Following Bollerslev, Tauchen, and Zhou (2009), we compute the variance risk premium

for the S&P 500 index as the difference between model-free implied variance for the next

month and realized variance over the past month computed from high-frequency data.

3.2 Data on Future Expected Volatility

We obtain end-of-day data on options on VIX futures from OptionMetrics and daily VIX

futures data from the CBOE. We collect the underlying VIX and VIX futures as daily

closing data from the CBOE.12 We work with midpoint implied volatilities inferred from

VIX options. We estimate VIX implied volatilities from the Black (1976a) model using

raw option prices and the reported VIX futures level at the end of the day.

10We use the IvyDB OptionMetrics database available through WRDS, updated in December 2014 to
August 2014.

11We thank a referee for suggesting the use of the effective strike range.
12Gonzalez-Perez and Guerrero (2013) find intra-week effects in the VIX of −0.23% on average. Per-

turbing our data by twice such magnitude does not affect our results at all.
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We use the same observation dates as for the S&P 500 options and collect the short-

dated options on VIX futures. We eliminate zero bids and filter for moneyness (=strike

price/VIX futures level) to lie between 1 ± 5 at-the-money implied volatilities adjusted

for the maturity of the options. We normalize all option strikes by the VIX futures level.

In order to compute RNDs, we require at least five available options on VIX futures.

4. Methodology

We first describe how we obtain the realized correlation between index returns and future

expected volatility, the AVRC. Next, we work out the marginal RNDs of index returns

and future expected volatility separately. Finally, we connect the two marginal RNDs

via a copula, which allows us to work out the AVIC.

4.1 Asymmetric Volatility Realized Correlation Between Return and Future Expected

Volatility

To compute the time-varying AVRC between returns and future expected volatility for

each observation date, we use a 360-day historical window. Within this window, we

compute 30-day returns and 30-day relative changes in levels of VIX futures. These two

time series have the same lead-lag structure as the AVIC, as the return is the current

return and the change in VIX is the change in future expected volatility. The AVRC is

then the correlation coefficient between the two time series.

4.2 Marginal Risk-neutral Distributions for Returns and Future Expected Volatility

On each observation date, we estimate the RNDs of the short-dated S&P 500 returns

and of future expected volatility using the “fast and stable method” of Jackwerth (2004).

Given a trade-off parameter, a closed-form solution exists for fitting the implied volatili-

ties of observed options best, while, at the same time, delivering the smoothest implied

volatility smile. The optimal implied volatilities can be translated directly into risk-
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neutral probabilities. The same paper argues that, given some low number of observed

option prices, the exact choice of method matters little for obtaining RNDs. We ensure

that the RND produces a mean index return equal to the monthly risk-free rate minus the

dividend yield (i.e., the mean of the traded asset return under the risk-neutral measure).

We fine-tune the volatility of the RND so that model option prices best match observed

option prices. Finally, we record the volatility of the RND and scale the RND to have

unit volatility. We denote this RND at time t by Q̂t(m), in which each discrete density

function is defined by a number of return values mi, i = 1, . . . , N and their associated

probabilities Q̂t(m).

For the RND of future expected volatility, we use short-dated options on VIX futures.

We basically follow the same method as above. Because VIX is not traded and we use

futures on VIX directly, we set both the interest rate and the dividend yield to zero. We

denote the RND of future expected volatility at time t by Q̂σ
t (mσ), in which each discrete

density function is defined by a number of future expected volatility values mσ
i , i =

1, . . . , Nσ and their associated probabilities Q̂σ
t (mσ). For future expected volatility, the

distribution is specified by the relative deviation in future conditional volatility from its

expected level, and, hence, it automatically takes on a mean of one. Also, the RND of

future expected volatility is not rescaled to unit volatility.

4.3 Joint Risk-neutral Distribution of First-period Returns and Future Expected Volatil-

ities

By now, we have the two marginal RNDs in place, but not yet the bivariate distribution.

We rely on Sklar’s (1959) theorem that every multivariate cumulative distribution can be

represented as a copula defined over the marginal distributions. We consider five different

copulas: two implicit ones (Gaussian and Student’s t) and three explicit ones (Frank,

Clayton, and Gumbel). The description and formulas of each copula can be found in

McNeil, Frey, and Embrechts (2005) and Trivedi and Zimmer (2007).
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We select the best copula for fitting the bivariate distribution of index returns and

expected future volatility under the physical probability measure. Here, we use historical

time series of monthly S&P 500 index returns and monthly relative changes in VIX. Note

that even though the changes are both computed over the same month, the returns are

backward-looking, while relative changes in VIX are forward-looking, because they are

changes to future expected volatility.

