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Notation Regression Models

One common probability space: (£, A, P).
X : Q — RP with distributions Gy € G forallt =1,...,T.
Y; : @ — Rsuch that (X, Y;) has distribution H; € H.

F; = Fy,|x, € F: conditional distribution of Y; given X; in some class of
distributions F.

> Assume that the process {(Xt, Yi),t=1,... ,T} is a-mixing.

vV vVv.v Yy

» [': F — R* is some k-dimensional functional.

» Parametric model m(X;, 8) where m(X¢, 0y) = I'(F}) a.s. for all ¢ for some
6o € © CR%
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Motivation: M- and Z-estimation

» 7-/MM-/GMMa-estimation based on some identification function
(Y2, X, 0)):

E [¢(Y:, X0, 0)] =0 o 6 = 6. 1)
> M-estimation based on some loss function p(Yt7 m(Xy, 0)):

E [p(Y:, m(X1,00))] <E[p(Yi,m(X:,0))] )
for all 0 # 6.

> Given some regression model m(X¢, 0), the possible loss and identification
functions p and v are not unique.

> Open Question 1: What is the full class of loss functions for M-estimation of a
regression model?

> Open Question 2: What is the full class of identification functions for
Z-estimation of a regression model?
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Motivation: Newey (1993) Efficiency Bound I

» Some k-dim conditional identification function for the k-dim model m(X¢, 6):
E [¢o(Ve, m(X1,0))| X¢] =0 ass. & 0=6p. ®3)

> We consider the class of estimators, given by some g-dim unconditional identification
function induced by some g x k matrix A(Xz¢):

YA (Yt, Xi, 9) = A(X¢) - @0 (Yt, m(Xt, 0)), such that @)
E[ga(Ye, Xe,0)] =0 & 6=, ®)
> Given that some regularity conditions (Newey and McFadden, 1994) are satisfied,
— A d
A7 a3 PV (07,4 — 00) 5 N(0,1y), )
where
Ara=1/T Y E[AKODX)] ®
Sra=1/T Y E[AKOSE)AXD)T ] ®
T
S(X1) =E [tpo (Ye.m(x1.00)) - w0 (Ve m(Xe,00)) ’Xt] ©
D(X¢) = VoE [ o (e, m(Xe,00)) | x¢] 10)
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Motivation: Newey (1993) Efficiency Bound II

> Efficiency bound is reached by A7, (X¢) = C - D(Xy) " - S(X:)~ !, where C'is
non-singular and deterministic and

T
S0 = B [0 (Y m(Xe,0) - o (Vi m(X,0)) | %] (a1
D(X:) = VoE [900 (Yt,m(Xt,@o)) | Xt] (12)
» Then Ar 4« = Y7 4+ =: A and
5 d
AIT/Q\/T(GT,A*C —60) < N(0, 1), (13)
> Open Question 3: Can this efficiency bound also be attained by some other

A(Xt) # AL(Xe)?

> Open Question 4: Can this efficiency bound also be attained by some M-estimator?
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Loss and Identification Functions

In the classical elicitability framework, Y is stochastic and the functional I" is
deterministic:

> A function p(Y, z) is called a strictly consistent loss function for the functional
I" with respect to the distributions F' € F (of Y), when

E[p(Y,I(F))] <E[p(Y,z)] VzeR (14)

> A function ¥ (Y, z) is called a strict identification function for the functional I"
with respect to the distributions F' € F (of Y), when

Elp(Y,a) =0 &  zel(F) (15)
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Strictly (Un)conditionally Consistent Loss Functions I

For regressions with stochastic regressors, the functional
I'(Fy, x,) = m(X¢, 6o) is stochastic. Now, we make the more general
definitions:

Definition 1

> A loss function p(Yt, m(Xe, 9)) is called strictly conditionally consistent
for the functional I" with respect to the distributions H; € H, if

E[p(Yi,m(Xe,00))| Xi] <E[p(Ye, m(X:,0))| Xi] a.s. V6 # 6.
(16)

