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It has been a while since the literature on the pricing kernel puzzle was summarized in 

Jackwerth (2004). That older survey also covered the topic of risk-neutral distributions, which 

was itself already surveyed in Jackwerth (1999). Much has happened in those years and 

estimation of risk-neutral distributions has moved from new and exciting in the last half of the 

1990s to becoming a well-understood technology. Thus, the present survey will focus on the 

pricing kernel puzzle, which was first discussed around 2000. We document the pricing kernel 

puzzle in several markets and present the latest evidence concerning its (non-)existence. 

Econometric studies are detailed which test for the pricing kernel puzzle. The present work 

adds much breadth in terms of economic explanations of the puzzle. New challenges for the 

field are described in the process.  
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1.	Introduction	and	a	simple	model	of	the	pricing	kernel	

The pricing kernel m is of fundamental concern to all of modern finance as it is the basis for 

all pricing:  

1       (1) 

where E[] is the expectation under the physical (true) probabilities p across states and R is the 

return in each state. The pricing kernel m is the ratio of state prices  and physical 

probabilities p or, alternatively, of discounted risk-neutral probabilities (q/Rf) and physical 

probabilities: 

      (2) 

The pricing kernel informs us on how we need to adjust payoffs X such that we can take 

simple expectations in order to obtain the price of the security. It thus contains important 

information about the investor’s assessment of different states: payoffs in states associated 

with low wealth/consumption are valued highly (m is large). 

We can appreciate the link between the pricing kernel and preferences in a simple one-period 

economy. The representative investor maximizes the expected value of end of period utilities 

of consumption U(Ci) in states i, where the investor is endowed with an initial wealth of w
0

and the utility function is concave. The investor can choose to collect hi units of wealth in 

state i and, in equilibrium, consumption needs to equal collected wealth in each state. The 

optimization problem, including the budget constraint, reads then as: 

max
,

max
,

	 		

s. t. ∑ 	       (3)	

and	 	for	 1, … , , 

 



3 
 

where pi are the physical probabilities in states i and i are the state prices. Assuming an 

interior solution, we write the first order conditions as: 

	 ’ 	for	 1, … , ,     (4) 

where  is the Lagrange multiplier associated with the budget constraint. Note that neither the 

pricing kernel (  =	  /  =	 ’  / ) nor the risk-free rate are so far uniquely identified. 

To achieve such identification, we assume that the representative agent needs to hold all 

securities in equilibrium so that the collected wealth hi needs to equal w0 Ri, where Ri is the 

return on the market in state i. Then,  

	 ’ 	for	 1, … , .    (5) 

Summing up across states and further assuming the existence of a risk-free security means 

that the sum ∑  = (1/ ) = 
∑ 	 ’

, where  is one plus the risk-free rate. This 

allows us to identify  and to express the pricing kernel, while substituting for , as:  

’

∑ 	 ’
	for	 1, … , .   (6) 

Equation (6) informs us that the pricing kernel is proportional to marginal utility. Any insight 

into the pricing kernel thus translates into knowledge about aggregate investor preferences in 

our economy. In particular, standard concave utility functions, such as power and exponential 

utility, lead to positive and monotonically decreasing pricing kernels.  

Empirically, it emerges that estimated ratios of risk-neutral and physical probabilities often 

exhibit non-decreasing parts. Such findings constitute the pricing kernel puzzle, and we will 

return to it promptly in the next section.  

A second line of research uses market data to infer the (parametric) utility function of a 

representative investor. A starting point is the equity premium puzzle of Mehra and Prescott 

(1985). Here, a stylized economy with a representative investor economy with power utility is 

being calibrated to market data. The resulting risk aversion coefficients tend to be much too 
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high when compared to survey based estimates. This literature has been continued in 

Kocherlakota (1996) and Mehra (2008), with international evidence added in Pozzi, de Vries, 

and Zenhorst (2010) and Dimson, Marsh, and Staunton (2012). Closely related is the work by 

Bartunek and Chowdhury (1997) who use power utility and Benth, Groth, and Lindberg 

(2010) who use exponential utility instead; both papers calibrate to options data. 

2.	The	pricing	kernel	puzzle	

We are more interested in a third approach, the direct estimation of the pricing kernel m via 

Equation (2), which uses as inputs the physical distribution and the option-implied risk-

neutral distribution. Bates (1996a, 1996b) points out that the two stochastic processes seem to 

be incompatible. Finally, Jackwerth (2000), Ait-Sahalia and Lo (2000), and Rosenberg and 

Engle (2002) estimate the empirical pricing kernel by dividing the risk-neutral distribution by 

the physical distribution. They document the surprising result that the pricing kernel is locally 

increasing while a simple model such as the one in Equation (6) suggests a monotonically 

decreasing pricing kernel. The pricing kernel puzzle was born.  

We now document the pricing kernel puzzle in a worked example, which broadly follows 

Jackwerth (2000 and 2004) and draws on additional papers to make basic points about the 

empirical implementation of the pricing kernel puzzle. The full range of papers on the topic 

will be surveyed in Section 3.  

To start our investigation, we need an asset, which is highly correlated with overall wealth in 

the economy. For the US, the S&P 500 index is the asset of choice as it is seen as a reasonable 

proxy for the market return even though it does not cover all investment opportunities of a 

representative investor. It also comes with a deep and liquid market for options on the index, 

which we will need momentarily. Studying Equation (2), we require three quantities, (one 

plus) the risk-free rate Rf , the risk-neutral probabilities p, and the physical probabilities q. 
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Estimation of the interest rate is an easy task as the discounting effect is small over the typical 

horizons of 30 to 60 days. 

2.1.	How	to	estimate	the	risk‐neutral	distribution	q?	

Rubinstein’s (1994) seminal article allowed for the first time to recover risk-neutral, option-

implied distributions. Jackwerth and Rubinstein (1996) extended and applied that technique to 

the S&P 500 index options. Taking the last step of finding the empirical pricing kernel 

through dividing the risk-neutral probability distribution by the physical distribution seems 

obvious in retrospect but was not quite so clear at the time. 

Estimation of the risk-neutral distribution is by now a well-established field of research and a 

large literature covers it, from which we summarize some papers in Table 1. 
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Table 1. We list some papers on the extraction of risk-neutral densities from option prices and 

the use of such densities. 

Name of paper Comments 

Papers covered in the text  
Rubinstein (1994) First risk-neutral density fit 
Jackwerth and Rubinstein 
(1996) 

Extended fit based on smoothness criterion 

Jackwerth (2004) Survey and new “fast and stable” method 
Haerdle, Okhrin, and Wang 
(2015) 

Analyzes the effect of errors in the raw data; kernel based 
method 

  
Papers not covered in the 
text 

 

Jackwerth (1999) Survey 
Bahra (1997) Survey, mixture of two lognormals 
Melick and Thomas (1997) Mixture of three lognormals 
Ait-Sahalia and Lo (1998) Kernel regression of implied volatilities 
Bliss and Panigirtzoglou 
(2002, 2004) 

Splines, based on Shimko (1993) 

Figlewski (2010)  
Fengler and Hin (2015) B-splines 
Ludwig (2015) Neural networks 
EZB (2011) Applications using risk-neutral densities 
Carr, Geman, Madan, and 
Yor (2002) 

Based on CGMY Levy-process 

David and Veronesi (2014) Risk-neutral volatilities and macro variables 
Martin (2017) Expected market return and risk-neutral volatility  
Christoffersen, Jacobs, and 
Chang (2013) 

Survey on forecasting with risk-neutral information 

 

Given a sufficiently large cross section (more than 10 option strike prices), most methods 

perform relatively similarly and yield the desired risk-neutral distributions where one 

typically uses the SPX options on the S&P 500 index with maturities of 30 to 60 days. 

In the recent literature, curve fitting of the implied volatility has become the most popular 

starting point for backing out risk-neutral distributions. To illustrate, we review the fast and 

stable curve fitting approach of Jackwerth (2004). First, the option prices observed in the 

market are converted to implied volatilities	 , where  denotes the Black-Scholes 

implied volatility of an option with strike price . Second, one chooses a smoothness 
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parameter  and solves the following optimization problem to obtain an implied volatility 

curve  on a fine grid: 

min ∑ 	 	 	∑ 	     (7) 

The coarseness of the grid is given by Δ, which defines the distance between two consecutive 

strike prices, and  denotes the numerical approximation to the second derivative of the 

implied volatility curve. Equation (7) has a straightforward closed form solution for , 

see Jackwerth (2004). By varying over 	one can choose a reasonable trade-off between 

smoothness (sum of the second derivatives over j) and fit (sum of the squared errors over i). 

Finally, the smooth implied volatilities curve is translated back to a call option price curve, 

whose second derivative is the compounded risk-neutral density: 

	 |     (8) 

The relationship in Equation (8) was first established in Breeden and Litzenberger (1978).  

Care needs to be taken in implementing Equation (8), as a smooth solution depends heavily 

on the spacing . Using a $5 spacing as in the market data leads to jagged solutions, see for 

example Barone-Adesi and Dall’O (2010). Using half or a quarter of $5 leads to much better 

results.  

Turning attention from the impact of spacing to the impact of pricing errors, Haerdle, Okhrin, 

and Wang (2015) pick up on the older work of Bliss and Panigirtzoglou (2002) and analyze 

the impact of errors in option prices or implied volatilities on the empirical pricing kernel. 

Both the risk-neutral distribution and the physical distribution are being obtained through 

kernel based techniques, which allows Haerdle, Okhrin, and Wang (2015) to describe the 

uniform confidence bands around the empirical pricing kernel in statistical terms. 
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In Figure 1 we present representative risk-neutral distributions for the S&P 500 in the US, the 

DAX 30 in Germany, the FTSE 100 in the UK, and the Nikkei 225 in Japan. We also depict 

the physical distributions, which we discuss next.  

 [Figure 1 about here] 

2.2.	How	to	estimate	the	physical	distribution	p?	

Those physical distributions in Figure 1 are based on 38- to 45-day, non-overlapping returns 

of the S&P 500 index within moving, 4-year historical windows. The horizons of the returns 

(38 to 45 days) are chosen such that they match the maturity of the underlying options. The 

returns are then smoothed through a kernel density estimator where the bandwidth is chosen 

according to Silverman’s (1986) rule of thumb.  

Kernel densities do not rely on any distributional assumptions except the stationarity of the 

returns and were used in Jackwerth (2000 and 2004) and Ait-Sahalia and Lo (2000). 