Overall, symmetric copulas (Frank, Student’s t, and Gaussian) work well under the

physical probability measure, while asymmetric ones (Clayton and Gumbel) do not. For

each of the time series, we use kernel smoothing based on a Normal kernel with optimal

bandwidth (Bowman and Azzalini, 1997) to estimate the cumulative density function

and then estimate the respective copula parameters using maximum likelihood.13 This

gives us the unconditional dependency parameter for each copula θ, and for Student’s

t copula the degrees of freedom parameter ν. To test how well the dependency in real

data is captured by each copula, we simulate 5,000 realizations from each copula and use

the two-dimensional Kolmogorov-Smirnov test developed in Peacock (1983) to test the

null that the simulated distribution is the same as the empirical one.

The results are collected in Table 1. For the empirical distribution of index returns

and relative changes in VIX, the unconditional AVRC over the whole sample is −0.736.

Note that this differs somewhat from our above average value of the (conditional) AVRC,

which is −0.773. The difference is due to the use of overlapping moving windows in the

360-day historical samples used for the AVRC. Looking at the simulated AVRC for the five

copulas, we find that they are all in the vicinity (−0.633 to −0.752) of the unconditional

AVRC, but for the Clayton copula with a simulated AVRC of −0.020. Testing to see

if the simulated distributions from the copulas are indistinguishable from the empirical

distribution, we reject the test for the Clayton and Gumbel copulas with p-values of less

than 0.01. We are thus left with the Frank, Student’s t, and Gaussian copulas for possible

use to model an AVIC.

13For the Gumbel copula we use the time series of index returns and the series of minus relative
changes in VIX, because this copula is used to model positive dependency, and the expected direction
of dependency in our case is negative.
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Table 1: Copula calibrations under the physical measure

The table shows Frank, Student’s t, Gaussian, Clayton, Gumbel copulas fitted to monthly index returns
and monthly relative changes in future expected volatility (VIX) by maximum likelihood. The sample
period is July 2007 to August 2014. The AVRC is based on the unconditional empirical distribution
and (for the copulas) on a simulated distribution based on 5,000 draws from the copula. The column
“KS test (p-value)” gives the p-value of the two-sided two-dimensional Komogorov-Smirnov test with
the null that the simulated distribution is the same as the empirical one.

Model AVRC KS test (p-value)
Empirical distribution −0.736 -
Frank −0.648 0.245
Student’s t −0.752 0.199
Gaussian −0.740 0.182
Clayton −0.020 0.000
Gumbel −0.633 0.009

The final decision on which copula to use cannot be made until we know which

one performs best in terms of modeling a conditional AVIC. Skipping ahead to detailed

comparisons in Section 6, this turns out to be the Frank copula, which we will thus use

from now on.

The Frank (1979) copula is given by

Cθ(u, u
σ) = −1

θ
log

(
1 +

(exp (−θu)− 1)(exp (−θuσ))− 1)

exp (−θ)− 1

)
, (1)

where θ is the dependence parameter. u and uσ are random vectors with uniformly

distributed marginals, where each realization of the random vector can be converted into

the realization of the respective marginal (the RND of return Q̂t and the RND of future

expected volatility Q̂σ
t ) by using the inverse cumulative marginal distribution. The copula

produces a bivariate RND Q̂t(rt,t1 , σt1,t2) of first-period (which can be two, three, four,

or five weeks) index returns rt,t1 and future expected volatility σt1,t2 .
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4.4 Risk-neutral Two-period Return Distribution and Asymmetric Volatility Implied

Correlation

But how do we calibrate the parameter θ of the Frank copula? The idea is to use the

bivariate RND of returns and future expected volatility to build up the long-dated, two-

period index RND. We can then change θ in such a way as to minimize the pricing error

of the long-dated S&P 500 options.

Given θ, we draw 200,000 pairs of uniformly distributed numbers u, uσ ∼ U [0, 1],

where u is iid, and uσ is drawn conditionally on u and the copula parameter θ.14 The

corresponding realizations of an index return and its future expected volatility are found

by plugging u and uσ into the respective inverse cumulative marginal distributions. Their

joint distribution has the short-dated option-implied RNDs as marginals, and the Frank

copula with parameter θ determines the bivariate RND.

Based on those realizations, we construct a conditional distribution of second-period

index returns Q̂t(rt1,t2|rt,t1 , σt1,t2) by starting with the distribution of normalized index

returns m ∼ Q̂t. Crucially, we assume that the conditional second-period returns are

distributed as the first-period returns but with different volatility, drawn according to

the RND of future expected volatility. We adjust the volatility of returns to match the

drawn instance of second-period volatility σt1,t2 , and, at that time, we take care that

we scale mean and volatility to account for the number of days between t1 and t2. The

resulting second-period return is then

rt1,t2 = (m− (rf − δ))σt1,t2
√
t2 − t1 + (rf − δ)(t2 − t1), (2)

where rf is the annualized risk-free rate and δ is the annualized dividend yield. At

this point we have 200, 000 second-period returns, each generated by a realization of

first-period return and second-period future expected volatility.

14The numerical procedure converges after approximately 50,000 draws.