> A loss function p(Yt, m(Xe, 9)) is called strictly unconditionally
consistent for the functional I" with respect to the distributions H; € H, if

E [p(Yi,m(X1,00))] <E[p(Ye,m(X:,0))]  VO#6.  (17)
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Strictly (Un)conditionally Consistent Loss Functions II

Theorem 2

» It holds that (strict conditional consistency) = (strict unconditional
consistency)

> Given Assumption 1, it holds that (strict unconditional consistency) =
(strict conditional consistency)

> Assumption 1 ensures that the class G is large enough.
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Technical Condition

Assumption 1

Forall (X¢,Y:) ~ Hy € H, Xt ~ Gy € G, and for all measurable functions
a : R? — R with supp(G) N (( 00, O}) # 0, there exists a pair
(X, Ye) ~ Hy € H, Xy ~ Gt such that

® Fy %0 = Py x,=c forall z € supp(Gt),
e and supp(Gy) C supp(Gy) Na™* ((foo, 0])

We can change G'; € G such that there is zero mass on the region where a is
positive.

» This basically means that the class G is large enough!

» In line with the logic of strict consistency: F (class of distributions of Y; given
X) must be large enough.

This is reasonable: we want to have a consistent estimator for a large class of
processes.
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Strictly (Un)-conditional Identification Functions I

©o : R x RF - R” (Y, m(Xy,0) = po(Ye,m(X:,0)  (18)
ha:RxRP x © — R? (Yi, X¢,0) — tha(Ye, X1, 0) (19)

Definition 3

> A function ¢ is called a strictly conditional identification function for
the functional I" with respect to the distributions H; € H, if

E[po(Y:, m(X¢,600))|X:] =0 a.s. and (20)

{ve €0 [(Blpo(Y,m(Xe,0))[Xi] =0 as) = 0= 90]} 1)

> A function 1) 4 is called a strictly unconditional identification function for
the functional I" with respect to the distributions H; € H, if

E[$a(Y:. X;,00)] =0  and (22)
(V0 €O : E[pa(Ys, X1,0)] =0 = 0=0p}. (23)
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Strictly (Un)conditional Identification Functions II

Theorem 4

> Given Assumption 1 and given that
P(A(X¢) has full rank) = 1 (24)

forallt =1,...,T,it holds that (strict unconditional identification) =
(strict conditional identification)

> Given that
E [A(X:)VE: [@o(Yi, X,0)]] has full rank 70,6 € ©, (25)

and forallt =1, ..., T, it holds that (strict conditional identification) =
(strict unconditional identification)
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Loss and Identification Functions

Theorem 5

Assume that p(Yy, m(Xy, 0)) is smooth, and strictly conditionally consistent for some
k-dim functional T and has no saddle points. Then,
wo(Ye, m(X¢,0)) = Vimp(Ye, m(Xy,0)) is a strict conditional identification

function for I
1-dim functionals: I'(F}) € R Multiv. functionals: T'(F}) € RF
* ¢o(Ye,m(X¢,0)) strict cond id e The inverse direction does not
function. hold in general!
Then, p(Yy, m(X¢,0)) =
m(Xy,0 . ivari i
fm()(Xtv ) eo(Ye, )t + c(Yy) s e For multivariate functionals, we

need some integrability conditions
to hold in order to get this result,
e Reason: Fundamental theorem of Kbnigsb erger (2004) p.18 4.

calculus.
o {loss fct} C {identification fct}

a strictly consistent loss function.

o {loss fct} = {identification fct}
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Conclusions of this Section

We have learned that (informal notation):

(Z-estimator)
= (strict unconditional identification)
O (strict conditional identification)
D (strict conditional consistency)
D (strict unconditional consistency)

= (M-estimator)

v
U

: given Assumption 1

U

: given that the loss p does not have any saddle points

O: given that E [A(Xt)VEt [<po(Yt, X, é)]] has full rank V6,0 € ©
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Strict Efficiency Bounds

> Recall the Z-estimator based on A(X4):
Ya (Yt, X4, 9) = A(X¢) - po (Y}, m(Xt, 9)), such that (26)
E[va(Ye,Xe,0)] =0 &  0=060, 27)
> Any Z-estimator: Ap 4%, '/{zﬁ(éTYA - 00) A N(0, 1)

» Efficient Z-estimator: AIT/Q\/T(éT,A*C — 90) i) N(0,1y)

Theorem 6

» (Newey (1993)) For all ¢ x k matrices A(X¢), it holds that AEIAETVAA;lA — A;l is
positive semi-definite.

