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Cumulative excess returns by volatility quintile - S&P 500
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Equally-weighted portfolios are formed each month based on ex-post “oracle”
(this-month’s) volatility. Fama-French excess market return in black

In the following, low-volatility portfolios are defined to include stocks that are in
the lowest cross-sectional volatility quintile

Anomaly dates back to Haugen and Heins (1972); more literature: Ang et al.
(2006, 2009); Blitz and van Vliet (2007); Baker et al. (2011); Driessen et al.
(2017)
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Agenda

We ask whether the low-volatiltiy anomaly is exploitable by

making use of high-frequency based measures of realized variation

employing recent advances in forecast evaluation

in order to choose among a large number of models for > 500 stocks

and form portfolios based on these forecasts

We do not focus on

investing in minimum-variance portfolios

modeling high-dimensional covariance matrices

Background:

Low-volatility funds use predominantly daily stock returns
(last-month sq. ret.) which is at odds with the volatility forecasting
literature

Side question: Is the low-volatility anomaly more/less pronounced for
better volatility proxies?
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What is the best way to form low-volatility portfolios
ex-ante?
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We need “good” forecasts!

But what is “good” in terms of our portfolio choice problem?
⇒ Ranking vs. level of volatility

There are many time series models out there - possibly different
performance across stocks and time!?
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Preliminary results

Low-volatility investing may not be low-volatility investing

Portfolio choices based on time series models are more “stable”

They outperform benchmark case after considering transaction costs

Avg. forecast seems to strike a good balance for equal-weighted
portfolios

Forecast accuracy itself is not a good way for choosing models

Model Oracle-overlap ARVo Turnover Return

Oracle – 36.75 0.71 12.28

Avg. forecast 0.67 45.09 0.34 8.83
Elem. score (best) 0.67 45.79 0.44 9.05

Benchmark 0.59 52.46 0.94 8.54
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Average volatility for three portfolio sorts
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Our results in more detail

Bregman loss functions and portfolio sorts

Low-volatility investing
I Data
I Models
I Univariate equally-weighted portfolio sorts
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Forecast evaluation for portfolios (I)

Let x denote a volatility forecast and y the corresponding realization.

Most volatility time-series models are built to forecast the conditional
mean

Forecast evaluation by SE [(x − y)2] or QLIKE [y/x − log(y/x)− 1]?

We are not so much interested in the actual values of forecast errors
if we sort in line with the low-volatility cut-off of realized volatility
(for now)

Additionally, the Bregman class of loss functions for which the
conditional mean is “optimal” is large:

s(x , y) = φ(y)− φ(x)− φ′(x)(y − x)

where φ is a convex function with subgradient φ′
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Forecast evaluation for portfolios (II)

Elementary score (EL): Ehm et al. (2016) showed that each Bregman
loss function can be written as∫ ∞

θ=0
ELθ(x , y)dH(θ)

with

ELθ(x , y) =

{
|y − θ| if min(x , y) ≤ θ < max(x , y)

0 else

and H being a positive weighting function

For each θ, ELθ assigns a penalty in terms of absolute error if sorting
went “wrong”

This is equivalent to our portfolio choice problem if the “true” θ
would be known

However, we discard a lot of valuable information
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Monthly cross-sectional 20% RVo quantile
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Obviously, low-volatility cut-off is time-varying
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Data
Prices for all current and former S&P 500 stocks (obtained from
QuantQuote)

1998M1 - 2017M12, one-minute prices

1026/842 stocks, 5064 daily observations

RV d
t = sq. daily ret.

RV o
t = RV + sq. overnight (sub-sampled)

medRV , RQ

Semi-variances: RV+, RV−, SJV

French:

Market return

Risk-free rate

FFC factors

Cboe: VIX

Rolling window estimation and evaluation (4+2 years)

168 monthly portfolio returns, 2004M1 – 2017M12
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Models

At the end of each month we calculate

Random-walk forecast RV o
t+1:t+22|t = RV o

t−21:t and

RV d
t+1:t+22|t = RV d

t−21:t

Autoregressive model based on rank statistic

Idiosyncratic volatility (Fama-French three-factor)

Exponentially weighted moving average on monthly aggregates
(Riskmetrics), λ = 0.98

Different HAR forecasts

RV o
t+1:t+22|t = β0 + βdRVt + βwRVt−4:t + βmRV

o
t−21:t(+ . . . )

and variants with jumps, VIX , RV in logs, . . .

For comparison: two oracle forecasts
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Portfolio sorts

Single model for all stocks: Form portfolios by forecast-implied
volatility ranking

Same for average forecast (based on HAR-like models)

Loss function: For each stock, calculate the out-of-sample loss over
the last two years. Choose the “best” model for each stock
accordingly. We use RV o

t for forecast evaluation

For calculating EL, we need to choose θ: three different estimates

I θ̂
(20)
last month, θ̂

(80)
last month: last month’s empirical 20%/80%-quantile

I min{θ̂12 months}: minimum of last years’s monthly 20%-quantiles
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Transaction costs