15



Having the second-period returns in place, we create the RND of two-period returns

Q̂t(rt,t2). For each second-period return, we know its preceding first-period return. Ag-

gregating the two returns gives us 200,000 two-period index returns, which we resample

onto a return space of 500 equally spaced returns to obtain a two-period return RND.

We then use the two-period RND to price the long-dated index options. Each set of

prices depends on two parameters, namely, the dependency parameter θ of the copula and

the mean of the future volatility distribution σ̄t1,t2 that we use to rescale the volatility

distribution.15 We find the optimal parameters by minimizing the root-mean squared

error of the relative deviation between model and market implied volatilities.16 As the

dependence parameter θ is not directly comparable to the AVRC computed above, we

compute the AVIC based on the optimal θ as the correlation between the resulting 200,000

returns and expected future volatilities.17

For each observation date t, we define the ex ante AVCRP as the difference between

the AVRC based on the past 360 days (from t− to t) and the currently observed AVIC

(based on the time to expiration of the short-dated option from t to t1:

AV CRPt = AV RCt−,t − AV ICt,t1 . (3)

By using non-matching periods in formula (3), we follow the definition of the ex ante

VRP (as in Bollerslev, Tauchen, and Zhou, 2009) to avoid a forward-looking bias in the

empirical analysis. The use of the past AVRC is justified by the fact that the AVRC is

extremely persistent; we fail to reject a unit root using the Augmented Dickey-Fuller test

with a p-value of 0.54.

15Note that we model the RND of relative changes of VIX futures from their expected value. However,
there is no easily predetermined value for this expected value since volatility is not an easily traded asset.
Thus, we need to pin it down by calibrating it jointly with the dependency parameter θ to match the
long-dated index option prices.

16Alternative choices of root mean squared error or mean absolute error combined with relative or
absolute difference of implied volatilities or prices all yield similar results.

17We compute the AVIC between returns and future expected volatility at the monthly frequency,
ignoring the exact stochastic processes governing what happens in between months. We thank a referee
for pointing out that the AVIC would only be the same as the conditional expected correlation under
the risk-neutral measure for stationary underlying processes of returns and volatility. Such stationarity
is not given in the data, as volatility is highly persistent and time-varying.

16



5. Empirical Results

We present results on the AVIC, which we interpret as a measure of asymmetric volatility

risk. We relate it to other economically relevant variables and document how it predicts

future returns, volatility, and risk-neutral implied quantities. In the subsequent analysis

we will use the Frank copula and relegate results for the Gaussian and Student’s t copulas

to the robustness section.

5.1 Asymmetric Volatility Implied Correlation and Asymmetric Volatility Correlation

Risk Premium

Table 2: Asymmetric volatility implied and realized correlation statistics

The table shows the mean, standard deviation, skewness, kurtosis, minimum, and maximum for
asymmetric volatility implied correlation and asymmetric volatility realized correlation during
our sample from July 2007 to August 2014. We also show the statistics for the pre-crisis
period (July 2007 to August 2008), the crisis period (August 2008 to December 2009), and the
post-crisis period (January 2010 to August 2014).

Full period Pre-crisis Crisis period Post-crisis
AVIC AVRC AVIC AVRC AVIC AVRC AVIC AVRC

Mean −0.833 −0.773 −0.863 −0.853 −0.892 −0.764 −0.807 −0.756
Standard dev. 0.137 0.095 0.126 0.042 0.071 0.104 0.148 0.092
Skewness 1.616 0.678 1.558 0.161 1.817 0.479 1.403 0.585
Kurtosis 5.891 2.576 4.851 1.743 7.176 2.063 5.072 2.469
Min −0.987 −0.913 −0.987 −0.913 −0.982 −0.906 −0.987 −0.889
Max −0.189 −0.488 −0.440 −0.779 −0.607 −0.568 −0.189 −0.488

Table 2, column Full period, shows descriptive statistics for the AVIC and the AVRC

for the whole sample from July 2007 to August 2014. The AVRC has a mean of −0.77

with a standard deviation of 0.10, while AVIC has a mean of −0.83 with a standard

deviation of 0.14. The AVCRP has a mean of 0.06 with a standard deviation of 0.17 and

is strongly significant with a p-value of less than 0.01, based on a standard error of the

mean (0.0150) adjusted with four lags, see Newey and West (1987). Before the financial

crisis started in August 2008, the AVCRP was 0.01, which suggests that asymmetric

volatility risk was barely priced before the crisis. The AVCRP increased to 0.13 during
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the crisis (August 2008 to December 2009). During this time, option prices implied a

more negative AVIC (by −0.03), as future expected volatility is assumed to react stronger

to negative returns than in calm times, even accounting for overall higher future expected

volatility. Yet the AVRC is much less negative (by +0.09) because volatility decreases

even after negative returns as the crisis abates. After the crisis (January 2010 to August

2014), the AVCRP contracts to 0.05 which the AVIC increases by 0.08 as the option

markets relax.