> If A(X:) # A% (Xy) with positive probability for some t and for all deterministic and
non-singular matrices C, then the matrix

—1 -1 —1
ApaZT,algpy — A (28)
is positive semi-definite with at least one strictly positive Eigenvalue.
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A Regression for the first two moments I

> We jointly model the first two moments by the joint model
m(Xi,0) = (m1(Xe,0), ma(X:,0?)). (29)
» Multivariate Bregman type class of loss functions:
p(Ye,ma(Xe,0),ma(Xe,0)) (30)

(X, 00) - Y, > e

= — ¢t (m(Xt, 9)) + v¢t (m(Xt, 9)) . (mg(Xt’e(Q)) _ m2

where ¢; : R? — R are strictly convex functions.
» The associated identification functions are given by

(I (Yuml(Xt79(l)),m2(Xt79(2))) (32)

.
oma (X, 01)) (i (X, 00) — Y,
(Vemz (x,,02)) e 0) {1 02y — v2 (33)

1)y _
= Ay(Xy) (;n:(())ét:g(z))) _ )}22) . (34)
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A Regression for the first two moments II
» Thus

¢h) T
AAX»—(WW(?"’ . 9@))) Ho(m(Xe,0))  (39)

» Efficient choice:
Voma (Xy,65") 0 " Y
AL(X) =C - ’ %
R O It ()

» Thus C = I, and

Hy(z) = Var < (;/ttg) ‘ m(X¢,0) = z) ) . 37)

» This can e.g. be realized by using the quadratic form

oi(z) = 2" Var ( (;?2)
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Quantile Regression

> Generalized Piecewise Linear (GPL) class of loss functions:
p(Ye,¢a(Xe,0))
= (Lpvi<aaxe.0) — @) 96(da(Xe,0) = Liv, <gu(x0,0019¢ (Ye) + a(Y2)

where g; are strictly increasing functions.

» The associated identification functions are given by
Py (Ye, X, 0) = VGCIa(Xt»G)QQ(QQ(Xt,9))(1{Yt§qa(xt,o)} - Oé) (39)
= A(X2) (L vy <gaxe0) — @) (40)

» Efficient choice (Z-estimator):

Ac(Xy) =C - Voqa(Xt,00) f1 (%(Xugo)) (41)

_r
a(l —a)
» Efficient choice (M-estimator):

9:(2) = Fi(z)  andthus  gi(ga(X:,600)) = fi(qa(Xe,600)).  (42)
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A Double Quantile Regression I

> We jointly model the a, 5 € (0, 1), o < 5 quantiles through the joint model
m(Xe,0) = (2a(X0,0%)  gs(X0,0%)) . (43)
> Multivariate GPL class of loss functions:
p(Ye, ga(Xe,0%),45(X:,67))
= (Livi<qa(xe0m)) — @) 91,6 (00 (X1, 0%)) = Liv, <o (x,.000191,¢(Y2)
+ (ﬂ{ytgqﬁ(xt,oﬁ)} — B) g2, (qs(Xs, 0%)) — Lty <qp(x0,00)192.4(Y2) + a(Y2)

where g1,; and g2 are strictly increasing and smooth functions.
» The associated identification functions are given by

1/)91792 (}/ta qa<Xi7 904)’ QB(Xt7 95))
= Vqa(Xt,07) 91,4 (g0 (X2, 07)) (1 (v, <ga (x,.00)) — @)
+ Vap (X, 96)95,1& (g5(X, gﬁ)) (H{Ytgqﬁ(xt,eﬁ)} - ﬂ)

