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Notation Regression Models

I One common probability space:
(
Ω,A,P

)
.

I Xt : Ω→ Rp with distributions Gt ∈ G for all t = 1, . . . , T .
I Yt : Ω→ R such that (Xt, Yt) has distribution Ht ∈ H.
I Ft = FYt|Xt ∈ F : conditional distribution of Yt given Xt in some class of

distributions F .
I Assume that the process

{
(Xt, Yt), t = 1, . . . , T

}
is α-mixing.

I Γ : F → Rk is some k-dimensional functional.
I Parametric model m(Xt, θ) where m(Xt, θ0) = Γ(Ft) a.s. for all t for some
θ0 ∈ Θ ⊆ Rq .
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Motivation: M- and Z-estimation

I Z-/MM-/GMM-estimation based on some identification function
ψ
(
Yt, Xt, θ)

)
:

E
[
ψ
(
Yt, Xt, θ

)]
= 0 ⇔ θ = θ0. (1)

I M-estimation based on some loss function ρ
(
Yt,m(Xt, θ)

)
:

E
[
ρ
(
Yt,m(Xt, θ0)

)]
< E

[
ρ
(
Yt,m(Xt, θ)

)]
(2)

for all θ 6= θ0.
I Given some regression model m(Xt, θ), the possible loss and identification

functions ρ and ψ are not unique.
I Open Question 1: What is the full class of loss functions for M-estimation of a

regression model?
I Open Question 2: What is the full class of identification functions for

Z-estimation of a regression model?
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Motivation: Newey (1993) Efficiency Bound I
I Some k-dim conditional identification function for the k-dim model m(Xt, θ):

E
[
ϕ0
(
Yt,m(Xt, θ)

)∣∣Xt] = 0 a.s. ⇔ θ = θ0. (3)

I We consider the class of estimators, given by some q-dim unconditional identification
function induced by some q × k matrix A(Xt):

ψA
(
Yt, Xt, θ

)
= A(Xt) · ϕ0

(
Yt,m(Xt, θ)

)
, such that (4)

E
[
ψA
(
Yt, Xt, θ

)]
= 0 ⇔ θ = θ0, (5)

I Given that some regularity conditions (Newey and McFadden, 1994) are satisfied,

∆T,AΣ−1/2
T,A

√
T
(
θ̂T,A − θ0

) d→ N (0, Iq), (6)

where

∆T,A = 1/T
∑

E [A(Xt)D(Xt)] (7)

ΣT,A = 1/T
∑

E
[
A(Xt)S(Xt)A(Xt)>

]
(8)

S(Xt) = E
[
ϕ0
(
Yt,m(Xt, θ0)

)
· ϕ0
(
Yt,m(Xt, θ0)

)>∣∣∣Xt] (9)

D(Xt) = ∇θE
[
ϕ0
(
Yt,m(Xt, θ0)

)∣∣Xt] (10)
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Motivation: Newey (1993) Efficiency Bound II

I Efficiency bound is reached by A∗C(Xt) = C ·D(Xt)> · S(Xt)−1, where C is
non-singular and deterministic and

S(Xt) = E
[
ϕ0
(
Yt,m(Xt, θ0)

)
· ϕ0
(
Yt,m(Xt, θ0)

)>∣∣∣Xt] (11)

D(Xt) = ∇θE
[
ϕ0
(
Yt,m(Xt, θ0)

)∣∣Xt] (12)

I Then ∆T,A∗ = ΣT,A∗ =: ΛT and

Λ1/2
T

√
T
(
θ̂T,A∗

C
− θ0

) d→ N (0, Iq), (13)

I Open Question 3: Can this efficiency bound also be attained by some other
A(Xt) 6= A∗C(Xt)?

I Open Question 4: Can this efficiency bound also be attained by some M-estimator?
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Loss and Identification Functions

In the classical elicitability framework, Y is stochastic and the functional Γ is
deterministic:

I A function ρ(Y, x) is called a strictly consistent loss function for the functional
Γ with respect to the distributions F ∈ F (of Y ), when

E [ρ(Y,Γ(F ))] < E [ρ(Y, x)] ∀x ∈ R. (14)

I A function ψ(Y, x) is called a strict identification function for the functional Γ
with respect to the distributions F ∈ F (of Y ), when

E [ρ(Y, x)] = 0 ⇔ x ∈ Γ(F ) (15)
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Strictly (Un)conditionally Consistent Loss Functions I

For regressions with stochastic regressors, the functional
Γ(FYt|Xt) = m(Xt, θ0) is stochastic. Now, we make the more general
definitions:

Definition 1

I A loss function ρ
(
Yt,m(Xt, θ)

)
is called strictly conditionally consistent

for the functional Γ with respect to the distributions Ht ∈ H, if

E
[
ρ
(
Yt,m(Xt, θ0)

)∣∣Xt] < E
[
ρ
(
Yt,m(Xt, θ)

)∣∣Xt] a.s. ∀θ 6= θ0.