However, in the presence of time-varying volatility and structural breaks, more recent papers 

have turned to GARCH models. Thus, Rosenberg and Engle (2002), Barone-Adesi, Engle, 

and Mancini (2008), and Barone-Adesi and Dall’O (2010) all fit the Glosten, Jagannathan, 

and Runkle (1993) GARCH model (GJR GARCH) to historical returns.1  

In particular, the daily log return  is modeled as the sum of a constant  and an error term 

: 

ln 	 	      (9) 

The error term is given by 	 , where 	is standard normal and the volatility process  

is recursively defined by: 

	     (10) 

                                                 
1 For the fit of a continuous time Levy-processes see Carr, Geman, Madan, and Yor (2002). 
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where , , , and  are model parameters, which are usually estimated by maximum 

likelihood. In contrast to ordinary GARCH models, the GJR GARCH can account for the 

leverage effect by treating positive and negative shocks differently through the indicator 

function .  

A perennial problem for estimating the physical distribution is the so-called Peso problem. 

What if the historical returns do not include an event (say a crash), but investors have longer 

memories and incorporate such fears into their subjective distributions? Luckily, Jackwerth 

(2000) argues that a peso problem cannot explain the pricing kernel puzzle, since for the first 

4 years past the crash, the crash is “visible” in the physical distribution based on the historical 

returns. Still, the results do not change compared with periods where the crash is no longer 

visible because, on the date of the investigation, the crash lies more than 4 years into the past. 

In a theoretical setting, Ziegler (2007) confirms the point that a Peso problem cannot explain 

the pricing kernel puzzle. See Section 4.1 for details. 

2.3.	Possible	shapes	of	the	pricing	kernel	and	statistical	evidence	

After dividing the risk-neutral distribution by the physical distribution, we obtain the 

empirical pricing kernels, which are depicted in Figure 2. Note the tilde-shaped hump around 

at-the-money, which is inconsistent with Equation (6) according to which the empirical 

pricing kernel is monotonically decreasing in returns since it is proportional to the marginal 

utility of a risk-averse investor. For such a risk-averse investor, utility is concave and 

marginal utility is decreasing. Moreover, equilibrium is ruled out as a non-decreasing pricing 

kernel implies the existence of a portfolio that stochastically dominates the market, see 

Sections 5 and 6. A non-decreasing pricing kernel hence clashes with our basic intuitions and 

contradicts most standard market models. The violation of monotonicity has been labeled as 

the “pricing kernel puzzle,” and we will investigate possible explanations in Section 5. 

[Figure 2 about here] 
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When looking at the empirical pricing kernels from the beginning of this research area, one 

observes various shapes at different points in time. Figure 3 shows a tilde-shaped pricing 

kernel in 1993, a u-shape in 1999, and w-shaped pricing kernels in 2004 and 2013.  

[Figure 3 about here] 

To understand the different shapes, we refer to the empirical findings of Cuesdeanu (2016), 

who examines the S&P 500 from 1988 to 2015 and finds that (i) missing out-of-the money 

calls, (ii) misestimated subjective probabilities, and (iii) a time varying variance risk premium 

all contribute to the empirical shapes. (i) If deep out-of-the-money calls cannot be observed, 

one has to make assumptions about the right end of the implied volatility curve. The right end 

of the pricing kernel then reacts very sensitively to small changes in the implied volatility 

curve. However, when deep out-of-the-money calls are observed, the pricing kernel turns out 

to be increasing at the right end. (ii) The time-series model for estimating the subjective 

density matters in particular for the right end of the pricing kernel. Models with a fat right tail 

and thus a pricing kernel, which decreases at the right end, fit the data more poorly than 

models with a thin right tail and thus a pricing kernel, which increases at the right end. Hence, 

issues (i) and (ii) imply either w- or u-shaped pricing kernels as opposed to tilde-shaped ones. 

(iii) Last, obtaining sometimes w-shaped and sometimes u-shaped pricing kernels can be 

explained by a time varying variance risk premium. Pricing kernels tend to be u-shaped in 

times of high uncertainty (variance risk premium is high) and w-shaped in calm periods 

(variance risk premium is low). Moreover, tilde-shaped pricing kernels tend to emerge during 

calm periods when no out-of-the-money calls are observed, the fit to these options is poor, or 

the right tail of the subjective density is overestimated. Finally, monotonically decreasing 

pricing kernels can emerge during volatile periods when no out-of-the-money calls are 

observed or the fit to these options is poor. 
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2.4.	Economics	of	the	pricing	kernel	puzzle	

Now that we have established the pricing kernel puzzle, we turn to the economics of the 

puzzle and its solutions. Taking the pricing kernel puzzle to be literally true, however, seems 

like a naïve interpretation. In that case, the representative investor of the simple economy in 

Section 1 would need to have a convex segment in the utility function, akin to the Friedman 

and Savage (1948) utility function in Figure 4.2 For a representative investor, this is hard to 

reconcile with equilibrium. It would mean that the representative investor was better off by 

not investing into states of world, where the index pays off when the utility function is 

convex. Rather, the representative investor would prefer a lottery over the two adjacent states 

(0.9 and 1.1 on the return axis of Figure 4) where the utility function turns concave again. But 

such avoidance of states jars with the notion that the representative investor needs to hold all 

assets by definition. Rather, security prices need to adjust so that the representative investor is 

willing to hold all assets in equilibrium. This point is made more rigorously in Hens and 

Reichlin (2013). 

[Figure 4 about here] 

Looking at the equilibrium problem for a different angle, Beare (2011) works out, based on 

some earlier results by Dybvig (1988), measure preserving derivatives which any investor 

                                                 
2 Note that Friedman and Savage (1948) introduced their utility function for individuals and 

not for the representative investor. In particular, their concern was with small stakes gambling 

such as buying a lottery ticket. Chetty and Szeidl (2007) provide a microeconomic motivation 

for Friedman-Savage utility via consumption commitments (e.g. housing), for which the 

spending cannot easily be adjusted. Again, this is a model of individual investors, and it is not 

obvious that the convexities would survive aggregation to a representative investor. See 

Ingersoll (2014) for related results on another partially convex utility function, namely 

cumulative prospect theory. 
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should prefer to investing into the market (see also Rieger (2011)). Their prices are less than 

the price of the market in times where the pricing kernel puzzle exists, and Beare and Schmidt 

(2015) show that returns on an option portfolio exploiting this circumstance actually 

stochastically dominate market returns. While such disequilibrium could well exist for some 

period in time, it is hard to see how such a situation could persist unabated ever since the 

crash of 1987. 

There exists a close connection between pricing kernels and the concept of stochastic 

dominance, which expresses dominance relations between probability distributions on which 

all investors of a certain class agree. Our setting of positive and decreasing pricing kernels 

uses the class of risk-averse investors (i.e., those with concave utility functions), and the 

corresponding concept is the one of second order stochastic dominance. 

We look at solutions in more detail in Section 4. Based on the above reservations about single 

state variable models, much interest centers on multiple state variable models, where the 

pricing kernel is monotonic in several dimensions such as index return and volatility. 

Projecting the multivariate pricing kernel onto the index return dimension can then lead to the 

pricing kernel puzzle. A promising alternative approach is the demand based model of Bollen 

and Whaley (2004), who explicitly model the portfolio insurance demand of investors for out-

of-the-money puts on the index. In particular, their model can reconcile the moderate implied 

volatility smiles for stocks with the steep smiles for the index. 

The pricing kernel puzzle also touches on a number of related economic concepts. First, 

Equation (1) governs not only index returns but also index option returns. We can thus also 

investigate vestiges of the pricing kernel puzzle in option returns; a discussion which we 

follow in Section 3.2. Second, a complementary aspect to the pricing kernel puzzle is the 

problem of bounds on option prices, detailed in Section 5. Here, the maximal and minimal 

option prices are found, which are still consistent with a class of particular pricing kernels 

(say, those of risk-averse investors). Rather than focusing on the pricing kernel exactly 
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consistent with observed option prices (the focus of the pricing kernel puzzle), the interest 

here is on the most restrictive class of pricing kernel, which can just explain observed option 

prices. The classes of pricing kernels (say, those of risk-averse investors) often have 

alternative expressions in terms of stochastic dominance relations (here, of second order 

stochastic dominance). 

Finally, we mention two applications of the pricing kernel puzzle. 

Kostakis, Panigirtzoglou, and Skiadopoulos (2011) use the option-implied, risk-neutral 

distribution for the S&P 500 index and the assumption of an exponential or power utility to 

obtain forward-looking physical distributions. They basically apply the methodology of Bliss 

and Panigirtzoglou (2004) to a dynamic asset allocation problem. The risk aversion 

coefficient is iteratively estimated up to time t in order to make a prediction of the physical 

distribution at time t+1. They find that the forward-looking physical distributions produce 

better portfolios than the historical distributions, even though the approach ignores the pricing 

kernel puzzle by design.3 It would be interesting to see if a more flexible pricing kernel would 

outperform the pricing kernels based on exponential and power utility functions.  

3.	Does	the	pricing	kernel	puzzle	exist?	

Most of the work on the pricing kernel puzzle investigates the S&P 500 index, and there are 

recent additions to this literature. The pricing kernel puzzle exists in the returns on the index 

and also in the returns on options on the index. A large number of studies have subsequently 

investigated if the pricing kernel puzzle also exists in other indices and have largely 

confirmed this finding for a number of large indices (e.g. the DAX and the FTSE). Little is 

known about the time-series properties of the pricing kernel puzzle. Finally, we turn to 

                                                 
3 Zdorovenin and Pezier (2011) use a close variant, too, and are subject to the same critique as 

Kostakis, Panigirtzoglou, and Skiadopoulos (2011). 
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investigations of the pricing kernel puzzle in markets other than index markets. The main 

issue here is that the pricing kernel is now the projection of the economy-wide pricing kernel 

onto the space of returns investigated (say returns on gold). Depending on the correlation 

between the index (proxying for aggregate wealth) and gold (as a possible return under 

investigation), the projected pricing kernel might not exhibit any puzzling behavior.  

3.1.	Yes,	the	pricing	kernel	puzzle	exists	in	index	markets	

Three early papers establish the pricing kernel puzzle. Using monthly S&P 500 index options 

from 1986 through 1995, Jackwerth (2000) suggested to approximate the risk aversion 

function -U’’(Ri) / U’(Ri)) directly as  (p’ / p) – (q’ / q), which is a positive function as long as 

the utility function is concave and marginal utility is positive. The risk aversion function turns 

out to be more complicated as opposed to the more straightforward pricing kernel (Equation 

(2)). A number of robustness checks confirm the result that the empirical risk aversion 

functions are u-shaped and negative around at-the-money during the post-87-crash period, 

while they are mainly positive and decreasing during the pre-crash period. As a (locally) 

negative risk aversion function implies a (locally) increasing pricing kernel, the pricing kernel 

puzzle emerges. 

