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A Typical Example (Applied Time-Series Analysis Exam)

Problem 5 (30 P) Consider quarterly data of first differences of
log Euro Real M3 (deflated with the GDP deflator) for a period
between 1970Q1 to 2014Q4 [...]:

Figure: Time series plot of ∆ log(RealM3t)

Phillip Heiler University of Konstanz 2/24



IntroductionIntroduction Sparse Model SelectionSparse Model Selection Model Selection RiskModel Selection Risk The LASSO OracleThe LASSO Oracle Extension/ConclusionExtension/Conclusion

A Typical Example II (Applied Time-Series Analysis Exam)

d) (2 P) Table 2 shows results from applying information criteria
for choosing the lag length of an autoregressive model for
∆ log(RealM3t). What lag lengths are suggested by the
information criteria? What lag would be your choice, why?

Lag AIC (Akaike) BIC (Schwarz) HQ (Hannan-Quinn)

1 -7.471704 -7.436091 -7.378131
2 -7.479533 -7.426113 -7.339174
3 -7.469884 -7.398658 -7.282739
4 -7.458324 -7.369291 -7.224392
5 -7.460672 -7.353833 -7.179954
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The Model Selection Problem: Literature

Model Selection: Box and Jenkins (1970), Mallow (1973),
Aikaike (1973), Schwartz (1978), Shibata (1983), Li (1987),
Tibshirani (1996), Shao (1997), Knight and Fu (2000), Fan and Li
(2001), Zou (2006), Belloni et al. (2013, 2014), Chernozhukov et
al. (2017)

Post-Model Selection Inference: Leeb and Pötscher (2005,
2006, 2008), Pötscher and Schneider (2009), Cattaneo et. al
(2012)

Post-Model Selection Risk: Yang (2005), Leeb and Pötscher
(2005, 2008), Hansen (2016)
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The Canonical Model

Consider the linear regression model

Yi = X ′

i θ + εi

with εi
i .i .d∼ (0, σ2) having a density with finite information, p fixed

regressors with n−1 ∑n
i=1 XiX

′

i → Q positive definite with rank p.

◮ What is the ”true model“?

◮ Which regressors to include?

◮ How to minimize parameter estimation risk?

◮ How to best predict Yi?

◮ . . .

One solution: ”sparse model selection“
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Sparse Model Selection

Definition: Sparsity-Type Estimation

Let Pn,θ denote the distribution of Y1, . . . , Yn. For θ ∈ Rp let r(θ)
be p × 1 with components ri(θ) = 0 if θi = 0 and ri(θ) = 1 if
θ 6= 0. An estimator satisfies a sparsity-type condition if

Pn,θ(r(θ̂) ≤ r(θ)) → 1

for every θ ∈ θ as n → ∞.
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Sparse Model Selection

Definition: Sparsity-Type Estimation

Let Pn,θ denote the distribution of Y1, . . . , Yn. For θ ∈ Rp let r(θ)
be p × 1 with components ri(θ) = 0 if θi = 0 and ri(θ) = 1 if
θ 6= 0. An estimator satisfies a sparsity-type condition if

Pn,θ(r(θ̂) ≤ r(θ)) → 1

for every θ ∈ θ as n → ∞.

Examples:

◮ Complete subset selection/pre-testing,

◮ Bayesian information criteria,

◮ cross-validation with large validation set nv /n → 1,

◮ sparse estimation: SCAD, (adaptive) LASSO, . . .
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Sparse Model Selection II

Consistent model selection techniques fulfill

Pn,θ(r(θ̂) = r(θ)) → 1

On first sight, sparsity seems like a desirable feature:

◮ Parameters are excluded if the true parameters are zero
asymptotically.

However:

◮ Not informative about the actual finite-sample risk,

◮ risk will depend heavily on parameter values,

◮ can be very poor in finite samples.

◮ In fact: Maximal risk of any sparse estimator is maximally
poor.
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The Risk of Sparse Model Selection

For simplicity, consider the (scaled) MSE loss

l(θ̂, θ) = n(θ̂ − θ)′(θ̂ − θ).