(16)

I A loss function ρ
(
Yt,m(Xt, θ)

)
is called strictly unconditionally

consistent for the functional Γ with respect to the distributions Ht ∈ H, if

E
[
ρ
(
Yt,m(Xt, θ0)

)]
< E

[
ρ
(
Yt,m(Xt, θ)

)]
∀θ 6= θ0. (17)
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Strictly (Un)conditionally Consistent Loss Functions II

Theorem 2

I It holds that (strict conditional consistency)⇒ (strict unconditional
consistency)

I Given Assumption 1, it holds that (strict unconditional consistency)⇒
(strict conditional consistency)

I Assumption 1 ensures that the class G is large enough.
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Technical Condition

Assumption 1

For all (Xt, Yt) ∼ Ht ∈ H, Xt ∼ Gt ∈ G, and for all measurable functions
a : Rp → R with supp(G) ∩ a−1((−∞, 0]

)
6= ∅, there exists a pair

(X̃t, Ỹt) ∼ H̃t ∈ H, X̃t ∼ G̃t such that

• FỸt|X̃t=x = FYt|Xt=x for all x ∈ supp(G̃t),

• and supp(G̃t) ⊆ supp(Gt) ∩ a−1((−∞, 0]
)

.

I We can change Gt ∈ G such that there is zero mass on the region where a is
positive.

I This basically means that the class G is large enough!
I In line with the logic of strict consistency: F (class of distributions of Yt given
Xt) must be large enough.

I This is reasonable: we want to have a consistent estimator for a large class of
processes.
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Strictly (Un)-conditional Identification Functions I

ϕ0 : R× Rk → Rk (Yt,m(Xt, θ)) 7→ ϕ0(Yt,m(Xt, θ)) (18)

ψA : R× Rp ×Θ→ Rq (Yt, Xt, θ) 7→ ψA(Yt, Xt, θ) (19)

Definition 3

I A function ϕ0 is called a strictly conditional identification function for
the functional Γ with respect to the distributions Ht ∈ H, if

E[ϕ0(Yt,m(Xt, θ0))|Xt] = 0 a.s. and (20){
∀θ ∈ Θ :

[
(E[ϕ0(Yt,m(Xt, θ))|Xt] = 0 a.s.) =⇒ θ = θ0

]}
(21)

I A function ψA is called a strictly unconditional identification function for
the functional Γ with respect to the distributions Ht ∈ H, if

E[ψA(Yt, Xt, θ0)] = 0 and (22)

{∀θ ∈ Θ : E[ψA(Yt, Xt, θ)] = 0 =⇒ θ = θ0} . (23)
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Strictly (Un)conditional Identification Functions II

Theorem 4

I Given Assumption 1 and given that

P(A(Xt) has full rank) = 1 (24)

for all t = 1, . . . , T , it holds that (strict unconditional identification)⇒
(strict conditional identification)

I Given that

E
[
A(Xt)∇Et

[
ϕ0(Yt, Xt, θ̃)

]]
has full rank ∀θ, θ̃ ∈ Θ, (25)

and for all t = 1, . . . , T , it holds that (strict conditional identification)⇒
(strict unconditional identification)
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Loss and Identification Functions

Theorem 5
Assume that ρ(Yt,m(Xt, θ)) is smooth, and strictly conditionally consistent for some
k-dim functional Γ and has no saddle points. Then,
ϕ0(Yt,m(Xt, θ)) = ∇mρ(Yt,m(Xt, θ)) is a strict conditional identification
function for Γ.

1-dim functionals: Γ(Ft) ∈ R
• ϕ0(Yt,m(Xt, θ)) strict cond id

function.
Then, ρ(Yt,m(Xt, θ)) =∫m(Xt,θ)
m0

ϕ0(Yt, t)dt + c(Yt) is
a strictly consistent loss function.

• Reason: Fundamental theorem of
calculus.