Ait-Sahalia and Lo (2000) derived the pricing kernel independently of Jackwerth (2000) as 

the ratio of the risk-neutral distribution (obtained via the method of Ait-Sahalia and Lo 

(1998)) and the physical distribution obtained through a kernel based estimator. Based on 

half-yearly returns during the year 1993 they can document the pricing kernel puzzle. The 

authors very graciously delayed publication so that their paper would not appear in print 

before the publication of Jackwerth (2000) which was started earlier but was long delayed at 

the journal. 
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The third of the canonical models, which are typically cited to establish the pricing kernel 

puzzle, is Rosenberg and Engle (2002). Using monthly data from 1991 to 1995 on the S&P 

500 index options, they start by obtaining the physical distribution from the parametric GJR 

GARCH model of Glosten, Jagannathan, and Runkle (1993) fitted to historical returns. They 

next specify the pricing kernel parametrically, which allows them to obtain the risk-neutral 

distribution and thus derive model-implied option prices. The parameters of the pricing kernel 

are optimized such that the sum of squared option pricing errors is being minimized. A 

monotonically decreasing pricing kernel is being fitted, but mispricing can be much reduced 

when more flexible functional forms for the pricing kernel are allowed, leading to the pricing 

kernel puzzle yet again.  

3.1.1.	Testing	the	pricing	kernel	puzzle	

The canonical models provide bounds around the pricing kernel estimates simply based on the 

sample variation of the inputs, namely, historical returns and option prices, and those bounds 

do not constitute formal tests of monotonicity. Using the bounds suggests that the estimated 

pricing kernels exhibit local increases exceeding those bounds. The main finding of Jackwerth 

(2000) is presented in his figure 3 where the risk aversion functions are negative by more than 

two standard deviations. Ait-Sahalia and Lo (2000) provide the 5% and 95% quantiles around 

their pricing kernel, and, by visual inspection, the upper quantile at an index value of 400 is 

very close to the lower quantile at an index value of 435. While this argument is not a formal 

statistical test, it is still highly suggestive of the presence of the pricing kernel puzzle. 

Rosenberg and Engle (2002) document the pricing kernel puzzle in their figure 6, which 

shows a clear local increase in the pricing kernel beyond the two standard deviation bounds.  
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A careful study of small sample noise in both the physical and the risk-neutral distribution is 

Leisen (2014).4 He finds that spurious non-monotonicities can arise for simulations of power 

utility pricing kernels. The problem is particularly relevant if the physical distribution is based 

on historical samples of only 48 monthly returns, and the situation improves much once a 

GARCH(1,1) model is estimated. Also, the risk-neutral distributions are based on Ait-Sahalia 

and Lo’s (2000) kernel-based method, which is noisier than other methods for backing out 

risk-neutral distributions from option prices. 

The complicated issue of formally testing for locally increasing segments of the estimated 

pricing kernel has been taken up in Golubev, Haerdle, and Timofeev (2014) under the strong 

assumption of iid realized returns. The idea is to map the problem to an exponential model 

and check for pricing kernel monotonicity between any two realized returns in the sample. 

The fairly complicated test then considers the joint distribution of monotonicity violations 

across all possible combinations of observed returns. Applying their test to the DAX index 

during the summers of 2000, 2002, and 2004, monotonicity could be rejected at the 10% 

significance level in 2002, but not for the years 2000 and 2004.  

Another test is Härdle, Grith, and Mihoci (2014), which uses the market model of Grith, 

Haerdle, and Krätschmer (2016). Here, the pricing kernel is parameterized as two decreasing 

segments with some breakpoint where the pricing kernel jumps up or down. Comparing 

GMM estimates of the restricted model (the two segments join smoothly in a decreasing 

manner) versus the unrestricted model, the authors employ a so-called D-test and reject 

pricing kernel monotonicity in typically four out of five cases.  

A further attempt at designing a formal statistical test is Beare and Schmidt (2014) who base 

their test on the equivalence of the monotonicity of the pricing kernel and the concavity of the 

                                                 
4 See also Lioui and Malka (2004) for reported differences due to using either only call or 

only put options. 
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ordinal dominance function. The latter function is the cumulative risk-neutral distribution of 

the quantile function of the physical distribution. They find that in about half the months from 

1997-2009, the pricing kernel puzzle can be detected at the 5% significance level. We collect 

tests in Table 2. 

 

Table 2. We list statistical tests of pricing kernel monotonicity. 

Name of paper Comments 

Papers covered in the text  
Jackwerth (2000) Using in-sample two standard deviation bounds 
Ait-Sahalia and Lo (2000) 5% and 95% quantiles 
Rosenberg and Engle (2002) Using in-sample two standard deviation bounds 
Leisen (2014) Theoretical and simulated aspects of noise in pricing kernel 

estimation 
Golubev, Haerdle, and 
Timofeev (2014) 

Assumes iid returns; formal test of monotonicity violations 

Härdle, Grith, and Mihoci 
(2014) 

Tests for increasing breakpoint between two decreasing 
segments of the pricing kernel 

Beare and Schmidt (2014) Concavity test of the ordinal dominance function 
Cuesdeanu and Jackwerth 
(2016) 

Test for uniformity of the percentiles of observed returns 
under the physical cumulative distribution function 

  
Papers not covered in the 
text 

 

Shive (2003) Bootstrap test 
Shive and Shumway (2004) Bootstrap test 
Patton and Timmermann 
(2010) 

Monotonic relation test for asset returns. Has not been used 
empirically 

 

Cuesdeanu and Jackwerth (2016) suggest a simpler test based on risk-neutral distributions, 

which have been divided by some pricing kernel to find the physical probability distributions 

at each observation date. Working out the quantiles of the observed market returns under the 

physical cumulative distribution function, the quantiles throughout the sample should be 

standard uniformly distributed, see Bliss and Panigirtzoglou (2004), Diebold, Gunther, and 

Tay (1998) and Diebold, Tay, and Walis (1999). The authors then optimize several test 

statistics of uniformity while either restricting or not restricting the pricing kernel to be 
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monotonically decreasing. The discrepancy in optimized test statistics can then be tested 

against its simulated distribution. Cuesdeanu and Jackwerth (2016) confirm the presence of 

the pricing kernel puzzle in the S&P 500 index options data from 1987 to 2015.5 Note that the 

paper, as opposed to the earlier canonical studies (which mix backward-looking estimates of 

the physical distribution with forward-looking risk-neutral distributions in order to finally find 

the empirical pricing kernel as the ratio q/p), uses only forward-looking data, namely, the 

physical returns are forward-looking and no longer based on historical samples. 

3.1.2.	Further	studies	on	the	S&P	500,	other	indices,	and	time	series	properties	of	

the	pricing	kernel	puzzle	

Most of the initial studies use the S&P 500 index. We summarize a number of follow-up 

studies on the S&P 500 and other indices (DAX 30, FTSE 100, and others) in Table 3. 

 

                                                 
5 Compare Linn, Shive, and Shumway (2014), who can only establish the pricing kernel 

puzzle for the FTSE 100 but not for the S&P 500. Cuesdeanu and Jackwerth (2016) attribute 

this result to (i) a lack of scaling so that the physical distributions of Linn, Shive, and 

Shumway (2014) are not integrating to one and (ii) a mismatch in their optimization (based on 

moments of the uniform distribution via GMM) and their measurement of fit (based on the 

Cramer van Mises statistic). 
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Table 3. We list empirical papers, which document the pricing kernel puzzle in index markets. 

Name of paper Market studied Comments 

Papers covered in the text   
Jackwerth (2000) S&P 500 Locally increasing pricing kernel 
Ait-Sahalia and Lo (2000) S&P 500 Locally increasing pricing kernel 
Rosenberg and Engle 
(2002) 

S&P 500 Locally increasing pricing kernel 

Song and Xiu (2016) S&P 500 Also use information on VIX 
Giacomini and Haerdle 
(2008) 

DAX Locally increasing pricing kernel 

Grith, Haerdle, and Park 
(2013) 

DAX Locally increasing pricing kernel 

Coval and Shumway 
(2001) 

S&P 500 Use of option returns and not prices 

Broadie, Chernov, and 
Johannes (2009) 

S&P 500 Use of option returns and not prices 

Chaudhury and Schroder 
(2015) 

S&P 500 Use of option returns and not prices 

Bali, Cakici, Chabi-Yo, and 
Murray (2017) 

S&P 500 Use of option returns and not prices 
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Bakshi and Madan (2007) S&P 500 Use of option returns and not prices 
Bakshi, Madan, and 
Panayotov (2010) 

S&P 500 Use of option returns and not prices 

   
Papers not covered in the 
text 

  

Figlewski and Malik 
(2014) 

S&P 500 Locally increasing pricing kernel 

Hill (2013) S&P 500 Locally increasing pricing kernel 

Yang (2009) S&P 500  
Audrino and Meier (2012) S&P 500 Uses B-splines for the pricing kernel 

Carr, Geman, Madan, and 
Yor (2002) 

13 stocks and 8 indices, 
including S&P 500 

Fits Levy-processes, u-shaped pricing 
kernel 

Wu (2006) S&P 500 Extends Carr, Geman, Madan, and 
Yor (2002) 

Belomestny, Haerdle, and 
Krymova (2017) 

DAX  

Dittmar (2002) 20 industry portfolios u-shaped pricing kernel 
Schweri (2010) 30 industry portfolios u-shaped pricing kernel 
Shive (2003) 
 

S&P 500, DAX, FTSE Locally increasing pricing kernel 

Shive and Shumway (2004) S&P 500, DAX, FTSE, 
OMX Sweden 

Locally increasing pricing kernel in 
the unconstrained version 

Shive and Shumway (2009) S&P 500, DAX, 
AMEX Japan 

Subsumes Shive (2003) and Shive 
and Shumway (2004), same results 

Fengler and Hin (2015) S&P 500 Locally increasing pricing kernels on 
one day for several maturities 

Golubev, Haerdle, and 
Timofeev (2014)  

DAX Locally increasing pricing kernel in 
6/2002, but not in 6/2000 or 6/2004 

Detlefsen, Haerdle, and 
Moro (2010) 

DAX Locally increasing pricing kernels in 
bear, “sideways,” but not bull market 

Haerdle, Grith, and Mihoci 
(2014) 

International cross sec-
tions of 20 stocks each  

Locally increasing pricing kernel 

Liu, Shackleton, Taylor, 
and Xu (2009) 

FTSE Locally increasing pricing kernel 

Perignon and Villa (2002) CAC 40 France Locally negative risk aversion 
function, implying the puzzle 

Coutant (1999) CAC 40 France u-shaped risk aversion function 
 

 

Song and Xiu (2016) add information about the VIX level when estimating empirical pricing 

kernels for the S&P 500 using kernel based methods akin to Ait-Sahalia and Lo (2000). They 

confirm the pricing kernel puzzle unconditionally, but cannot establish it conditionally on 

high or low VIX levels. Thus, they speculate that stochastic volatility could be driving the 
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pricing kernel puzzle but find that standard stochastic volatility option pricing models cannot 

generate the observed patterns.6 See also Section 5.2.1 which suggests solutions to the pricing 

kernel puzzle based on volatility as a second state variable. 