Transaction cost-adjusted returns are calculated as follows:

tot =
N∑

n=1

∣∣∣∣∣w (n)
t+1 − w

(n)
t

1 + r
(n)
t /100

1 + w ′trt/100

∣∣∣∣∣
Hence, total transaction costs on each dollar investment in month t are
c · tot . The actual returns are then

rpt = w ′trt − 100 · c · tot

with c ranging from 0 to 15bps

In our setup

w
(n)
t = 0 or w

(n)
t ≈ 1

130
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Portfolio performance

ARVo Return SR TE OO SO TO

Oracle RVo 36.75 12.28 1.26 – – 0.65 0.71

Avg. forecast 45.09 8.83 0.84 0.71 0.67 0.84 0.34

EL with θ̂
(20)
last month 45.79 9.05 0.87 0.66 0.67 0.79 0.44

EL with θ̂
(80)
last month 46.03 8.69 0.83 0.71 0.66 0.78 0.47

EL with min{θ̂(20)
last 12 months} 46.06 8.77 0.84 0.72 0.66 0.82 0.38

HAR (VIX) 46.48 9.05 0.87 0.70 0.64 0.83 0.36
QLIKE 46.58 8.64 0.81 0.68 0.67 0.78 0.47
HAR (RVo

66,RVo
132) 46.77 9.16 0.87 0.72 0.65 0.81 0.41

EL with θ
(80)
rolling 46.81 8.67 0.80 0.75 0.66 0.80 0.42

SE 47.07 8.59 0.81 0.66 0.66 0.78 0.46
AR (rank) 48.37 8.19 0.78 0.75 0.66 0.89 0.26
Last-month RVo 48.51 7.75 0.74 0.76 0.65 0.65 0.71

Riskmetrics RVd 48.51 8.03 0.78 0.72 0.65 0.94 0.15

Oracle RVd 49.26 10.68 1.21 0.51 0.70 0.53 0.95

Last-month RVd (benchmark) 52.46 8.54 0.82 0.77 0.59 0.53 0.95

Idio vola 59.12 8.55 0.70 1.26 0.50 0.47 1.08

Sharpe ratio (SR), tracking error (TE), oracle overlap (OO), self-overlap (SO), turnover (TO).
Blue: “best” model
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Table: Excess returns for different values of c

c = 5bps c = 10bps c = 15bps

TC low low-high TC low low-high TC low low-high

Oracle RVo 0.43 11.84 19.18 0.86 11.41 19.22 1.30 10.98 19.27
Oracle RVd 0.57 10.11 16.71 1.14 9.55 16.72 1.70 8.98 16.72

HAR (RVo
66,RVo

132) 0.24 8.91 10.90 0.49 8.67 10.91 0.73 8.43 10.92
HAR (VIX) 0.22 8.83 10.47 0.43 8.62 10.49 0.65 8.40 10.49

EL with θ̂
(20)
last month 0.27 8.79 9.89 0.53 8.52 9.86 0.80 8.26 9.84

Avg. forecast 0.21 8.62 10.01 0.42 8.42 10.03 0.62 8.21 10.04

EL with min{θ̂(20)
last 12 months} 0.23 8.54 9.83 0.46 8.31 9.82 0.69 8.08 9.82

EL with θ̂
(80)
last month 0.28 8.41 10.00 0.57 8.12 9.98 0.85 7.84 9.97

QLIKE 0.28 8.36 9.87 0.56 8.08 9.86 0.84 7.80 9.86
SE 0.27 8.32 9.35 0.55 8.04 9.34 0.82 7.77 9.33
AR (rank) 0.15 8.04 8.62 0.31 7.88 8.66 0.46 7.73 8.71

Last-month RVd (benchmark) 0.57 7.97 8.19 1.14 7.41 8.20 1.70 6.84 8.20

Idio vola 0.65 7.91 7.71 1.30 7.26 7.70 1.94 6.61 7.69
Last-month RVo 0.43 7.32 7.44 0.87 6.89 7.49 1.30 6.46 7.53

Bold: Returns significantly different from benchmark portfolio Last-month RVd , sorted by 5bps
low-vola returns. Blue: “best” model

16 / 20



FFC and FF five-factor

CAPM FFC FF five-factor

α βMKT α βMKT βSMB βHML βMOM α βMKT βSMB βHML βRMW βCMA

Oracle RVo 7.579 0.622 7.352 0.680 -0.149 0.002 0.057 6.821 0.692 -0.129 -0.075 0.131 0.158
[0.000] [0.000] [0.000] [0.000] [0.003] [0.966] [0.005] [0.000] [0.000] [0.006] [0.157] [0.010] [0.159]

Oracle RVd 6.429 0.563 6.195 0.620 -0.134 0.009 0.068 5.768 0.628 -0.118 -0.081 0.112 0.181
[0.000] [0.000] [0.000] [0.000] [0.006] [0.798] [0.001] [0.000] [0.000] [0.016] [0.096] [0.026] [0.032]

Avg. forecast 3.865 0.658 3.611 0.718 -0.138 0.000 0.071 3.044 0.731 -0.117 -0.099 0.142 0.213
[0.003] [0.000] [0.001] [0.000] [0.005] [0.999] [0.003] [0.018] [0.000] [0.029] [0.114] [0.018] [0.096]

HAR (RVo
66,RVo

132) 4.111 0.668 3.900 0.720 -0.121 0.023 0.070 3.344 0.733 -0.101 -0.078 0.140 0.220
[0.002] [0.000] [0.003] [0.000] [0.012] [0.612] [0.001] [0.009] [0.000] [0.048] [0.217] [0.013] [0.071]

Last-month RVd (benchmark) 3.404 0.680 3.200 0.729 -0.104 0.031 0.076 2.768 0.735 -0.087 -0.065 0.116 0.188
[0.004] [0.000] [0.003] [0.000] [0.016] [0.362] [0.001] [0.012] [0.000] [0.065] [0.257] [0.063] [0.120]
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Discussion

Results so far:

HAR models lead to significant decrease of volatility inside
low-volatility portfolios

Avg. forecast strikes a good balance without selecting a particular
model

Selection based on loss functions is not necessarily beneficial
compared to the avg. forecast

Oracle portfolios’ returns differ across measures of quadratic variation

Coming soon:

Utility analysis

Forecast-weighted portfolios
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Thank you very much!
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