• {loss fct} = {identification fct}

Multiv. functionals: Γ(Ft) ∈ Rk

• The inverse direction does not
hold in general!

• For multivariate functionals, we
need some integrability conditions
to hold in order to get this result,
Königsberger (2004), p.184.

• {loss fct} ⊆ {identification fct}
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Conclusions of this Section

We have learned that (informal notation):

(Z-estimator)

= (strict unconditional identification)
⊇ (strict conditional identification)
⊇ (strict conditional consistency)
⊇ (strict unconditional consistency)
= (M-estimator)

I ⊇: given Assumption 1
I ⊇: given that the loss ρ does not have any saddle points
I ⊇: given that E

[
A(Xt)∇Et

[
ϕ0(Yt, Xt, θ̃)

]]
has full rank ∀θ, θ̃ ∈ Θ
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Strict Efficiency Bounds
I Recall the Z-estimator based on A(Xt):

ψA
(
Yt, Xt, θ

)
= A(Xt) · ϕ0

(
Yt,m(Xt, θ)

)
, such that (26)

E
[
ψA
(
Yt, Xt, θ)

)]
= 0 ⇔ θ = θ0, (27)

I Any Z-estimator: ∆T,AΣ−1/2
T,A

√
T
(
θ̂T,A − θ0

) d→ N (0, Iq)

I Efficient Z-estimator: Λ1/2
T

√
T
(
θ̂T,A∗

C
− θ0

) d→ N (0, Iq)

Theorem 6

I (Newey (1993)) For all q × k matrices A(Xt), it holds that ∆−1
T,AΣT,A∆−1

T,A − Λ−1
T is

positive semi-definite.
I If A(Xt) 6= A∗C(Xt) with positive probability for some t and for all deterministic and

non-singular matrices C, then the matrix

∆−1
T,AΣT,A∆−1

T,A − Λ−1
T (28)

is positive semi-definite with at least one strictly positive Eigenvalue.
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A Regression for the first two moments I

I We jointly model the first two moments by the joint model

m(Xt, θ) =
(
m1(Xt, θ(1)), m2(Xt, θ(2))

)
. (29)

I Multivariate Bregman type class of loss functions:

ρ
(
Yt,m1(Xt, θ(1)),m2(Xt, θ(2))

)
(30)

= − φt
(
m(Xt, θ)

)
+∇φt

(
m(Xt, θ)

)
·
(
m1(Xt, θ(1))− Yt
m2(Xt, θ(2))− Y 2

t

)
, (31)

where φt : R2 → R are strictly convex functions.
I The associated identification functions are given by

ψφ
(
Yt,m1(Xt, θ(1)),m2(Xt, θ(2))

)
(32)

=
(
∇θm1(Xt, θ(1))
∇θm2(Xt, θ(2))

)>
·Hφ(m(Xt, θ)) ·

(
m1(Xt, θ(1))− Yt
m2(Xt, θ(2))− Y 2

t

)
(33)

=Aφ(Xt)
(
m1(Xt, θ(1))− Yt
m2(Xt, θ(2))− Y 2

t

)
. (34)
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A Regression for the first two moments II

I Thus

Aφ(Xt) =
(
∇θm1(Xt, θ(1)) 0

0 ∇θm2(Xt, θ(2))

)>
·Hφ(m(Xt, θ)) (35)

I Efficient choice:

A∗C(Xt) = C ·
(
∇θm1(Xt, θ(1)

0 ) 0
0 ∇θm2(Xt, θ(2)

0 )

)>
·Var

((
Yt
Y 2
t

)∣∣∣∣Xt)−1

.

(36)

I Thus C = Iq and

Hφ(z) = Var
((

Yt
Y 2
t

)∣∣∣∣m(Xt, θ) = z

)−1

. (37)

I This can e.g. be realized by using the quadratic form

φt(z) = z>Var
((

Yt
Y 2
t

)∣∣∣∣m(Xt, θ) = z

)−1

z. (38)
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Quantile Regression

I Generalized Piecewise Linear (GPL) class of loss functions:

ρ
(
Yt, qα(Xt, θ)

)
=
(
1{Yt≤qα(Xt,θ)} − α

)
gt(qα(Xt, θ))− 1{Yt≤qα(Xt,θ)}gt(Yt) + a(Yt)

where gt are strictly increasing functions.
I The associated identification functions are given by