Standard deviations are fairly large and contract somewhat for the AVIC during the

crisis due the limited range of correlation. In crisis times, the AVIC approaches −1 from

above but cannot go any lower, thus lowering standard deviations. The distributions of

the AVIC and the AVRC are mildly positively skewed (1.62 and 0.68), and the AVIC

is somewhat leptokurtic (5.89 vs. 2.58 for AVRC). Minimal values approach −1, and

maximal values never exceed 0.

Depicting the time series of the AVIC and the AVRC, we see in Figure 2 that both

are highly time-varying. The correlation between the two time series is only 0.06 and

insignificant (p-value 0.25),18 which indicates that they contain different information:

the AVRC typically does not account for the rarely observed tail regions of the return

distribution, while the AVIC is based on expectations over the whole range of returns,

including the tails. Both series are highly persistent, and we fail to reject a unit root

using the Augmented Dickey-Fuller test for the AVRC (p-value of 0.54) and the AVIC

(p-value of 0.11).

5.2 Asymmetric Volatility Implied Correlation Versus Other Variables

Economically, a significant AVCRP means that taking on asymmetric volatility risk is

being compensated in the market. Importantly, AVCRP is based on the joint distribution

of returns and future expected volatility, whereas alternative risk measures (e.g., implied

18The cross correlation function does not show significant values from minus five to plus five lags.
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Figure 2: Time series of asymmetric volatility implied and realized correlation

The figure shows weekly time series of asymmetric volatility implied (triangles) and realized
(dots) correlation over the sample period from July 2007 to August 2014.
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volatility, implied skewness, and VRP) are based only on the (risk-neutral and physical)

return distribution.

To further explore, we compare the AVIC and the AVCRP to various variables that

could be affected by the interplay of index returns and future expected volatility. We re-

port correlations across seven variables in Table 3, Panel A, and the confidence bounds of

those correlations in Panel B. The AVIC and the AVCRP are highly negatively correlated

(−0.81), and in the following we only discuss the AVIC.

The VRP is the payment for a hedge against negative returns by gaining on increased

volatility. Inherently, the VRP is symmetric as an up or down return (of same size and
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Table 3: Correlations

The table shows in Panel A the correlations between the asymmetric volatility implied cor-
relation, the asymmetric volatility correlation risk premium, the variance risk premium, VIX,
long-dated minus short-dated option implied skewness, short-dated option implied skewness,
and the realized S&P 500 return from t to t1 (index return). The sample period is July 2007 to
August 2014. All variables except the index returns are known on the observation date. Panel
B shows the 5% confidence intervals. The lower bounds are in the lower triangular part of the
table and the upper bounds in the upper part of the table.

Panel A: Sample Correlations

Variable # 1 2 3 4 5 6 7
AVIC 1 1.00 - - - - - -
AVCRP 2 −0.81 1.00 - - - - -
VRP 3 0.19 −0.05 1.00 - - - -
VIX 4 −0.25 0.07 −0.29 1.00 - - -
Implied Skewness, long-short 5 0.32 −0.20 0.21 −0.37 1.00 - -
Implied Skewness, short 6 −0.34 0.21 −0.32 0.57 −0.89 1.00 -
Index return, first-period 7 0.03 0.06 0.08 −0.02 −0.05 0.00 1.00

Panel B: Confidence Bounds for Sample Correlations

Variable # 1 2 3 4 5 6 7
AVIC 1 - −0.77 0.29 −0.15 0.41 −0.24 0.14
AVCRP 2 −0.84 - 0.06 0.18 −0.09 0.31 0.16
VRP 3 0.09 −0.16 - −0.19 0.31 −0.22 0.19
VIX 4 −0.34 −0.03 −0.38 - −0.28 0.64 0.09
Implied Skewness, long-short 5 0.22 −0.30 0.11 −0.46 - −0.87 0.05
Implied Skewness, short 6 −0.43 0.11 −0.41 0.50 −0.91 - 0.10
Index return, first-period 7 −0.07 −0.05 −0.02 −0.12 −0.16 −0.11 -

relative to the mean) results in the same contribution to variance.19 A first indication

that the AVIC measures something different from the symmetric VRP can be found in

the moderate correlation with the VRP of 0.19. As a second symmetric risk measure, we

consider VIX, which is often referred to as a market fear gauge. It is negatively correlated

with the VRP (−0.29) and the AVIC (−0.25).

