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Introduction

Volatility is an important topic in the area of finance and financial
econometrics. (Modern asset pricing, risk management, etc.)

Conventional (low frequency) measures: daily squared return, daily
range, GARCH, etc.

High-frequency data → more precise volatility measures

The Realized Volatility (RV) (Andersen et al., 1998)
The duration-based volatility estimator (Engle and Russell, 1998;
Andersen et al., 2008; Nolte et al., 2017)
The intensity-based volatility estimator (Gerhard and Hautsch, 2002)
The Realized Range (Christensen and Podolskij, 2007)
· · ·

Li, Nolte & Nolte 4th KoLa Workshop Tuesday 31st July, 2018 2 / 29



Introduction

The duration-based volatility estimators have been shown to perform
better than the RV-type estimators:

The parametric duration-based (PD) volatility estimator (Engle and
Russell, 1998; Tse and Yang, 2012; Nolte et al., 2017)
The non-parametric duration-based (NPD) volatility estimator
(Andersen et al., 2008; Nolte et al., 2017)

However, the asymptotic behaviours of these estimators are largely
unknown, as the findings from these papers are mainly based on
simulations and empirical investigations.
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Contributions

We propose a novel approach to estimate high frequency volatility
based on a renewal process under business time, and develop the
asymptotic theory for the proposed estimator.

We demonstrate that parametric volatility estimator based on point
process can lead to a substantial efficiency gain compared to its
non-parametric version.

We propose a smoothed duration-based volatility estimator that can
outperform realized kernel and pre-averaged RV under general MMS
noise and jump.
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The NPD Estimator

Definition 1

The Absolute Price Change Point Process: The absolute price

change point process {t(δ)
i }i=0,1,··· for an observed log-price process P(t)

and a given price change threshold δ is constructed as follows:

1 Set t
(δ)
0 = 0 and choose a threshold δ.

2 For i = 1, 2, · · · , compute the first exit time, t
(δ)
i , of P(t

(δ)
i−1) through

the double barrier [P(t
(δ)
i−1)− δ,P(t

(δ)
i−1) + δ] as:

t
(δ)
i = inf

t>t
(δ)
i−1

{|P(t)− P(t
(δ)
i−1)| ≥ δ}.

Iterate until the sample is depleted.
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The NPD Estimator
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The NPD Estimator

Point Process-Based Volatility Estimation

Basic idea from Engle and Russell (1998), Gerhard and Hautsch
(2002) and Nolte et al. (2017):

Each arrival of the price event t
(δ)
i contributes approximately δ2 to the

integrated variance process.
Therefore, we can use the number of events multiplied by δ2 as a
measure of volatility within an interval.
Similarly, the instantaneous arrival rate (intensity) of the point process
multiplied by δ2 can be used as a measure of the instantaneous
volatility.
The superscript (δ) denotes that the process is associated with a
δ-absolute price change point process.
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The NPD Estimator

Non-Parametric Duration-Based Volatility Estimator

Let X (δ)(t) =
∑∞

i=1 1l {t(δ)
i ≤t}

denote the counting function of the

point process.

For an interval (0, t), we can formulate a simple volatility estimator:

NPD(0, t) = X (δ)(t)δ2 (1)

Our task is to derive the asymptotic distribution of the NPD
estimator. Obviously this cannot be done without choosing a model
for the price process.
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The NPD Estimator

Asymptotic Distribution for NPD

Suppose that:

P(t) = P(0) +

∫ t

0
σ(t)dW (t) (2)

where σ(t) is a càdlàg process with limt→∞
∫ t

0 σ(t) =∞.

We are usually interested in the integrated variance:

IV (0, t) =

∫ t

0
σ2(t)dt (3)

We show that the NPD estimator has the following asymptotic
distribution:

lim
t→∞

X (δ)(t)δ2 − IV (0, t)√
2
3X

(δ)(t)δ4

d→ N (0, 1) (4)
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The NPD Estimator

Some Discussions

In (4), it is obvious that NPD is consistent. Interestingly, we do not
need a separate estimation of the asymptotic variance.

We also have that IV (0,t)

X (δ)(t)

a.s.→ δ2. So if we plug this in the asymptotic

variance...

V [X (δ)(t)δ2]→ 2IV (0, t)2

3X (δ)(t)
. (5)

Think of X (δ)(t) as the sampling frequency of the NPD estimator.
We list asymptotic variances for some RV estimators:

Calendar time RV: 2IQ(0,T )
N .

Business time RV: 2IV (0,T )2

N .

Tick time RV: 2IQ(0,T )
3N .

Under the same sampling frequency, the NPD estimator outperforms
all the RV estimators above in terms of efficiency!

Li, Nolte & Nolte 4th KoLa Workshop Tuesday 31st July, 2018 10 / 29



Theoretical Results

Main Idea of the Proof to (4)

For a price process P(t) and its integrated variance process IV (0, t),
we first define a time change τ(t) = IV (0, t) ≡

∫ t
0 σ

2(s)ds. The
changed time τ(t) is called business time.

Assume that the time changed process P̃(τ(t)) = P(t) follows a Lèvy
process in business time τ(t).

Construct a renewal process based on the Lèvy process in business
time.

Use renewal theory to estimate the time elapse on business clock.
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Theoretical Results

Assumptions of Price Process

We only need to assume that under the business time, P̃(τ(t)) is a
Lèvy process.

Is this assumption reasonable?

Theorem 1

(Dambis-Dubin Schwarz): Let (Mt)t≥0 be a continuous Ft-local
martingale such that its quadratic variation 〈M〉∞ = +∞. There exists a
Brownian motion (Bt)t≥0, such that for every t ≥ 0, Mt = B〈M〉t .

It at least holds for ANY continuous local martingale that satisfies the
above theorem.