Very interesting are the following two studies on the DAX which try to explain the time series 

properties of the pricing kernel puzzle. First, Giacomini, Handel, and Haerdle (2008) use tick 

data for the DAX from January 1999 to April 2002 and fit a GARCH model in order to obtain 

the physical distribution. The risk-neutral distribution estimation follows Ait-Sahalia and Lo 

(2000). Then, time series of simple statistics of the pricing kernel plus the absolute and 

relative risk aversion functions at different maturities are being calculated and subjected to a 

principle component analysis. The principle components are finally regressed on returns on 

the DAX and on changes in at-the-money implied volatility. The main result seems to be the 

rather obvious finding that large changes in implied volatility lead to more volatile and time-

varying pricing kernels.  

Similarly, but using a slightly different technique, Grith, Haerdle, and Park (2013) use DAX 

data between April 2003 and June 2006. They fit a smoothing polynomial to the implied 

volatilities, translate those into option prices, and use Breeden and Litzenberger (1978) to 

obtain risk-neutral distributions. The physical distributions are based on two years’ worth of 

historical returns via kernel density estimation. Finally, power utility functions are extended 

with four additional parameters (additive and multiplicative parameters inside and outside the 

power function) to allow for non-monotonic pricing kernels. Changes in these parameters and 

the location of the peak of the pricing kernel are being regressed on changes in the credit 

                                                 
6 In particular, they find that the empirical volatility pricing kernel is u-shaped; a fact that is 

not captured by any option pricing model so far. A related observation by Boes, Drost, and 

Werker (2007) is that that the risk-neutral distribution, conditional on a low spot volatility, 

does not exhibit negative skewness.  
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spread, the yield curve slope, and the short interest rate, as well as the underlying return. The 

authors conclude from the correlations between those macro variables and the additional 

shape parameters that the locally risk loving behavior is pro-cyclical as the hump of the 

empirical pricing kernel seems to be more pronounced in calm periods.  

3.2.	Yes,	the	pricing	kernel	puzzle	exists	in	index	option	returns	

So far we studied the pricing kernel puzzle in terms of returns of the underlying security, 

often a broad index such as the S&P 500. But Equation (1), which we repeat here, also holds 

for option returns7: 

	 1																																																																		 11  

The return on a call option (Rcall) with strike price K is the payoff (S – K)+ divided by the 

price of the option, which is E[m(S – K)+]. We thus start our discussion by looking at the 

expected return on a call option under the physical measure: 

																																																				 12  

Under the assumption of a monotonically decreasing pricing kernel, call returns should be 

positive and increasing in moneyness as, intuitively speaking, the pricing kernel in the 

denominator shifts mass to the region where the call payoff is zero. A stronger result is 

presented in Coval and Shumway (2001): the expected return on a call should be greater than 

the expected return on the underlying, which broadly holds in the data.8 Coval and Shumway 

                                                 
7 For a study on forecasting option returns, see Israelov and Kelly (2017). 

8 Branger, Hansis, and Schlag (2011) do not confirm their result in more recent data, thus 

documenting the presence of the pricing kernel puzzle in the data. They further argue that 

stochastic volatility, stochastic jump option pricing models, which also have jumps in the 

volatility process, can explain those call option returns. 
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(2001) derive the relation between the derivative of the expected call price with respect to the 

strike price and the covariance between the pricing kernel and the asset price: 

	 | ,			 	|
,    (13) 

where  is a positive term that depends on the pricing kernel and the underlying but does not 

influence the result. From Equation (13) and assuming that the pricing kernel is negatively 

correlated with the underlying, it becomes clear that expected call returns will be increasing in 

the strike price. This monotonicity result, and the fact that a call with a strike price of zero 

corresponds to the underlying, explains why the expected call return should exceed the return 

on the underlying.  

The authors then investigate returns on option straddles and find evidence of priced volatility 

risk, which they cannot reconcile with power utility for the representative investor. This 

evidence is consistent with the pricing kernel puzzle but does not outright prove the case. 

Broadie, Chernov, and Johannes (2009) caution using unscaled option returns, which tend to 

be so noisy that one cannot even reject the assumption that the returns were being generated 

by the Black-Scholes model. Such findings strongly suggest scaling option returns in a 

suitable way (e.g. straddles as above or by standardizing betas as in Constantinides, 

Jackwerth, Savov (2013)). 

Chaudhury and Schroder (2015) extend the results of Coval and Shumway (2001) by showing 

that the pricing kernel is only monotonically decreasing if (conditional) expected returns on 

certain option positions (called “log-concave” and encompassing long calls, puts, butterfly 

spreads, and others) increase in the strike price. They confirm the pricing kernel puzzle based 

on data for the S&P 500 index but fail for individual stock options. This is expected due to the 

much flatter implied volatility smiles of the individual stock options. Another extension in 

Bali, Cakici, Chabi-Yo, and Murray (2017) looks at the higher risk-neutral moments of option 

returns. Song (2012) applies the ideas of Coval and Shumway (2001) to returns on options on 

volatility in the case of u-shaped pricing kernels. 
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Bakshi and Madan (2007) present a market model where the pricing kernel is u-shaped since a 

group of pessimistic investors are shorting the market index. In addition, these investors buy 

call options as an insurance against a rising index and, hence, are willing to pay a premium for 

the calls; for more details, see Section 4.1. Consistent with such market model, Bakshi, 

Madan, and Panayotov (2010) find evidence for a positive dependence between short-selling 

activity and expected call returns. Looking again at Equations (12 and 13), it is clear that a u-

shaped pricing kernel directly implies that expected returns of call options with a strike above 

a certain threshold are negative and decreasing in the strike price. Bakshi, Madan, and 

Panayotov (2010) document evidence for such a u-shaped pricing kernel.9  

3.3.	 No,	 the	 pricing	 kernel	 puzzle	 does	 not	 exist	 with	 overly	 restricted	

pricing	kernels	

While the canonical early papers backed out the pricing kernel, other researchers tried to find 

the forward looking physical probabilities by assuming a functional form for the pricing 

kernel. However, imposing severe restrictions on the pricing kernel can lead to estimates 

which will than no longer exhibit the pricing kernel puzzle despite its presence in the data. 

E.g., Chernov and Ghysels (2000) fitted the Heston (1993) model to S&P500 index returns 

and option prices. While the paper provides expressions for the pricing kernel, it is not 

immediately clear that the pricing kernel puzzle can be generated altogether, given the 

restrictive choice of only two constant risk premia (one for the market and one for volatility), 

which account for the parameter differences between the physical and the risk-neutral 

versions of the model. We collect papers, which overly restrict the pricing kernels in Table 4.  

 

                                                 
9 The empirical evidence is consistent with Branger, Hansis, and Schlag (2011); compare for 

the theoretical results also Chaudhury and Schroder (2015). 
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Table 4. Models with overly restricted pricing kernels. Types of constraint are stochastic 

volatility, stochastic jump models (SVSJ), power and exponential utility (POWER/EXP), 

maximum entropy approaches (MAX ENTROPY), shape restrictions on the risk-neutral 

density (RND SHAPE), and Ross (2015) recovery based approaches (ROSS RECOVERY). 

Name of paper Type of constraint Comments 

Papers covered in the text   
Chernov and Ghysels (2000) SVSJ  
Bliss and Panigirtzoglou 
(2004) 

POWER/EXP  

Ross (2015) ROSS RECOVERY  
Jackwerth and Menner 
(2015) 

ROSS RECOVERY Tests Ross (2015) 

Jensen, Lando, and Pedersen 
(2016) 

ROSS RECOVERY  

   
Papers not covered in the 
text 

  

Pan (2002) SVSJ Extends Bates (2000) 
Bates (2008) SCSJ  
Santa-Clara and Yan (2010) SVSJ  
Duan and Zhang (2014) POWER/EXP  
Weber (2006) POWER/EXP Uses collateralized debt obligations 
Backus, Chernov, and 
Martin (2011) 

POWER/EXP Assumes that the Merton (1976) 
model holds 

Kang and Kim (2006) POWER/EXP  
Benth, Groth, and Lindberg 
(2010) 

POWER/EXP  

Bates (2012) POWER/EXP  
Coutant (2000) POWER/EXP Based on the CAC 40 France 
Lioui and Malka (2004) POWER/EXP Based on the TA-25 Israel 
Stutzer (1996) MAX ENTROPY Extended by Alcock and Smith (2014) 

using Haley and Walker (2010) 
Barone-Adesi, Engle, and 
Mancini (2008) 

RND SHAPE Contradicted by the very similar paper 
Barone-Adesi, Mancini, and Shefrin 
(2013), which finds the puzzle 

Barone-Adesi and Dall’O 
(2010) 

RND SHAPE  

Sala (2016)  RND SHAPE  
Sala and Barone-Adesi 
(2016) 

RND SHAPE  

Audrino, Huitema, and 
Ludwig (2015) 

ROSS RECOVERY  

Jensen, Lando, and Pedersen 
(2016) 

ROSS RECOVERY  
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A second line of investigation, which specifies the utility function to be of power or 

exponential type, is also inherently not able to document the pricing kernel puzzle. The 

leading exponents are Bliss and Panigirtzoglou (2004) who start out with the risk-neutral 

distribution obtained from option prices, which they change into the physical distribution 

through division by the pricing kernel, which is given by the marginal utility of either a power 

or exponential utility function. As the parametric utility functions lead to monotonically 

decreasing pricing kernels, Bliss and Panigirtzoglou (2004) could not document the pricing 

kernel puzzle even if it were present in the data.  