ψg(Yt, Xt, θ) = ∇θqα(Xt, θ)g′t(qα(Xt, θ))
(
1{Yt≤qα(Xt,θ)} − α

)
(39)

= A(Xt)
(
1{Yt≤qα(Xt,θ)} − α

)
. (40)

I Efficient choice (Z-estimator):

A∗C(Xt) = C · 1
α(1− α)∇θqα(Xt, θ0)ft

(
qα(Xt, θ0)

)
(41)

I Efficient choice (M-estimator):

gt(z) = Ft(z) and thus g′t
(
qα(Xt, θ0)

)
= ft

(
qα(Xt, θ0)

)
. (42)
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A Double Quantile Regression I

I We jointly model the α, β ∈ (0, 1), α < β quantiles through the joint model

m(Xt, θ) =
(
qα(Xt, θα) qβ(Xt, θβ)

)
. (43)

I Multivariate GPL class of loss functions:

ρ
(
Yt, qα(Xt, θα), qβ(Xt, θβ)

)
=
(
1{Yt≤qα(Xt,θα)} − α

)
g1,t(qα(Xt, θα))− 1{Yt≤qα(Xt,θα)}g1,t(Yt)

+
(
1{Yt≤qβ(Xt,θβ)} − β

)
g2,t(qβ(Xt, θβ))− 1{Yt≤qβ(Xt,θβ)}g2,t(Yt) + a(Yt)

where g1,t and g2,t are strictly increasing and smooth functions.
I The associated identification functions are given by

ψg1,g2

(
Yt, qα(Xt, θα), qβ(Xt, θβ)

)
=∇qα(Xt, θα)g′1,t(qα(Xt, θα))

(
1{Yt≤qα(Xt,θα)} − α

)
+∇qβ(Xt, θβ)g′2,t(qβ(Xt, θβ))

(
1{Yt≤qβ(Xt,θβ)} − β

)
=Ag1,g2 (Xt)

(
1{Yt≤qα(Xt,θα)} − α
1{Yt≤qβ(Xt,θβ)} − β

)
.
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A Double Quantile Regression II

I Thus

Ag1,g2 (Xt, θ0) =
(
∇θqα(Xt, θα0 )>g′1,t

(
qα(Xt, θα0 )

)
0

0 ∇θqβ(Xt, θβ0 )>g′2,t
(
qβ(Xt, θβ0 )

))
I Efficient choice:

A∗C(Xt, θ0) = C ·
(
∇θqα(Xt, θα0 )>ft

(
qα(Xt, θα0 )

)
0

0 ∇θqβ(Xt, θβ0 )>ft
(
qβ(Xt, θβ0 )

))
·
(
α(1− α) α(1− β)
α(1− β) β(1− β)

)−1

I This looks like g1,t(·) = g2,t(·) = ft(·) would attain the efficiency bound.
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A Double Quantile Regression III

Theorem 7
Assume that

(DQR1) the support of the pushforward measure of∇qα(Xt, θα0 ) contains at least
k1 + 1 different values v1, . . . , vk1+1, such that any subset of cardinality k1
of {v1, . . . , vk1+1} is linearly independent. Equivalently, the support of the
pushforward measure of∇qβ(Xt, θβ0 ) contains at least k2 + 1 such values.

(DQR2) The ratio ft(qα(Xt,θα0 ))
ft(qβ(Xt,θβ0 ))

is not constant almost surely.

Then, A∗C(Xt) 6= Ag1,g2 (Xt) with positive probability for some t = 1, . . . , T . Thus,
the M-estimator cannot attain the efficiency bound theoretically.
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A Joint Regression for the quantile and ES I
I We jointly model the α-quantile and α-ES through the joint model

m(Xt, θ) =
(
qα(Xt, θq), eα(Xt, θe)

)
. (44)

I FZ class of loss functions:

ρ
(
Yt, qα(Xt, θq), eα(Xt, θe)

)
=
(
1{Yt≤qα(Xt,θq)} − α

)
gt(qα(Xt, θq))− 1{Yt≤qα(Xt,θe)}gt(Yt)

+ φ′t(eα(Xt, θe))
(
eα(Xt, θe)− qα(Xt, θq) +

(qα(Xt, θq)− Yt)1{Yt≤qα(Xt,θq)}

α

)
− φt(eα(Xt, θe)) + a(Yt),

where gt are strictly increasing and φt strictly increasing and strictly convex.
I The associated identification functions are given by