It also holds for an inhomogeneous compounded Poisson process as in
Oomen (2005).
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Theoretical Results

Renewal Based Volatility Estimator

Sample the price process at {ti}i=1,2,··· so that the business time
process {τ(ti )} is renewal, i.e., D̃i ≡ τ(ti )− τ(ti−1) is i.i.d.

The intuition is that we sample the price process so that the IVs
between two points are i.i.d. random variables.

Let µ = E[τ(ti )− τ(ti−1)] and σ2 = V[τ(ti )− τ(ti−1)] be finite and
non-zero. The class of Renewal Based Volatility (RBV) estimators is
defined as:

RBV (0, t) = X (t)µ (6)

We show that:

lim
t→∞

X (t)µ− IV (0, t)

σ
√
X (t)

d→ N (0, 1). (7)
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Theoretical Results

The NPD estimator belongs to the class of RBV estimators. If the
price process follows a local martingale, then under business time,
P̃(τ(t)) is a standard Brownian motion. The point process under
business time is just the exit time through the double barrier [−δ, δ],
and we have:

µ = δ2, σ2 =
2

3
δ4 (8)

We can also consider a range threshold r , and construct RBV based
on the exit time when the price range reaches r . Then:

µ =
1

2
r2, σ2 =

1

3
r4 (9)

One can easily show that under the same sampling frequency, the
range duration-based estimator is twice as efficient as the NPD
estimator.
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The PD Estimator

A Parametric Design

Let Ft be the natural filtration of the point process, the
(Ft)-conditional intensity process λ(δ)(t|Ft) of X (δ)(t) is defined as:

λ(δ)(t|Ft) ≡ lim
∆↓0

1

∆
E[X (δ)(t + ∆)− X (δ)(t)|Ft ]. (10)

An instantaneous volatility estimator can be formulated as
δ2λ(δ)(t|Ft). Usually we use a parametric model to estimate the
conditional intensity in practice.

We are more interested in properties of the parametric volatility
estimator of the following form:

PD(0, t) = δ2

∫ t

0
λ(δ)(s|Fs)ds. (11)
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The PD Estimator

Asymptotic Distribution of PD

Assume that λ(δ)(t|Ft) is known, we have

lim
t→∞

δ2
∫ t

0 λ
(δ)(s|Fs)ds − IV (0, t)√
C · X (δ)(t)δ4

d→ N (0, 1) (12)

The constant C can be approximated numerically to an arbitrary
precision. We find that C ≈ 0.034 if the price process is a pure
diffusion.

We show that: λ(δ)(t|Ft) = λ̃(δ)(τ(t)|Ft)σ
2(t), where λ̃(δ)(τ(t)|Ft)

is the conditional intensity of the renewal process in business time.
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The PD Estimator

More discussions

Results in (8) shows that, the PD estimator can be much more
precise than its non-parametric counterpart if we have a good model
for the conditional intensity.

We can use data beyond the window of volatility estimation, and
provide intraday volatility estimation. E.g. use a month’s data to
estimate volatility for an hour.

We can add MMS covariates in the parametric model to further
improve the performance. To do this we need to augment the
information set. This is still under development.
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Further Results

Comparison of Non-Parametric Volatility Estimators

We proceed to compare the performance of different non-parametric
volatility estimators by a simulation study.

We construct three estimators based on the price durations {t(δ)
i }:

1 The NPD estimator.
2 The renewal RV estimator.
3 The exponentially smoothed NPDz estimator: constructing NPD

estimator based on exponentially smoothed price process:

Sj = γSj−1 + (1− γ)Pj , γ ∈ [0, 1] (13)

We compare the performance of these estimators against popular
calendar time RV estimators.
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Further Results

Competing Estimators

Table: List of all volatility estimators considered in the simulation study

Acronym Description MMS Jump

NPD N Y
RV (δ) Renewal RV N N
NPDz N Y

RV Realized Variance N N
RBip Realized Bipower Variation N Y
RK Realized Kernel Y N

PRV Pre-averaged Realized Variance Y N
PBip Pre-averaged Bipwer Variation Y Y
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Further Results

Simulation

We use a one-factor stochastic volatility (1FSV) model to simulate
daily transaction processes.

MMS noise is a tick-time negatively correlated noise with three
different levels.

We add diurnal patterns of transactions and volatility in the 1FSV
model.

We consider price discretization and flat trades.

We consider case both with (large infrequent) jumps and without
jumps.
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Further Results

No Noise Case

Figure: 1FSV model without jump
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Further Results

No Noise Case

Figure: 1FSV model with jump
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Further Results

Medium Noise Case

Figure: 1FSV model without jump
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Further Results

Medium Noise Case

Figure: 1FSV model without jump
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Further Results

Medium Noise Case

Figure: 1FSV model with jump
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Further Results

Medium Noise Case

Figure: 1FSV model with jump
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Further Results

Summary of the Simulation Study

The NPD estimator performs better than calendar time RV
estimators in theory and is very robust to jumps, but its performance
is limited by the MMS noise and the time discretization.

A large δ is required for the NPD estimator to outperform the
calendar time RV methods.

The optimized NPDz estimator is the overall winner for all noise and
jump cases. It outperforms the optimized RK, PRV and PBip for
small to moderate sampling frequencies.
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Conclusion

We propose a novel class of volatility estimators and provides the
framework to prove its asymptotic properties.

We show that a parametric RBV estimator can lead to further
improvements on the efficiency of volatility estimation.

We validate the use of the NPD and PD estimator in the existing
literature from a theoretical perspective by showing that they are
more efficient than the RV-type estimators.

We propose the NPDz estimator which has better performance than
the calendar time methods in terms of MSE and QLIKE.
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Thank you!
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