Recall that the risk of the ordinary least squares θ̂OLS is given by
the expected loss

En,θ[n(θ̂OLS − θ)′(θ̂OLS − θ)] = σ2tr

(

n−1
n

∑

i=1

XiX
′

i

)

→ σ2tr(Q−1)

which remains bounded as n → ∞ independently of the parameter
values, i.e. also the maximum risk over the parameter space
remains bounded. This is not the case for sparsity-type estimation.
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The Risk of Sparse Model Selection II

Theorem 2.1. (Leeb and Pötscher, 2008)

Let θ̂ be an arbitrary estimator satisfying the sparsity-type
condition. Then the maximal (scaled) mean squared error of θ̂
diverges to infinity, i.e.

sup
θ∈Rp

En,θ[n(θ̂ − θ)′(θ̂ − θ)] → ∞

as n → ∞. More generally, let l : Rp → R be a nonnegative loss
function. Then

sup
θ∈Rp

En,θ[l(n1/2(θ̂ − θ))] → sup
s∈Rp

l(s)

as n → ∞.
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The Risk of Sparse Model Selection III

Proof: Let θn = −n−1/2s, s ∈ Rp arbitrary, we have that

sup
u∈Rp

l(u) ≥ sup
u∈Rp

En,θl(n1/2(θ̂ − θ))

≥ En,θn
l(n1/2(θ̂ − θn))

≥ En,θn
[l(n1/2(θ̂ − θn))1(θ̂ = 0)]

= l(−n1/2θn)Pn,θn
(r(θ̂) = 0)

= l(s)Pn,θn
(r(θ̂) = 0).

Note that the sequence of probability measures Pn,θn
is contiguous

with Pn,0. By sparsity Pn,0(r(θ̂) = 0) → 1. Since s is arbitrary, the
proof is complete.
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The Risk of Sparse Model Selection IV

sup
θ∈Rp

En,θ[l(n1/2(θ̂ − θ))] → sup
s∈Rp

l(s)

◮ Maximal risk of any sparse estimator is as bad as possible,

◮ remains true over open balls ρn centered at 0 as long as
n1/2ρn → ∞

◮ bad risk behavior occurs exactly around the point where we
would expect largest gain over e.g. OLS due to sparsity.

◮ also holds for data-dependent sparsity rule (Yang, 2005).

⇒ Fundamental conflict between sparse model selection and
maximum risk.
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A hypothetical conversation:

Leeb:
”Thus any sparsity-based estimator has the worst maximum risk
possible.“
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A hypothetical conversation:

Leeb:
”Thus any sparsity-based estimator has the worst maximum risk
possible.“
Yang:
”...and this fundamental conflict cannot be resolved.“
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A hypothetical conversation:

Leeb:
”Thus any sparsity-based estimator has the worst maximum risk
possible.“
Yang:
”...and this fundamental conflict cannot be resolved.“
Tibshirani:
”But what about the risk of SCAD and (adaptive) LASSO?“
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A hypothetical conversation:

Leeb:
”Thus any sparsity-based estimator has the worst maximum risk
possible.“
Yang:
”...and this fundamental conflict cannot be resolved.“
Tibshirani:
”But what about the risk of SCAD and (adaptive) LASSO?“
Fan:
”Yes, we showed that they reach near oracle performance.”
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A hypothetical conversation:

Leeb:
”Thus any sparsity-based estimator has the worst maximum risk
possible.“
Yang:
”...and this fundamental conflict cannot be resolved.“
Tibshirani:
”But what about the risk of SCAD and (adaptive) LASSO?“
Fan:
”Yes, we showed that they reach near oracle performance.”
B. Hansen:
”Yes, but your oracle performance also depends on the location of
your parameters. It suffers from the same drawback.“
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(Near) Oracle Performance of the LASSO

Consider the orthonormal linear regression model

Yi = X ′

i θ + εi

with εi
i .i .d∼ N (0, σ2), p fixed regressors with n−1 ∑n

i=1 XiX
′

i = Ip.
The LASSO is the solution to the following optimization problem:

θ̂L = arg min
θ∈Rp

n
∑

i=1

(Yi − X ′

i θ)2 + λ
p

∑

j=1

|θj |

and has a closed form solution in the orthonormal design, i.e.