ψg,φ

(
Yt, qα(Xt, θq), eα(Xt, θe)

)
=∇qα(Xt, θq)

(
g
′
t(qα(Xt, θq)) +

φ′t(eα(Xt, θe))
α

)(
1{Yt≤qα(Xt,θq)} − α

)
+∇eα(Xt, θe)φ′′t (eα(Xt, θe))

(
eα(Xt, θe)− qα(Xt, θq) +

(qα(Xt, θq)− Yt)1{Yt≤qα(Xt,θq)}

α

)
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A Joint Regression for the quantile and ES II

I Efficient choice A∗C(Xt) = C ·D(Xt)> · S(Xt)−1, where

D(Xt) =
(
∇qα(Xt, θq0)ft(qα(Xt, θ0)q) 0

0 ∇eα(Xt, θe0)

)
and (45)

S(Xt) =

(
α(1− α) (1− α)

(
qα(Xt, θ0)− eα(Xt, θ0)

)
(1− α)

(
qα(Xt, θ0)− eα(Xt, θ0)

)
S22

)
, (46)

S22 =
1
α

Vart
(
Yt − qα(Xt, θq0)

∣∣Yt ≤ qα(Xt, θq0)
)

+
1− α
α

(
eα(Xt, θe0)− qα(Xt, θq0)

)2

(47)
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Theorem 8
Assume that

(QESR1) the support of the pushforward measure of∇qα(Xt, θq0) contains at least k1 + 1
different values v1, . . . , vk1+1, such that any subset of cardinality k1 of
{v1, . . . , vk1+1} is linearly independent. Equivalently, the support of the
pushforward measure of∇eα(Xt, θe0) contains at least k2 + 1 such values.

(QESR2) At least one of the following equalities does not hold almost surely:

Et
[(
qα(Xt, θq0)− Yt

)2
1{Yt≤qα(Xt,θ

q
0 )}

]
=
(

1− α
α
− α2

)(
qα(Xt, θq0)− eα(Xt, θe0)

)2

1
α2

Et
[(
qα(Xt, θq0)− Yt

)2
1{Yt≤qα(Xt,θ

q
0 )}

]
+
(
eα(Xt, θe0)− qα(Xt, θq0)

)2

= φ
′′
t (eα(Xt, θq0))−1

(1− α)
(
αg
′
t(qα(Xt, θq0)) + φ

′
t(eα(Xt, θe0))

)
= ft(qα(Xt, θq0))

Then, A∗C(Xt) 6= Ag,φ(Xt) with positive probability for some t = 1, . . . , T . Thus, the
M-estimator cannot attain the efficiency bound theoretically.
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DQR Simulation Setup, iid errors

Xt ∼
(

1, U [0, 3]
)

ut ∼ N (0, 1), (48)

Yt = X
>
t γ0 + (X>t η0)ut (γ0, η0) = (1, 1, 1, 1) (49)

qα(Xt, θα0 ) = X
>
t

(
γ0 + η0zα

)
qβ(Xt, θβ0 ) = X

>
t

(
γ0 + η0zβ

)
(50)

I We need that
ft(qα(Xt,θα0 ))

ft(qβ(Xt,θ
β
0 ))

is not deterministic

I In location-scale models with ut ∼ iid:

ft(qα(Xt, θα0 ))

ft(qβ(Xt, θβ0 ))
=
fut (zα)

fut (zβ)
=
fu(zα)
fu(zβ)

= constant (51)
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DQR Simulation Setup, non-iid errors

ut ∼ tνt (µt, σt), νt = 2 + t/T (100− 2) (52)

σt =
Qα(tν0 )−Qβ(tν0 )

Qα(tν)−Qβ(tν)
µt = Qβ(tν0 )− σνQβ(tν) (53)

=⇒ q0.1(ut) = −1.88 q0.6(ut) = 0.62 (54)

=⇒
f1(q0.1(u1))
f1(q0.6(u1))

= 0.28
fT (q0.1(uT ))
fT (q0.62(uT ))

= 0.50 (55)

cd
f

−2 −1 0 0.62 2

0
0.

1
0.

2
0.

3
0.

4

f1   
f2   

cd
f

−2 −1 0 0.62 2

0
0.

5
0.