The prevailing thought is that only one of the three quantities, namely risk-neutral 

probabilities, physical probabilities, and the pricing kernel, can be backed out from the other 

two. Yet Ross (2015) argues that it would be preferable to use only risk-neutral information, 

as that is well estimated, and infer both the forward looking physical distribution and the 

pricing kernel. His insight is that this can be achieved if all risk-neutral transition probabilities 

are known, as opposed to only the risk-neutral distribution. The difference is that the risk-

neutral distribution is one single distribution emanating from the initial (known) state and 

indicating the (risk-neutral) probability of moving to a future state. The risk-neutral transition 

probabilities are richer and also indicate the risk-neutral probabilities of moving from all 

hypothetical initial states to all future states, see Figure 5.  

     [Figure 5 about here]  

While the approach is theoretically very appealing, Ross (2015) requires some strong 

assumptions, which severely restrict possible pricing kernels, even though those assumptions 

do not outright preclude the existence of the pricing kernel puzzle.10 Jackwerth and Menner 

                                                 
10 Carr and Yu (2012) replace the assumptions on the utility function of a representative 

investor by assuming that the dynamics of the numeraire portfolio under the physical measure 

are being driven by a bounded diffusion. Walden (2017) extends Ross (2015) recovery to 
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(2015) study the empirical implementation of the Ross (2015) recovery and find a number of 

intractable problems. Such problems lead to poorly estimated pricing kernels and physical 

probability distributions. Jackwerth and Menner (2015) test these physical distributions based 

on the realized returns, which supposedly stem from them, and strongly reject the proposed 

physical distributions11, whereas the assumption that physical distributions can be estimated 

by using historical return distributions cannot be rejected. 

Jensen, Lando, and Pedersen (2016) develop a recovery framework that makes no assumption 

on the underlying probability distribution and allows for a closed-form solution. Practical 

implementation relies only on current option prices for different maturities, and, hence, there 

is no need for a full matrix of transition distributions as in the Ross (2015) model. 

Empirically, they find that their recovered physical return distribution has some predictive 

power, although they stress that their empirical implementation primarily has an illustrative 

purpose. Applying the Berkowitz (2001) test to the realized returns, they reject the hypothesis 

that the recovered distribution is equal to the true physical distribution. 

3.4.	No,	the	pricing	kernel	puzzle	does	not	exist	in	non‐index	asset	markets	

First a word of caution on computing the empirical pricing kernel for non-index assets 

altogether. If one adheres to some notion of preferences over consumption, then a 

concentration on the index makes much sense. After all, consumption should be correlated 

                                                                                                                                                         
unbounded diffusion processes and Huang and Shaliastovich (2014) to the state dependent, 

recursive preferences of Epstein and Zin (1989). Schneider and Trojani (2015) suggest 

recovery based on assumptions on the signs of risk premia on different moments of market 

returns. 

11 This point is also made in Borovicka, Hansen, and Scheinkman (2015) who attribute these 

problems to “misspecified recovery,” which happens when the pricing kernel has non-trivial 

martingale components. 
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with wealth and that in turn is driven to a large extent by the evolution of large indices such as 

the S&P 500. But considering an asset such as gold makes much less sense. As always, one 

investigates the projection of the economy-wide pricing kernel onto a particular return 

dimension (here gold). But as gold has a low correlation with the stock market and thus with 

consumption and wealth, we have no clear prediction of the shape of such projected pricing 

kernel in the gold dimension: a low gold price is not related to low stock market prices (poor 

state of the world, low consumption, high risk aversion) nor is the opposite true for high gold 

prices. Thus, pricing kernels on non-index assets might well turn out to be disappointingly flat 

and with little room for interpretation. We summarize such approaches in Table 5. 
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Table 5. We list papers, which present projected pricing kernels in non-index markets. 

Name of paper Market studied Comments 

Papers covered in the text   
Jackwerth and Vilkov 
(2017) 

S&P 500 and 
Volatility (VIX) 

Bivariate model 

Ni (2009)  Equities Monotonically decreasing pricing 
kernels 

Chaudhuri and Schroder 
(2015) 

Equities Locally increasing pricing kernels 

Figlewski and Malik (2014) Exchange traded funds Locally increasing pricing kernels 
   
Papers not covered in the 
text 

  

Shive and Shumway (2009) 
 

Commodities u-shaped projected pricing kernels 

Haas, Fajardo Barbachan, 
and Rocha de Farias (2012) 

Foreign exchange Use transformation of Liu, 
Shackleton, Taylor, and Xu (2007) 

Li and Zhao (2009) Interest rates (Libor) Use estimator of Ait-Sahalia and 
Duarte (2003) 

Liu, Kuo and Coakley 
(2015) 

Interest rates (Libor)  

Kitsul and Wright (2013) 
 

Inflation (TIPS) u-shaped projected pricing kernels 

Song and Xiu (2016)  
 

Volatility (VIX) u-shaped projected pricing kernels 

Bakshi, Madan, and 
Panayotov (2015) 

Volatility (VIX) u-shaped projected pricing kernels 

Chernov (2003) Index, equities, gold, 
interest rates (T-bills) 

Estimates the pricing kernel in 
several dimensions 

 

The situation would be different for asset classes more highly correlated with the index. 

Moreover, for a careful, bivariate analysis of the pricing kernel puzzle, one would need to 

estimate bivariate risk-neutral distributions, which is exceedingly difficult as there are few 

options written on both assets at the same time (knowing only options on one asset and 

options on the other asset separately is typically not enough), and bivariate physical 

distributions. Jackwerth and Vilkov (2017) have recently made inroads here in estimating the 

bivariate risk-neutral distribution on the S&P 500 and the VIX, using longer-dated options to 

circumvent the above problem in this special set-up.  
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Considering non-index asset classes, the individual stocks take up a halfway position as they 

are the constituents of the index. Ni (2009) and Chaudhuri and Schroder (2015) analyze 

individual stock options within the S&P 500. Chaudhuri and Schroder (2015) find evidence of 

return patterns compatible with the pricing kernel puzzle and criticize the earlier paper of Ni 

(2009), which cannot find such evidence, for methodological reasons. Details can be found in 

Section 3.4. Similarly, the work of Figlewski and Malik (2014) is based on option data on 

exchange traded funds having the S&P 500 as an underlying. Due to the high correlation with 

the S&P 500, we do not really view this exchange traded fund as a non-index asset. Not 

surprisingly, their work finds non-monotonic pricing kernels. By considering exchange traded 

funds that aim to provide (i) twice the return on a long position in the S&P 500 and (ii) twice 

the return on a short position, they also contribute to the literature on heterogeneous investors 

and the pricing kernel puzzle, see Section 4.1. 

4.	Solutions	

Considering the empirical evidence and the statistical tests so far, it emerges that the pricing 

kernel puzzle seems to be present in the data. We will now investigate models which try to 

explain the pricing kernel puzzle. We start with models using only a single state variable, then 

the important class of models with more than one state variable, before turning to behavioral 

and sentiment models, and finally to ambiguity aversion models. We collect such models in 

Table 6.  
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Table 6. Models of the pricing kernel puzzle. Type of model refers to models with a single 

state variable (SINGLE STATE), models with several state variables (SEVERAL STATES), 

behavioral models (BEHAVIORAL), and ambiguity aversion models (AMBIGUITY). 

Name of paper Type of model Comments 

Papers covered in the text   
Brown and Jackwerth 
(2012) 

SINGLE STATE  

Bakshi and Madan (2007) SINGLE STATE  
Ziegler (2002) SINGLE STATE  
Ziegler (2007) SINGLE STATE  
Hens and Reichlin (2013) SINGLE STATE  
Figlewski and Malik (2014) SINGLE STATE  
Grith, Haerdle, and 
Kraetschmer (2017) 

SINGLE STATE  

Christoffersen, Heston, and 
Jacobs (2013) 

SEVERAL STATES  

Chabi-Yo (2012) SEVERAL STATES  
Bakshi, Madan, and 
Panayotov (2015) 

SEVERAL STATES  

Garcia, Luger, and Renault 
(2003) 

SEVERAL STATES  

Chabi-Yo, Garcia, and 
Renault (2008) 

SEVERAL STATES  

Bollen and Whaley (2004) BEHAVIORAL  
Garleanu, Pedersen, and 
Poteshman (2009) 

BEHAVIORAL  

Kliger and Levy (2009) BEHAVIORAL  
Polkovnichenko and Zhao 
(2013) 

BEHAVIORAL  

Dierkes (2013) BEHAVIORAL  
Chabi-Yo and Song (2013) BEHAVIORAL  
Gollier (2011) AMBIGUITY  
Kang, Kim, and Lee (2014) AMBIGUITY  
Drechsler (2013) AMBIGUITY  
Cuesdeanu (2016) AMBIGUITY  
   
Papers not covered in the 
text 

  

Bakshi, Madan, and 
Panayotov (2010) 

SINGLE STATE Based on Bakshi and Madan (2007), 
u-shaped pricing kernel 

Ziegler (2002) SINGLE STATE Similar to Ziegler (2007) but with 
only two extreme investors 

Siddiqi and Quiggin (2016) SINGLE STATE  
Haerdle, Kraetschmer, and 
Moro (2009) 

SINGLE STATE Early version of Grith, Haerdle, and 
Kraetschmer (2017) 
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Detlefsen, Haerdle, and 
Moro (2010) 

SINGLE STATE  

Babaoglu, Christoffersen, 
Heston, and Jacobs (2016) 

SEVERAL STATES Based on Christoffersen, Heston, and 
Jacobs (2009), u-shaped pricing kernel 

Bollerslev and Todorov 
(2011) 

SEVERAL STATES u-shaped pricing kernel 

Dittmar (2002) SEVERAL STATES  
Kiesel and Rahe (2017) SEVERAL STATES  
Yamazaki (2017) SEVERAL STATES u-shaped pricing kernel 
Han and Turvey (2010) SEVERAL STATES  
Lundtofte (2010) SEVERAL STATES Locally increasing pricing kernel 
Andreou, Kagkadis, and 
Philip (2014) 

BEHAVIORAL Based on Han (2008) 

Hodges, Tompkins, and 
Ziemba (2008) 

BEHAVIORAL  

Gemmill and Shackleton 
(2005) 

BEHAVIORAL  

 

4.1.	Models	with	a	single	state	variable	

Another way of extending the simple setting of Section 1 is to replace the representative 

investor with several (classes of) heterogeneous investors. In the simplest case, there are two 

groups of investors, pessimists believing that the mean return will turn out to be low and 

optimists believing that the mean return will turn out to be high. We depict such a situation in 

Figure 6, where the aggregated subjective distribution then turns out to be bi-modal. Given a 

typical risk-neutral distribution, the pricing kernel puzzle obtains. Note that the pricing kernel 

puzzle critically depends on the bi-modality of the subjective distribution. Adding more 

moderate groups of investors in the center would undo the bimodality and could result in 

monotonically decreasing pricing kernels. Hence, such extremely bimodal subjective 

distributions seem to be unrealistic, and the main challenge in this strand of the literature is to 

formally derive the three objects of interest (m, p, and q) under aggregation. 