The AVIC closer to its lower limit of −1 affects the two-period return RND through

the left tail in that a negative first-period return induces high volatility during the second

19Bollerslev and Todorov (2011) claim that the VRP is mostly driven by jumps and not the diffusive
part of the returns. However, their measures of jumps for the left tail and the right tail are highly
correlated. Our argument that the VRP is mainly about symmetric tail risks thus remains valid.
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period and thus enlarges the left tail. The effect is weaker for the right tail. We thus

include as variables the implied skewness from short-dated options and implied skewness

from long-dated options minus implied skewness from short-dated options. Both skewness

measures are correlated with the AVIC with absolute correlations of up to 0.34, and they

are also highly correlated with each other (−0.89). We concentrate on long-dated minus

short-dated implied skewness henceforth, as it more closely mirrors the intuition of the

AVIC in relating first-period to two-period skewness.

We finally observe that the AVIC is positively but insignificantly correlated with

the first-period index return (0.03). This suggests that the AVIC might be capable of

predicting index returns; we next investigate this exciting proposition further. Since we

find the AVIC to be economically related to VIX, the VRP, and long-dated minus short-

dated implied skewness, although correlations tend to be moderate, we will use those

variables as controls in further explorations.

5.3 Predicting S&P 500 Returns and Volatilities

In our regression analysis, we predict returns, volatility, and an ex post VRP (from t to

the maturity of the short-dated options) with the AVIC at time t while controlling for

VIX, the (ex ante) VRP, and long-dated minus short-dated implied skewness.

We see in Table 4 that a more negative AVIC is associated with higher future returns.

The results are insignificant (p-value of 0.14) without controls but strengthen when con-

trolling for VIX (p-value of 0.01) or the VRP (p-value of 0.02). When using controls, we

always include long-dated minus short-dated implied skewness.

The results for volatility go into the opposite direction when we control for VIX (p-

value of 0.00). This is due to the strong negative correlation of volatility with returns.

Results are insignificant in the regression without controls and the regression with the

VRP as a control.
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Table 4: Predicting S&P 500 returns, volatility, and the ex post variance risk premium

We define our dependent variables as realized return, volatility, and the ex post VRP, measured
from t to the maturity of the short-dated options. Independent variables are the asymmetric
volatility implied correlation, VIX, the variance risk premium, and long-dated minus short-
dated implied skewness. The p-values are based on the Newey and West (1987) standard
errors. The sample period is July 2007 to August 2014.

Return Volatility Ex post VRP
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept −0.359 −0.378 −0.752 0.109 0.080 0.295 1.255 0.820 0.464
0.205 0.254 0.014 0.006 0.006 0.000 0.000 0.052 0.537

AVIC −0.489 −0.732 −0.706 −0.084 0.103 0.035 −0.916 −1.438 −1.458
0.136 0.013 0.020 0.104 0.002 0.909 0.040 0.002 0.002

VIX - −0.915 - - 0.855 - - −0.591 -
- 0.322 - - 0.000 - - 0.327 -

VRP - - 0.095 - - −0.032 - - 0.109
- - 0.168 - - 0.000 - - 0.177

Implied Skewness,
long-short - 0.065 0.107 - −0.023 −0.078 - 0.377 0.391

- 0.610 0.138 - 0.000 0.000 - 0.003 0.001
Adjusted R2 0.005 0.019 0.014 0.007 0.591 0.146 0.013 0.047 0.051

As the VRP is the difference of implied and realized volatility, we can also predict

the ex post VRP with p-values of less than 0.04 for all of our three models.

Generally, results for returns, volatility, and ex post VRP are even stronger if we use

the AVCRP instead of the AVIC.

5.4 Asymmetric Volatility Implied Correlation Compared with Implied Risk Measures

and Moments

We now investigate how second-period (i.e., observed at time t1 and inferred from the

second-period RND from t1 to t2) risk-neutral quantities react to changes in the AVIC. For

our tail measure “Right minus left tail”, we look at the difference between the probability

mass in the right tail and the left tail of the distribution, divided by the probability

between the tails. We use a ±10% return per month threshold for identifying the tail

regions, which corresponds to about±2σ (using an unconditional index volatility σ of 0.17

p.a.). Implied skewness and implied volatility are averages computed from the second-

period simulated RNDs. Again, we control for VIX, the VRP, and long-dated minus
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short-dated implied skewness. We use non-overlapping regressions to guarantee that the

quantity we want to predict is always observed about one month after the estimation

date t.

Table 5: Predicting future risk-neutral quantities for the S&P 500

We use as dependent variables the selected quantities of the future option-implied distribution
of S&P 500 estimated on the expiration date t1 of the short-dated options that are used to
calibrate the AVIC at time t. “Right minus left tail” is the probability mass to the right of
the 10% monthly return minus the probability mass to the left of the −10% monthly return
(which corresponds approximately to the ±2σ event using an unconditional index volatility
σ of 0.17 p.a.), divided by the probability between the tails. Implied skewness and implied
volatility are computed from the second-period simulated return RNDs. Independent variables
are the asymmetric volatility implied correlation, VIX, the variance risk premium, and long-
dated minus short-dated implied skewness. We use non-overlapping regressions to guarantee
that the quantity we want to predict is always observed about one month after the estimation
date t. For p-values we use White (1980) standard errors adjusted for heteroskedasticity. The
sample period is July 2007 to August 2014.