6
1

F1   
F2   
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DQR Simulation Results, non-iid errors

Estimation Method ut ∼ tν
θ1 θ2 θ3 θ4

True Asymptotic SD
M-est 2.4351 2.1294 5.4898 4.7882
Z-est 2.4351 2.1294 5.4898 4.7882

M-est eff. 2.1829 1.9124 5.1889 4.5350
Z-est p.eff 2.1829 1.9124 5.1889 4.5350

Z-est 2.1694 1.9005 5.1569 4.5070

Estimated Asymptotic SD
M-est 2.4344 2.1288 5.4806 4.7906
Z-est 2.4344 2.1288 5.4806 4.7906

M-est eff. 2.1829 1.9125 5.1794 4.5367
Z-est p.eff 2.1833 1.9127 5.1804 4.5370

Z-est 2.1693 1.9006 5.1474 4.5085

Empirical SD
M-est 2.3575 2.0358 5.3285 4.6281
Z-est 2.3559 2.0347 5.3201 4.6231

M-est eff. 2.1002 1.8103 5.0785 4.4149
Z-est p.eff 2.1022 1.8064 5.1095 4.4414

Z-est 2.1271 1.8247 5.2245 4.5301
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QESR Simulation Setup, iid errors

Xt ∼
(
1, U [0, 3]

)
ut ∼ N (0, 1), (56)

Yt = X>t γ0 + (X>t η0)ut (γ0, η0) = (−1, 1, 0.5, 0.5) (57)

qα(Xt, θq0) = X>t
(
γ0 + η0zα

)
eα(Xt, θe0) = X>t

(
γ0 + η0ξα

)
(58)
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QESR, Simulation Results:

g φ′ True Asymptotic SD
M-est g(z) = z φ′(z) = Flog(z) 5.9924 4.5612 5.5715 6.4873
Z-est g(z) = z φ′(z) = Flog(z) 5.9924 4.5612 5.5715 6.4873
M-est g(z) = Ft(z) φ′(z) = Flog(z) 5.4118 4.2179 5.5715 6.4873
Z-est g(z) = z φ′(z) = −1/z 5.7265 4.4176 5.0074 3.8683

Z-est eff 5.3484 4.1389 4.9828 3.8560

g φ′ Estimated Asymptotic SD
M-est g(z) = z φ′(z) = Flog(z) 6.0181 4.5629 5.5894 6.5037
Z-est g(z) = z φ′(z) = Flog(z) 6.0181 4.5630 5.5895 6.5023
M-est g(z) = Ft(z) φ′(z) = Flog(z) 5.4352 4.2195 5.5837 6.5060
Z-est g(z) = z φ′(z) = −1/z 5.7509 4.4186 5.0422 3.8707

Z-est eff 5.3753 4.1420 5.0020 3.8554

g φ′ Empirical SD
M-est g(z) = z φ′(z) = Flog(z) 5.7764 4.5348 5.4280 6.3952
Z-est g(z) = z φ′(z) = Flog(z) 5.7875 4.5308 5.4273 6.3953
M-est g(z) = Ft(z) φ′(z) = Flog(z) 5.2376 4.1857 5.4237 6.4019
Z-est g(z) = z φ′(z) = −1/z 6.1330 4.6506 9.5877 5.6558

Z-est eff 5.6945 4.3757 5.2574 4.1161
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Conclusions

I For univariate models: (M-Estimator)=̂(Z-Estimator).
I However, for multivariate models: (M-Estimator) ⊆ (Z-Estimator)
I For univariate models, the efficiency bound can be reached by both, the M-

and Z-estimator.
I For multivariate models, there are examples where the efficiency bound

cannot be reached by the M-estimator.
I This depends on the richness of the class of strictly consistent loss

functions.
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Mean Regression

I Bregman class of loss functions:

ρ
(
Y,m1(X, θ)

)
= −φ(m1(X, θ)) + φ′(m1(X, θ))

(
m1(X, θ)− Y

)
+ a(Y ),

(59)

where φ is a strictly convex function.
I The associated identification functions are given by

ψ(Y,X, θ) = ∇θm1(X, θ)φ′′(m1(X, θ))
(
m1(X, θ)− Y

)
(60)

= A(X, θ)
(
m1(X, θ)− Y

)
. (61)

I Efficient choice:

A∗C(X, θ0) = C · ∇θm1(X, θ0) 1
Var(Y |X) (62)

and thus C = I and

φ′′(z) = 1
Var

(
Y
∣∣m1(X, θ) = z

) (63)

I Here, we need the additional condition that Var(Y |X) is almost surely
uniquely determined by the value of m1(X, θ0) = E[Y |X].
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