[Figure 6 about here] 

Bakshi and Madan (2007) assume heterogeneity in beliefs in a complete market. Investors 

have different subjective distributions (instead of homogeneous belief in the physical 
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distribution); consequently, investors expecting positive returns are long in the market, while 

investors expecting negative returns are short. The aggregation of both groups of investors 

can lead to a u-shaped pricing kernel.  

Ziegler (2002) uses a very similar set-up and can show that even the risk-neutral distribution 

can become bi-modal, if the beliefs are strongly heterogeneous.12 He documents negative 

relative risk aversion functions, consistent with the pricing kernel puzzle.  

Ziegler (2007) examines a complete market with multiple investors and assumes that the 

index is a good proxy for consumption. His results indicate that neither (i) aggregation of 

(heterogeneous) preferences, (ii) misestimation of beliefs, nor (iii) heterogeneous beliefs can 

lead to reasonable explanations of the pricing kernel puzzle. He shows that, given reasonable 

individual utility functions, aggregation of heterogeneous preferences alone cannot explain 

the puzzle as the economy-wide risk-aversion inherits the behavior of the individual risk-

aversions. In order to deal with misestimated beliefs, the stochastic volatility, stochastic jump 

model of Pan (2002) is considered.13 Fitting the model to the data and assuming that investors 

                                                 
12 In such setting, Shefrin (2008a and 2008b) coins the term sentiment for the ratio of the 

mixture of the different subjective distributions and the physical distribution. His ideas 

become clearer when one assumes that the shapes of the subjective distributions and the 

physical distributions remain the same but the mean is low for the pessimists, high for the 

optimists, and in between for the physical distribution, see Shefrin (2008b, figure 1). 

13 Although the model captures stochastic volatility and jumps, the risk-aversion functions 

turn negative for high return states, implying a u-shaped pricing kernel. Such behavior 

contradicts the standard assumption of a risk-averse representative investor. This leads to the 

question, if stochastic volatility, stochastic jump models are typically incapable of fitting the 

historical risk-neutral and physical distribution simultaneously, or if the assumptions on the 

functional form of the risk-premium parameters are mis-specified in such models. 
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have homogeneous beliefs but cannot estimate them correctly, Ziegler (2007) argues that the 

resulting misestimation is too severe to be credible.  

When allowing for heterogeneity among beliefs, Ziegler (2007) needs a large share of 

investors with very pessimistic beliefs to explain the puzzle. Hence, a fat left tail can only be 

captured if some investors expect extremely negative returns. However, a setting with three 

groups of investors is only capable of generating the pricing kernel puzzle if two of the groups 

are unrealistically pessimistic. Ziegler (2007) then already suggests that a solution of the 

pricing kernel puzzle needs to go beyond the rather simple setting of a complete, frictionless 

market with a single state variable. 

In a two dates exchange economy with a finite number of states, Hens and Reichlin (2013) 

systematically examine violations of three basic assumptions of their model (namely, risk-

averse behavior, unbiased beliefs, and complete markets). All three relaxations can then 

generate the pricing kernel puzzle. Quite obviously, allowing for a partially convex utility 

function (e.g., Friedman and Savage (1948)) will generate the pricing kernel puzzle by design. 

However, a representative investor would not allocate wealth to states where the utility 

function is convex, and the relaxation is thus unrealistic.  

Biased beliefs are modeled in two ways by Hens and Reichlin (2013). First, as humans tend to 

overweigh less probable extreme events, beliefs could be systematically distorted according to 

the model of Tversky and Kahneman (1992). Second, beliefs could be biased as different 

investors fashion different subjective forward-looking distributions based on the same 

historical return distribution. In isolation, both types of biased beliefs are incapable of 

explaining the puzzle. However, by combining both types, the authors can generate the 

pricing kernel puzzle, although only at the cost of assuming a negative expected mean return 

for the representative investor. Finally, Hens and Reichlin (2013) introduce background risk 

as a form of market incompleteness. In a simple four state example, two investors facing 

background risk individually can generate the pricing kernel puzzle.  
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The plausibility of heterogeneous beliefs and preferences is considered in Figlewski and 

Malik (2014) from an empirical point of view. The authors examine options on an exchange 

traded fund replicating the S&P 500 (SPY), on one that aims to provide the return on a two-

times long position in the index (SSO), and on one that aims to provide the return on a two-

times short position (SDS). Presumably, optimistic investors will buy the SSO fund; 

pessimistic investors the SDS. The paper then studies two extreme cases: (i) pricing kernels 

could be the same but not subjective distributions or (ii) pricing kernels could differ but all 

investors share the belief in the same physical distribution. It turns out that setting (i) explains 

the data better. Unfortunately, the set-up does not allow for intermediate settings between the 

extreme cases. Last, it is suggested that preferences within each group should be constant over 

time and the daily change in expectations stems from a change in the risk-neutral 

distributions.  

As opposed to many of the above papers, which use equilibrium approaches to aggregate the 

individual investors’ utility functions to a market-wide pricing kernel, some authors use rather 

ad-hoc assumptions in order to aggregate utility functions. Grith, Haerdle, and Kraetschmer 

(2017) piece together the pricing kernel from many segments, which (between reference 

points) are decreasing but can jump upwards at the reference points. Investors are allowed to 

have different reference points. Given a sufficient number of such reference points, the 

authors can generate a flexible pricing kernel specification, which can exhibit increasing 

parts. One can study its piece-wise nature in their figures 2 and 3 in detail. In their empirical 

section they find that the local maximum of the pricing kernel near at-the-money is more 

pronounced when the variance risk premium is low. 

In conclusion, it seems rather hard to explain the pricing kernel puzzle with only one state 

variable. Moreover, there is always the nagging doubt of how a locally increasing segment of 

the pricing kernel can be reconciled with equilibrium. A representative investor would not 

want to hold securities that pay off in such states, and models with several (groups of) 
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investors need to have rather strongly diverging beliefs (very pessimistic investors vs. rather 

optimistic ones), while ignoring the large mass of moderate investors in the middle.  

4.2.	Models	with	several	state	variables	

One way out is being hinted at by Brown and Jackwerth (2012) who introduced the 

(weighted) average historical volatility as a new variable. While it is still deterministically 

driven by the return process (which technically makes it a single state variable model), it 

opens up the perspective of introducing additional state variables. The pricing kernel would 

then exist across those several dimensions, and the pricing kernel projected onto the return 

dimension might then exhibit the pricing kernel puzzle.14  

To illustrate the additional flexibility in modeling economies when using multiple state 

variables, consider the situation with two state variables in Figure 7, which is adapted from 

Brown and Jackwerth (2012).  

[Figure 7 about here] 

Here it is assumed that the pricing kernel depends not only on the return (first state variable) 

but also on a second state variable. The most prominent choice of such a second state variable 

in the literature is probably volatility and therefore we stick to volatility in this example. In 

particular, it is assumed that volatility can either be high (m-high, with long dashes) or low 

(m-low, with short dashes). When returns are both very high or very low, volatility tends to be 

high, and the pricing kernel of the high state dominates. When returns are close to 1, volatility 

tends to be low, and the pricing kernel of the low state dominates. In line with the empirical 

evidence in Song and Xiu (2016), we model the conditional pricing kernels to be 

monotonically decreasing in returns. Taking the expectation over volatility yields a non-

                                                 
14 A number of papers show that such additional state variables seem to be empirically needed 

in order to explain option prices, see for example Buraschi and Jackwerth (2001), Coval and 

Shumway (2001), and Constantinides, Jackwerth, and Savov (2013). 
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decreasing pricing kernel m* (solid line, with black squares) even though the two conditional 

pricing kernels were monotonically decreasing in returns.  

 

Christoffersen, Heston, and Jacobs (2013) stay close to the above idea and extend the Heston 

and Nandi (2000) model by introducing a variance risk premium in addition to the equity risk 

premium. Similar to the setting of Figure 7, the pricing kernel is now a function of returns and 

volatility. When projected onto returns only, by construction, a u-shaped pricing kernel 

emerges whenever the variance premium is negative. Fitting this GARCH model to the 

historical time series and cross sections of Wednesday options on the S&P 500 from 1996 to 

2009 while allowing for a variance premium, and hence for a u-shaped pricing kernel, 

improves the risk-neutral and physical fit substantially. The quadratic functional form of the 

pricing kernel is rigidly assumed by the model and at times does not fit the empirical tilde-

shaped pricing kernel in the empirical section of their paper.  

Chabi-Yo (2012) shows that a recursive small-noise expansion results in a pricing kernel that 

incorporates stochastic volatility, stochastic skewness, and stochastic kurtosis, while an 

ordinary Taylor expansion would lead to a pricing kernel, which is a polynomial in the market 

return. Using French's 30 monthly industry portfolios, he recovers the higher moment 

preferences of the representative investor. His empirical pricing kernel is a function of 

volatility and return. Holding volatility fixed, it is monotonically decreasing in the market 

return. Yet, when projected onto the market return only, the empirical pricing kernel shows 

the puzzling behavior. For robustness, he shows that the pricing kernel projected onto the 

market return exhibits a similar shape if it is estimated with the S&P 500 option data rather 

than industry portfolio returns.  

While most of the literature on heterogeneous beliefs and the pricing kernel focused on 

disagreement on the expected return (see e.g. Ziegler (2007) and Hens and Reichlin (2013)), 

Bakshi, Madan, and Panayotov (2015) consider heterogeneity with respect to future volatility 
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and allow the investors with exponential utility to have different levels of risk-aversion, too. 

As a result, they obtain a u-shaped pricing kernel in the volatility dimension from options on 

VIX. In contrast, most standard models imply that the pricing kernel is monotonically 

increasing in volatility. Therefore, the model could potentially solve the pricing kernel puzzle 

as returns around zero are associated with low volatility, and low volatility on the other hand 

is associated with an increasing pricing kernel. Unfortunately, the paper does not explore this 

intriguing aspect. 

Garcia, Luger, and Renault (2003) first introduced regime switches in the fundamental state 

variables of an equilibrium model and used this model to price options. Extending this work, 

Chabi-Yo, Garcia, and Renault (2008) show that the pricing kernel puzzle can be explained 

by regime-switches in some latent state variable, which in turn drives fundamentals (the joint 

distribution of the pricing kernel and returns). Their model uses two preference specifications. 