Right minus left tail Implied skewness Implied volatility
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept 0.004 −0.025 −0.005 −2.135 −1.740 −1.167 0.045 0.028 0.084
0.404 0.413 0.373 0.000 0.000 0.000 0.034 0.107 0.000

AVIC 0.053 0.043 0.039 −0.801 0.026 −0.069 −0.024 0.012 0.003
0.020 0.087 0.142 0.038 0.167 0.366 0.581 0.893 0.184

VIX - 0.067 - - 2.058 - - 0.212 -
- 0.038 - - 0.000 - - 0.000 -

VRP - - −0.004 - - −0.077 - - −0.005
- - 0.837 - - 0.461 - - 0.581

Implied Skewness,
long-short - 0.023 0.018 - −0.647 −0.832 - −0.007 −0.028

- 0.063 0.213 - 0.000 0.000 - 0.729 0.033
Adjusted R2 0.065 0.126 0.073 0.052 0.556 0.363 0.002 0.600 0.095

Our results in Table 5 suggest that a more negative AVIC, that is, a higher asymmetric

volatility risk, predicts a fatter left tail of the index RND observed in the future (at t1)

(p-value of 0.02). Controlling for VIX increases the p-value to 0.09; controlling for the

VRP turns the regression insignificant (p-value of 0.14).

A more negative AVIC predicts an increase in future implied skewness (p-value of

0.04). This significance is lost, though, once we add controls. The relation is related

to the fattening of the left tail as the AVIC goes more negative. Such fattening on the

left needs to be balanced by more probability mass to the right of the mean, while the
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risk-neutral mean is fixed by the risk-free rate and the dividend yield. These movements

reduce the typical left-skewness by making the distribution more symmetric. The AVIC

does not predict second-period implied volatility.

The results show that the AVIC predicts asymmetric tail behavior of the future

(second-period) index RND, which contains important information about future invest-

ment opportunities. The use of the AVIC, which incorporates information about both

returns and future expected volatility, seems to offer benefits, compared to the use of

information on only one or the other quantity.

5.5 Bivariate RND of Returns and Future Expected Volatilities

As we have estimates in hand of the bivariate RND of returns and future expected volatil-

ity, we can price basket options written on a combination of the two quantities. The AVIC

could then inform the risk management of banks holding assets simultaneously linked to

index returns and volatility. Furthermore, the time-varying nature of our findings sug-

gests a time-varying and potentially priced role for asymmetric volatility risk. This is

relevant for the development of stochastic volatility option pricing models, which mostly

model the correlation between returns and contemporaneous volatility as a constant and

cannot consider a price of risk for that contemporaneous correlation.

Our method can also be used to compute term structures of the AVIC. Here we

compute the AVIC not of first-period returns and second-period future expected volatility

but for t-period returns and t+ 1-period future expected volatility. We find those RNDs

from options on returns that expire in t periods and options on VIX 30-day futures that

also expire in t periods.

Areas of exciting development are markets other than the S&P 500 index, for which

the AVIC can be computed. On the CBOE, options on the underlying and VIX-type

contracts exists for seven stock indices, five individual stocks, 10 commodity and country

ETFs, two interest rates, four currencies, and five volatilities. Interestingly, CBOE filed

in 2011 with the SEC for permission to introduce options on 40 VIX contracts, many of
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them from the list above.20 As of 2018, no such options on VIX are traded yet, but once

they are introduced, our methodology would also apply to all these new markets.

6. Robustness

In Section 4.3, we looked at the performance of various copulas under the physical mea-

sure. Now we are ready to also compare performance under the risk-neutral measure.

We replace the Frank copula used above by one of the alternative copulas and repeat

the AVIC optimization. We report the pricing errors (defined as the average root mean

squared relative deviation of model-based implied volatilities from observed ones, always

using the optimal copula parameter θ) in Table 1. We see that the Frank copula delivers

the lowest pricing error (0.0332) among all copulas. The Gaussian (0.0355) and Stu-

dent’s t (0.0336) pricing errors are close. The Clayton (0.0344) pricing error is somewhat

further away, but here the AVIC is shifted much lower (−0.94 compared to −0.83 for

Frank). The Gumbel copula does not work well at all, with a pricing error of 0.1031 and

a positive AVIC.

Table 6: Copula calibrations under the risk-neutral measure

The table shows the average (across all observation dates) asymmetric volatility implied correlation
from the simulated distributions and pricing errors computed as the average root mean squared
relative deviation of model-based implied volatilities from observed ones for the Frank, Student’s t,
Gaussian, Clayton, Gumbel copulas. The sample period is July 2007 to August 2014.