θ̂L = (t(θ̂1), . . . , t(θ̂p))

with t(x) = sign(x)(|x | − λ)+ (”soft-thresholding“).
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(Near) Oracle Performance of the LASSO II

Let σ2
n = σ2/n. We are interested in the risk of the LASSO relative

to OLS:

ρ(θ̂L, θ) =
E [(θ̂L − θ)′(θ̂L − θ)]

E [(θ̂OLS − θ)′(θ̂OLS − θ)]
=

E [(θ̂L − θ)′(θ̂L − θ)]

σ2
np

Donoho and Johnstone (1994) show that with optimal tuning
λ = σn

√
2 ln p the LASSO risk is bounded by

ρ(θ̂L, θ) ≤ (1 + 2 ln p)

(

1

p
+ cn(θ)

)

cn(θ) =
1

p

p
∑

j=1

min

{

θ2
j

σ2
n

, 1

}

Usual interpretation: Risk of LASSO close to oracle
”kill-it-or-keep-it“ estimator, i.e. OLS with regressors θj/σ2

n ≥ 1.
Phillip Heiler University of Konstanz 14/24
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(Near) Oracle Performance of the LASSO III

ρ(θ̂L, θ) ≤ (1 + 2 ln p)

(

1

p
+ cn(θ)

)

cn(θ) =
1

p

p
∑

j=1

min

{

θ2
j

σ2
n

, 1

}

Potential problem of the oracle interpretation:

◮ ln(p)-term,

◮ ”kill-it-or-keep-it“ estimator is neither oracle nor optimal,

◮ its performance crucially depends on the parameter values,
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(Near) Oracle Performance of the LASSO IV

Case 1: All coefficients of similar magnitude and large, i.e.

θ2
j /σ2

n > 1

for all j . The relative risk bound is then given by

ρ(θ̂L, θ) ≤ (1 + 2 ln p)

(

1

p
+

1

p

p
∑

j=1

min

{

θ2
j

σ2
n

, 1

})

= (1 + 2 ln p)

(

1

p
+ 1

)

which for large p is approximately

(1 + 2 ln p)

and thus the LASSO can be worse than OLS.
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(Near) Oracle Performance of the LASSO V

Case 2: All coefficients of similar magnitude and small, i.e.

θ2
j /σ2

n = c ≤ 1

for all j . The relative risk bound is then given by

ρ(θ̂L, θ) ≤ (1 + 2 ln p)

(

1

p
+

1

p

p
∑

j=1

min

{

θ2
j

σ2
n

, 1

})

= (1 + 2 ln p)

(

1

p
+ c

)

which for large p is approximately

(1 + 2 ln p)c

and thus the LASSO can be worse than OLS for some c .
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(Near) Oracle Performance of the LASSO VI

Case 3 (”Sparse regression“): k < p coefficients are large, the
remaining 0, i.e.

θ2
j /σ2

n

{

≥ 1 for j = 1, . . . , k

= 0 for j = k + 1, . . . , p.

The relative risk bound is then given by

ρ(θ̂L, θ) ≤ (1 + 2 ln p)

(

1

p
+

1

p

p
∑

j=1

min

{

θ2
j

σ2
n

, 1

})

= (1 + 2 ln p)

(

1 + k

p

)

which is small for a fixed k and p large and thus the LASSO can
dominate OLS.
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Simulations: LASSO Finite Sample Risk

Simulation Design:
Y = X1 + X2δ + ε

with

rk(X1) = 4

rk(X2) = p − 4

All entries of the columns of X1 and X2 and of ε are iid N (0, 1).
δ varies from 0 (sparse regression) to 1 (only big coefficients).
n = 100. We compare the risk of LASSO with 5-fold
cross-validation to OLS.
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Simulations: LASSO Finite Sample Risk II
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Simulations: LASSO Finite Sample Risk III
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Extension: Subvector Risk

Say instead we are only interested in the risk of subvector θa when
θ = (θa, θb). Assume we perform sparse model selection of θb:

◮ worst maximum risk for θb

◮ worst maximum risk for θa for most classical model selection
techniques

However minimax risk attainable for θa for some selection methods
under sufficient sparsity for θb:

◮ double-selection (Belloni et al. 2013, 2014)

◮ double machine learning (Chernozhukov et al. 2017)
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Conclusion

◮ Goal of the model selection step is relevant.

◮ unsolvable trade-off between correct model selection and
estimation risk,

◮ for both classical and ”modern“ model selection,

◮ oracle asymptotic risk properties have to be read correctly,

◮ sparse model selection methods have undesirable maximum
risk properties,

◮ require thorough investigation of the parameter space,

◮ possibility for minmax risk for unselected subvector
components.
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Thank you for your
attention!
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