For one a recursive Epstein-Zin (1989) utility and, alternatively, an external habit model with 

state dependence in the beliefs, which is based on Veronesi (2004) and Campbell and 

Cochrane (1999).15 The intuition is that, conditional on the latent state variable, the pricing 

kernel is not violating the standard monotonicity assumption, whereas a projection of the 

pricing kernel onto returns leads to a locally increasing pricing kernel. Indeed, a simulation 

with hypothetical parameters can reproduce the desired shapes for the conditional and 

unconditional pricing kernels. One can note in the figures that the modeled pricing kernels 

                                                 
15 Benzoni, Collin-Dufresne, and Goldstein (2011) offer a similar model but do not show the 

model pricing kernel in the return dimension, and one cannot easily determine if it exhibits 

the pricing kernel puzzle; the pricing kernel in the dimension of consumption is 

monotonically decreasing by assumption.  
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often do not match the empirical pricing kernels in shape and magnitude. A more full-fledged 

empirical exercise might be able to improve the fit.  

4.3.	Behavioral	and	sentiment	models	

After first looking at demand based models, we next turn to models with probability 

weighting. 

4.3.1.	Demand	based	models	

Bollen and Whaley (2004) come tantalizingly close to tackling the pricing kernel puzzle in 

their study of demand for out-of-the-money put options. They first establish that the physical 

distributions for individual stocks and for the S&P 500 index are not that different. They then 

turn to the implied volatility smiles, which are mildly u-shaped for individual stock options 

and steeply skewed for the index. Their explanation is that strong investor demand for 

portfolio insurance exists for out-of-the-money index puts, but is weaker for individual stock 

option puts. The high demand for out-of-the-money index puts by institutional investors is 

only met with supply by the market makers at rather high prices, moving the implied 

volatilities up, and causing the steep smile. Having thus explained the cause of the steep index 

smile, they unfortunately do not connect their story to the pricing kernel puzzle, even though 

just one final argument is required. Namely, as the steep index smile leads to a left-skewed, 

leptokurtic risk-neutral distribution, the pricing kernel puzzle emerges once the risk-neutral 

distribution is being divided by the more normally distributed physical distribution. For the 

individual stock options, the mild smile leads to rather normally distributed risk-neutral 

distribution in the dimension of individual stock returns, and, thus, the pricing kernel puzzle 

does not emerge when dividing by the physical distribution. 

Motivated by these empirical results, Garleanu, Pedersen, and Poteshman (2009) develop a 

demand based option pricing model by departing from no-arbitrage principles, considering the 

options market as being separated from the underlying, and highlighting the importance of the 
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market maker. In the presence of jumps and stochastic volatility, market makers cannot fully 

hedge their exposures and will demand higher prices for options paying off in states where 

hedges are critical. Hence, the resulting implied volatility smile is increasing in regions where 

hedging is more difficult for the market maker, which mainly concerns out-of-the-money 

puts. Similarly to Bollen and Whaley (2004), they find that option end-users are typically long 

index puts and short single stock calls. Again, an explicit treatment of the pricing kernel is 

missing.  

4.3.2.	Models	with	probability	weighting	functions	

Kliger and Levy (2009) revert the direction of investigation by starting with the pricing kernel 

puzzle, using power utility, and backing out the implied physical distribution from the risk-

neutral distribution. As a result, the implied physical distribution inherits the left-skewed and 

leptokurtic shape of the risk-neutral distribution, which is incompatible with the physical 

distribution derived from bootstrapped past S&P 500 returns. Thus, they introduce a 

probability weighting function in order to reconcile the implied physical distribution with the 

bootstrapped distribution. The estimated probability weighting functions are inverse-S-shaped 

in their sample from 1986-1995.  

To illustrate how probability weighting influences the pricing kernel, we extend the one 

period pricing kernel from Equation (6) along the lines of Polkovnichenko and Zhao (2013): 

 

’

∑ 	 ’
	for	 1, … , .  (14) 

Here, Z is a probability weighting function, which applies on the cumulative probability  of 

return . Note that again the numerator is state dependent while the denominator is constant. 

Hence, the shape of the pricing kernel is no longer proportional to marginal utility but to the 

product of marginal utility and the probability weighting function Z. The probability 
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weighting function in Polkovnichenko and Zhao (2013) stems from Prelec (1998) and is fully 

described by the parameters  and : 

	exp	 log	 	     (15) 

Polkovnichenko and Zhao (2013) repeat the study of Kliger and Levy (2009) on more recent 

data, using power utility with a risk aversion coefficient of two, and, for the physical 

distribution, using an EGARCH model based on past returns. Their probability weighting 

functions can be S-shaped (2004-2006) or inverse-S-shaped (during the remaining years from 

1996 to 2008). The former suggests that investors overweigh probabilities in the center of the 

distribution and underweigh the tails, while the pattern reverses for the latter. It is somewhat 

puzzling that the pricing kernel puzzle tends to be rather stable through time but yields in this 

setting very different probability weighting functions. The model also does not account for 

learning; investors do not pay attention to the fact that the physical distribution, as it is being 

revealed in realized returns, looks different from the reweighted distribution. 

Dierkes (2013) makes a nice point about the lack of identification in Polkovnichenko and 

Zhao (2013), as the utility function cannot be derived separately from the weighting function. 

He suggests an intriguing solution by fitting several maturities at the same time. That allows 

the utility function to be the same for all maturities but the weighting function scales with 

maturity. Empirically, Dierkes (2013) then finds the weighting function to be inverse-S-

shaped and the utility function to be convex-concave around the zero percent return.  

Chabi-Yo and Song (2013) confirm the findings of Polkovnichenko and Zhao (2009) and 

document that the probability weighting functions are heavily time-varying, even if they use 

the VIX as a conditioning variable. They thus extend the model and apply probability 

weighting to both the return and volatility dimensions of the index in a two period setting. 

Using S&P 500 and VIX options, they find inverse-S-shaped probability weighting functions, 

which are now much more stable in comparison with the single state variable model. 
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4.4.	Ambiguity	aversion	models	

Here, we propose a novel approach based on the smooth ambiguity aversion model of 

Klibanoff, Marinacci, and Mukerji (2005). The model nests on the one hand the traditional 

expected utility setting as the ambiguity aversion approaches ambiguity neutrality and on the 

other hand the maximin utility approach as the ambiguity aversion goes to infinity.16 Gollier 

(2011) already mentions that the pricing kernel puzzle can emerge in a smooth ambiguity 

aversion setting, although without explicitly deriving the formulas and without detailed 

examples, which we are providing here. Kang, Kim, Lee (2014) achieve similar results with a 

model where the representative investor is worried that some worst case stock price process 

with lower drift might be realized. Drechsler (2013) extends the model of Liu, Pan and Wang 

(2005) where a representative agent faces uncertainty aversion regarding jumps in the 

endowment process. It would be interesting to explicitly calibrate these models to option data 

and see if such economies imply a non-monotonic pricing kernel. 

4.4.1.	The	theoretical	pricing	kernel	under	ambiguity	aversion	

We re-derive our simple economy from Section 1, Equations (3-6) in the setting of Klibanoff, 

Marinacci, and Mukerji (2005). They assume that there are M of the above economies (called 

an ambiguity setting), each with a probability pj of occurring for j = 1,…,M. Our 

representative investor is thus solving the following problem: 

 

 

                                                 
16 For a survey of ambiguity aversion and its relevance for asset pricing, see Epstein and 

Schneider (2010). For an alternative formulation of ambiguity aversion through Choquet 

expected utility, see Bassett, Koenker, and Kordas (2004).  
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max
,

max
,

	 	 		

s. t. ∑ ∑ 	       (16)	

and	 	for	 1, … , 	and	for	 1, … , , 

where Cij
is the consumption in state i of ambiguity setting j, hij

is the chosen wealth,  is a 

utility function across ambiguity settings which operates on the expected utility achieved in 

each ambiguity setting, pij is physical probability of state i occurring in ambiguity setting j, 

and w0 is the initial wealth. Note that the physical probability of being in state i is the sum of 

(pij pj) across ambiguity settings j. We defer the derivation to Internet Appendix.KMM and 

only state the resulting pricing kernel: 

∑
	

∑ 	 ′ ∑ 1
′

1

∑ ∑ 	 ′ ∑ 1 ′11

	for	i 1, … , N             (17) 

We can readily interpret the pricing kernel formula in comparison to the simple case without 

ambiguity.17  There, the pricing kernel is the ratio of marginal utility and expected marginal 

utility. In the setting with ambiguity aversion, the pricing kernel is the scaled marginal utility 

in each state divided by a modified expected marginal utility. We explain the modification of 

expected marginal utility first and then the scaling of the pricing kernel. For the modified 

expectation, the probabilities of the expectation (pij pj) are being distorted by the marginal 

ambiguity utility ∑ . The resulting quantities are no longer probabilities, i.e. 

they will not add to one. Thus, the pricing kernel needs to be scaled in order to correct for the 

modification. The scaling factor is the fraction in front of the marginal utility term in Equation 

                                                 
17 Unfortunately, we cannot easily analyze the derivative of the pricing kernel with respect to 

returns. The resulting expressions are intractable and cannot be nicely segregated into, say, an 

income and a substitution effect. 
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(17). It turns out to be the ratio of the sum of the probabilities (pij pj), which are again being 

distorted by ∑  and the sum of the probabilities themselves (pij pj). 

4.4.2.	The	pricing	kernel	puzzle	in	a	model	of	ambiguity	aversion	

Here we use Equation (17) with power utilities and parameters  for the ambiguity aversion 

and  for the risk aversion, respectively. We set w0 to 1. The following choice for U(x) 

satisfies the assumption of Klibanoff, Marinacci, and Mukerji (2005) that two utility values 

need to be independent of , here, U(1)=0 and U(2)=1.18 The investors are ambiguity averse if 

 > . 

;     (18) 

Further, we model the 30-day return being lognormally distributed with an annualized mean 

of 0.10. Numerical details are relegated to the Internet Appendix.KMM. The investors are 

ambiguous with respect to annualized volatility, which we assume to be lognormally 

distributed with mean log 0.19 and standard deviation 0.10.  

 [Figure 8 about here] 

We depict the resulting pricing kernel with η=6 and γ=4 in Figure 8 and it matches quite 

nicely the empirically observed u-shaped pricing kernels, see for example Figure 3, Panel B. 

The physical probability distribution (sum of the probabilities pij pj) has, at an annual horizon, 

a mean of 0.10, standard deviation of 0.19, skewness of 0.00, and kurtosis of 3.12.  