Model AVIC Pricing Errors
Frank −0.8328 0.0332
Student’s t −0.8478 0.0336
Gaussian −0.8350 0.0335
Clayton −0.9432 0.0344
Gumbel 0.1054 0.1031

We further investigate how sensitive the three better performing copulas (Frank,

Student’s t, and Gaussian) perform to variation in the parameter θ. For each date, we

compute the AVIC and pricing error (average root mean squared relative deviation of

20http://ir.cboe.com/press-releases/2011/16-mar-2011c.aspx
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model-based implied volatilities from observed ones) associated with different parameters

θ for our three copulas. We then compute relative deviations (in %) of pricing error from

the minimal pricing error for a range (−0.1, 0.1) of relative deviations of the AVIC from

the optimal AVIC, in which the optimal AVIC and the corresponding minimal pricing

error are based on the Frank copula. We average those relative deviations from the

minimal error along the timeline and depict them in Figure 3. The lowest pricing error

is reached for the Frank copula at the optimal AVIC. Deviating from the optimal AVIC

by around 6% on either side increases the pricing error by 1%, compared to the optimal

pricing error. Performances of Student’s t and the Gaussian copulas are worse, with

pricing errors being more than 3% higher. The sensitivity of those copulas to deviations

from the optimal AVIC is similar to the sensitivity of the Frank copula. We thus feel

vindicated to use the Frank copula in our main results.

Yet for robustness’ sake, we repeat our main results on predicting physical and risk-

neutral quantities for Student’s t and Gaussian copulas.

Using the two stronger competing copulas (Student’s t and Gaussian) to predict S&P

500 returns, volatilities, and the ex post VRP, results in Table 7 weaken when compared

to the main results in Table 4 based on the Frank copula. For both alternative copulas,

the AVIC still predicts realized volatility in the regression without controls, but the

other coefficients turn insignificant. It emerges that the choice of copula matters and the

Frank copula exhibits lower pricing errors and can better relate the AVIC to economically

relevant quantities than Student’s t or Gaussian copulas.

Predicting risk-neutral quantities for Student’s t and Gaussian copulas generates re-

sults in Table 8 that are similar to our main results in Table 5 based on the Frank copula.

All previously significant results remain so with the coefficient for the AVIC, now showing

p-values of 0.05 (up from 0.02) for univariately predicting “Right minus left tail” and

the coefficient for the AVIC, now showing p-values of 0.01 (down from 0.04) for predict-

ing implied skewness. The results generally confirm our initial intuition that the Frank

copula is the best choice for our main results.
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Figure 3: Average pricing errors

The figure shows the (time-averaged) relative deviation (in %) of pricing errors (average root
mean squared relative deviation of model-based implied volatilities from observed ones) for
the Frank (solid line), Gaussian (dot-dashed line), and Student’s t (dashed line) copulas with
respect to pricing error based on the optimal asymmetric volatility implied correlation of the
Frank copula. On the x-axis, we vary the AVIC of the three copulas by varying the parameter
θ and record the relative deviation from the associated AVIC from the optimal AVIC under the
Frank copula.
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Table 7: Predicting S&P 500 returns, volatility, and the ex post variance risk premium

We define our dependent variables as realized return, volatility, and the ex post VRP, measured
from the observation date to the expiration date of the nearest maturity options. Independent
variables are the asymmetric volatility implied correlation, VIX, the variance risk premium,
and long-dated minus short-dated implied skewness. The p-values are based on the Newey and
West (1987) standard errors. The sample period is July 2007 the August 2014. In Panel A we
use Student’s t copula and in Panel B the Gaussian copula.

Panel A: Student’s t copula
Return Volatility Ex post VRP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept −0.005 0.057 −0.304 0.089 0.030 0.232 1.675 1.506 1.140

0.034 0.388 0.452 0.007 0.408 0.000 0.000 0.000 0.003
AVIC −0.062 −0.207 −0.202 −0.106 0.043 −0.033 −0.405 −0.622 −0.682

0.382 0.793 0.832 0.008 0.225 0.741 0.467 0.153 0.109
VIX - −0.838 - - 0.849 - - −0.508 -

- 0.402 - - 0.000 - - 0.474 -
VRP - - 0.089 - - −0.030 - - 0.108

- - 0.217 - - 0.001 - - 0.196
Implied Skewness,
long-short - 0.013 0.053 - −0.016 −0.074 - 0.280 0.289

- 0.330 0.700 - 0.008 0.000 - 0.029 0.017
Adjusted R2 −0.003 0.005 0.001 0.016 0.581 0.147 0.001 0.020 0.024

Panel B: Gaussian copula
Return Volatility Ex post VRP

(1) (2) (3) (4) (5) (6) (7) (8) (9)
Intercept 0.004 0.065 −0.288 0.087 0.027 0.229 1.667 1.497 1.143

0.025 0.413 0.528 0.017 0.550 0.000 0.000 0.000 0.006
AVIC −0.053 −0.200 −0.190 −0.110 0.040 −0.037 −0.420 −0.640 −0.695

0.301 0.912 0.964 0.013 0.341 0.717 0.511 0.184 0.145
VIX - −0.831 - - 0.847 - - −0.500 -

- 0.407 - - 0.000 - - 0.482 -
VRP - - 0.087 - - −0.030 - - 0.105

- - 0.222 - - 0.001 - - 0.217
Implied Skewness,
long-short - 0.013 0.052 - −0.016 −0.074 - 0.280 0.289

- 0.320 0.711 - 0.008 0.000 - 0.030 0.017
Adjusted R2 −0.003 0.005 0.001 0.016 0.581 0.147 0.001 0.020 0.024
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Table 8: Predicting future risk-neutral quantities for the S&P 500

We use as dependent variables the selected quantities of the future option-implied distribution
of S&P 500 estimated on the expiration date t1 of the short-dated options that are used to
calibrate the AVIC at time t. “Right minus left tail” is the probability mass to the right of
the 10% monthly return minus the probability mass to the left of the −10% monthly return
(which corresponds approximately to the ±2σ event using an unconditional index volatility
σ of 0.17 p.a.), divided by the probability between the tails. Implied skewness and implied
volatility are computed from the second-period simulated return RNDs. Independent variables
are the asymmetric volatility implied correlation, VIX, the variance risk premium, and long-
dated minus short-dated implied skewness. We use non-overlapping regressions to guarantee
that the quantity we want to predict is always observed about one month after the estimation
date t. For p-values we use White (1980) standard errors adjusted for heteroskedasticity. The
sample period is July 2007 to August 2014. In Panel A we use Student’s t copula and in Panel B
the Gaussian copula.

Panel A: Student’s t copula

Right minus left tail Implied skewness Implied volatility
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept −0.004 −0.032 −0.012 −2.184 −1.847 −1.351 0.032 0.017 0.064
0.450 0.157 0.991 0.000 0.000 0.000 0.115 0.393 0.003

AVIC 0.042 0.036 0.030 −0.853 −0.102 −0.282 −0.039 −0.002 −0.020
0.052 0.116 0.255 0.012 0.702 0.581 0.113 0.183 0.673

VIX - 0.071 - - 2.038 - - 0.211 -
- 0.028 - - 0.000 - - 0.000 -

VRP - - −0.004 - - −0.079 - - −0.005
- - 0.777 - - 0.434 - - 0.535

Implied Skewness,
long-short - 0.025 0.020 - −0.626 −0.793 - −0.005 −0.024

- 0.035 0.134 - 0.000 0.000 - 0.931 0.070
Adjusted R2 0.046 0.120 0.062 0.075 0.557 0.372 0.031 0.597 0.105

Panel B: Gaussian copula

Right minus left tail Implied skewness Implied volatility
(1) (2) (3) (4) (5) (6) (7) (8) (9)

Intercept −0.002 −0.029 −0.011 −2.287 −1.937 −1.445 0.031 0.017 0.064
0.163 0.237 0.863 0.000 0.000 0.000 0.159 0.446 0.004

AVIC 0.046 0.040 0.033 −0.994 −0.213 −0.405 −0.040 −0.002 −0.021
0.045 0.108 0.243 0.005 0.752 0.315 0.127 0.200 0.694

VIX - 0.071 - - 2.023 - - 0.211 -
- 0.029 - - 0.000 - - 0.000 -

VRP - - −0.004 - - −0.083 - - −0.006
- - 0.843 - - 0.385 - - 0.509

Implied Skewness,
long-short - 0.024 0.020 - −0.611 −0.773 - −0.005 −0.024

- 0.037 0.147 - 0.000 0.000 - 0.925 0.073
Adjusted R2 0.049 0.122 0.063 0.091 0.560 0.378 0.029 0.597 0.105
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7. Conclusion

In our exploration of asymmetric volatility risk, we began by measuring the asymmet-

ric volatility realized correlation between S&P 500 index returns and (relative changes

in) future realized volatility. Using a novel identification strategy, we also manage to

work out its risk-neutral counterpart, the asymmetric volatility implied correlation, from

short-dated options on VIX futures and short- and long-dated index options. The asym-

metric volatility correlation risk premium (asymmetric volatility realized minus implied

correlation) is positive and significantly different from zero.

A more negative asymmetric volatility implied correlation predicts a higher return

and a higher ex post variance risk premium. It further predicts second-period risk-neutral

quantities, namely a higher probability of a future market crash (tail probability). These

results remain in place when we control for VIX, the ex ante variance risk premium, and

long-dated minus short-dated implied skewness.

Our work provides new ideas for risk management and the pricing of portfolios of

index and volatility related securities. Extensions are possible to term structures of

asymmetric volatility implied correlation. Currently, permission to introduce options on

VIX for 40 further markets has been requested from the SEC, widening the applications

of our method. In the future, we intend to look at bivariate pricing kernels and asset

pricing tests, which could use asymmetric volatility implied correlation as a factor.
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