The next extension is to introduce large negative jumps (-0.20 annualized mean and 0.30 

standard deviation) where the investor exhibits ambiguity aversion across the probability of 

                                                 
18 Note that alternatively, one could also use	 	with	 ∈ 0,1  but the above 

formulation allows for a great range of risk aversion coefficients.  
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such jumps occurring. The return distribution without crashes is modeled being lognormally 

distributed with an annualized mean return of 0.12 and a volatility of 0.19. Finally, the 

conditional probabilities pij are obtained by mixing the return distribution without the crashes 

with the jump distribution. The probabilities for the occurrence of a jump then determine the 

appropriate weights for the two distributions such that the pij add up to 1 for a fixed j.  

The pricing kernel in Figure 9 with η=7 and γ=6 exhibits now a tilde shape. In comparison to 

the pricing kernels observed in the empirical literature, however, see for example Figure 2, the 

hump in the center is shifted slightly to the left. 

 [Figure 9 about here] 

Thus, a simple one-period ambiguity aversion model can exhibit the pricing kernel puzzle. It 

turns out that ambiguity aversion over volatility generates u-shaped pricing kernels. 

Ambiguity aversion over the probability of large crashes generates tilde-shaped pricing 

kernels and can explain the hump of the empirical pricing kernel puzzle at the center. 

Cuesdeanu (2016) extends this ambiguity aversion model by introducing ambiguity over 

volatility and jumps simultaneously. He finds that this allows for w-shaped pricing kernels as 

well.  

5.	Bounds	on	option	prices	

The literature on bounds on option prices takes a different perspective on the pricing kernel 

puzzle. The pricing kernel puzzle is about analyzing the empirical pricing kernel, given risk-

neutral and physical distributions, where the pricing kernel turns out to be non-decreasing in 

returns. Turning the problem around, one can ask what are the highest and lowest option 

prices still compatible with a monotonically decreasing pricing kernel? This approach was 

developed in Perrakis and Ryan (1984) with the restrictions that the pricing kernel has to be 

positive and decreasing, and that it prices the stock and the bond and one reference option 
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traded in the market. The resulting linear program then looks (for a call option with given 

strike price K) as follows:  

Max/Min E[m (RS - K)+]      

s.t. E[m 1] = B        

E[m RS] = S                                                                 (19) 

E[m (RS - Ko)+] = C(Ko)      

m > 0, m decreasing in wealth RS,     

     

where S is the initial stock price, B the unit bond price, and Ko the strike price of the observed 

reference option. Dividends are assumed to be zero for ease of exposition. A long literature 

ensued which extends the above linear program approach, adding e.g. bid/ask spreads and 

transaction costs, see the survey of Constantinides, Jackwerth, and Perrakis (2008).  

The resulting bounds are driven by pricing kernels which tend to be extreme, exhibiting steep 

drops after almost flat sections. Cochrane and Saa-Requejo (2000) address the problem of 

such unrealistic pricing kernels. They essentially work within the above set-up while also 

restricting the volatility of the pricing kernel, which leads to smoother pricing kernels and 

tighter bounds. Bernardo and Ledoit (2000) offer an alternative restriction by limiting the 

ratio of expected gains and expected losses of a security; ruling out that securities are priced 

much too low or high compared to their fair value.19 Pyo (2011) achieves this goal by the ad-

hoc restriction that price deviations are limited by deviations of observed prices from model 

prices based on a predetermined (power) pricing kernel.  

                                                 
19 Marroquin-Martinez and Moreno (2013) extend Cochrane and Saa-Requejo (2000) and 

Bernardo and Ledoit (2000) to settings with stochastic volatility and find the resulting bounds 

to be tighter than in the original papers.  
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The earlier papers solved the linear program explicitly and were thus limited in the 

complexity of the linear program, e.g., they could only handle one reference option and 

extending it to two was already a difficult task. Relying simply on computer solutions to the 

linear program, Constantinides, Jackwerth, and Perrakis (2009) can compute bounds for S&P 

500 index options while taking into account all observed options as reference assets and even 

formulating the linear program over two steps instead of one. Further, they use the analytical 

bounds from Constantinides and Perrakis (2002) for continuous, intermediate trading and 

proportional transaction costs. Empirically, they find a substantial number of options to be 

located outside their bounds, consistent with the pricing kernel puzzle. Wallmeier (2015) 

replicates their work and finds far fewer violations. This difference comes about as Wallmeier 

(2015) uses option implied information from just hours ago to adjust the physical distribution, 

while Constantinides, Jackwerth, and Perrakis (2009) rely on information further into the past. 

The concern is that using more recent option implied information will eventually move the 

physical distribution so close to the risk-neutral, that one can no longer detect bound 

violations. 

More interesting is the question if, using the earlier information of Constantinides, Jackwerth, 

and Perrakis (2009), one can profitably trade based on bound violations. That exercise can be 

found in Constantinides, Czerwonko, Jackwerth, and Perrakis (2011), now using options on 

futures on S&P 500 and employing the analytical bounds of Constantinides and Perrakis 

(2007), which are suitable for these American options. The results suggest that trading 

strategies involving out-of-bounds options are superior to pure stock-and-bond strategies for 

all risk-averse investors.  

6.	Conclusion	and	outlook	

In our survey of the pricing kernel puzzle, we recount the history, starting with the canonical 

papers which around the year 2000 divided risk-neutral distributions of S&P 500 returns by 
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the physical distributions. These empirical pricing kernels exhibited increasing sections, 

which are inconsistent with simple representative investor models with a single state variable. 

Evidence from indexes in other countries and other periods finds the same puzzling behavior. 

We also discuss the (sparse) literature, which cannot detect the pricing kernel puzzle in the 

data and try to understand the reasons. 

A number of statistical tests suggest the presence of the pricing kernel puzzle. What is still 

missing is a critical analysis and comparison of the several tests which so far exist. Are their 

assumptions realistic? Are certain tests better than others? There is still no agreement on 

which test to use as the standard test of the pricing kernel puzzle. 

Much room is given to the potential explanations of the pricing kernel puzzle, starting with 

simple one-state-variable formulations and then moving to more complex settings. Similarly 

to the tests, many of the solutions are stand-alone model with little empirical validation. 

Mostly, they concentrate on a calibration, which, using some stylized facts, exhibits the 

pricing kernel puzzle. Much work is still needed in sorting through the alternative models and 

grading them according to their compatibility with the data. Ideally, some of the solutions 

might be joined in a nested model, allowing for a proper test of the different features. It would 

be interesting to know more about the true mechanism of what drives the pricing kernel 

puzzle. Interesting research along those lines is trying to explain the time-series patterns of the 

pricing kernel puzzle (e.g., its severity) using explanatory variables. This challenging work is 

still in its infancy and, as of now, still underwhelming.  

For a glimpse into the future of the pricing kernel puzzle, one might want to consider the 

bivariate estimation of risk-neutral and physical distributions in Jackwerth and Vilkov (2017). 

Those bivariate risk-neutral distributions can normally only be obtained with the help of 

options written on both assets simultaneously, but Jackwerth and Vilkov (2017) were able to 

achieve this feat in the dimensions of index returns and volatility employing longer-dated 
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options on the S&P 500. Dividing the two distributions into each other allows one to extract 

for the first time a bivariate pricing kernel. 
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Figure 1. Risk-Neutral and Actual Distributions  

 

The actual distributions are calculated with the same return horizon as the time-to-expiration 

of the options. For the US we used the historical sample from Sep 2, 1997 to Aug 15, 2003, 

for Germany from Jan 2, 1997 to Oct 9, 2003, for the UK from Jan 2, 1997 to Oct 9, 2003, 

and for Japan from Jan 5, 1998 to Oct 10, 2003. Returns are reported as 1 plus the rate of 

return. 
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Figure 2. Empirical Pricing Kernels 

 

Typical post-1987 stock market crash implied pricing kernels. The pricing kernels are 

calculated as the ratio of the option implied risk-neutral distribution and the historical 

smoothed return distribution. Returns are reported as 1 plus the rate of return. 
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Figure 3. Empirical pricing kernels at different points in time 

 

The figure shows a tilde-shaped pricing kernel in 1993, Panel A, a u-shaped pricing kernel in 

1999, Panel B, and w-shaped pricing kernels in 2004 and 2013, Panels C and D. The 

subjective distributions are estimated by a GJR-GARCH(1,1) and the risk-neutral densities 

are obtained by the fast and stable method of Jackwerth (2004) as introduced in Equation (7). 
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Figure 4. Friedman and Savage (1948) utility function 

 

We depict a utility function along the lines of Friedman and Savage (1948) with concave-

convex-concave segments in the return dimension as a solid curve. We also depict the 

concavified version of the utility function in the center by a dashed curve.  
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Figure 5. Risk-neutral Probabilities vs. Risk-neutral Transition Probabilities 

 

In Panel A we depict the typical situation of a tree emanating from today’s initial state (1) and 

moving to several future states (0, 1, and 2). In Panel B, we depict the data requirements of 

Ross (2015) where, in addition, one also needs to know the (hypothetical) transition 

probabilities from alternative states today (0 and 2) to all future states. 
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Figure 6. Hypothetical pricing kernels with investor heterogeneity 

 

We depict a risk-neutral distribution (q, scaled up 30 times for better readability) and a 

subjective distribution (p, also scaled up 30 times for better readability). The subjective 

distribution is a mixture of the beliefs of the pessimists (low expected mean return) and the 

optimists (high expected mean return). The pricing kernel m obtains as the ratio of risk-

neutral by subjective probabilities. For simplicity and easy of depiction, we assume a zero 

interest rate. 
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Figure 7. Hypothetical pricing kernels depending on the second state variable volatility 

 

We graph the simplest setting where volatility can take either of two values and we have a 

pricing kernel (m-high) in the high volatility state and another one (m-low) in the low 

volatility state. As wealth decreases or increases, the likelihood of being in the high volatility 

state increases, while for unchanged wealth (returns around 1) the likelihood of being in the 

low volatility state increases. Taking expectations of m over the two volatility states yields the 

desired empirical pricing kernel m*. 
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Figure 8. The pricing kernel with ambiguity over volatilities 

 

The pricing kernel based on the Klibanoff, Marinacci, and Mukerji (2005) model with 

ambiguity over volatilities, projected onto returns. 
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Figure 9. The pricing kernel with ambiguity over market crashes 

 

The pricing kernel based on the Klibanoff, Marinacci, and Mukerji (2005) model with 

ambiguity over market crashes, projected onto returns.  
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