Ty, <qa(X:,00)) — Q@
:A X tSqa ts .
02 (X2) (1{Yéqﬁ<xt,eﬁ)} -8
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A Double Quantile Regression II

» Thus

Voda(Xt,08) " 9, (0 (X, 05) 0
Agy,g5(Xt,00) = ( 0 1,t( ) )

0 Voas(Xt,00) T g5 (as(X2,60))
» Efficient choice:

A (X1,00) = C- (an@tve&m (4a(X0,02) . )

0 Voas(Xt,00) 7 fr (a5(X:,07))

(47 e

> This looks like g1,+(-) = g2,:(-) = fi(-) would attain the efficiency bound.
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A Double Quantile Regression III

Theorem 7
Assume that

(DQR1) the support of the pushforward measure of Vqa (X¢, 05 ) contains at least
k1 + 1 different values v1, . . ., Vg, +1, such that any subset of cardinality k,
of {v1, ..., Uk, +1} is linearly independent. Equivalently, the support of the
pushforward measure of Vqg(X,,05) contains at least ko + 1 such values.

(DQR2) The ratio M is not constant almost surely.

fe(ap(Xe,04))

Then, AG(Xe) # Ag, 9. (X¢) with positive probability for somet = 1,...,T. Thus,
the M-estimator cannot attain the efficiency bound theoretically.
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A Joint Regression for the quantile and ES I

> We jointly model the a-quantile and a-ES through the joint model

m(Xe,0) = (ga(X¢,09),  ea(Xy,609)). (44)
» FZ class of loss functions:

p(V2: 90 (X, 07), ea(Xe,0%))

= (1 (v <ga(x0.00)) — @) 96(da(Xe,09) = T (v, <go(x, .00} 9¢(Ye)

o (Xe,09) — Y1
+¢£(ea(Xt,08)) <ea(Xt706) _Qa(Xt79q)+ (q ( t ) ti {Yt<qﬂ(xt79q)})

— ¢t(ea (X, 09) + a(Ye),

where g¢ are strictly increasing and ¢; strictly increasing and strictly convex.
» The associated identification functions are given by

wg,qs(Yu qa(Xt,07), ea(Xt, 95))

by (ea(Xe, 69)
=Vaqa (X, 07) (QQ(QQ(Xt,Gq)) + %) (ﬂ{ytgqa(xt,eq)} - a)

X¢,60%) — V)1
+ Vea (X, 0908 (ea (X4, 6°)) (mxt,ee)—qa(xt,o‘ZH o X0 P 2 1) {Ytgqa(XtﬂQ)})
«
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A Joint Regression for the quantile and ES II

> Efficient choice A% (X;) = C - D(X:)T - S(X¢) ™!, where

D(Xy) = (an(xt,9g>f6(qa(xt,eo>‘0 Vea&hgg)) and )
stxn a(l—a) (1= @) (aa(Xe 00) —ca X 00))
(1 = @) (4a(Xt,60) — ea(Xt,00)) S22

—

(ea(Xe,05) — aax1,0D)
@)

1 1
S22 = — Vare (Vi = ga(Xe, 09| Ye < ga(X0,68)) +
«
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Theorem 8
Assume that

(QESR1) the support of the pushforward measure of Vqo (Xt, 03) contains at least k1 + 1
different values v1, . .., vk, 41, Such that any subset of cardinality k1 of
{v1,..., vk, +1} is linearly independent. Equivalently, the support of the
pushforward measure of Veo (Xt, 05) contains at least ka + 1 such values.

(QESR2) At least one of the following equalities does not hold almost surely:

11—«

Ee [(qa(Xt, %) ~ Yf)zﬂ{YtSqawtﬁS)}] - (

(100500 ) ]+ (005080 0050

= o (ea(Xt,00) "

— a2> (qa(XtYGS) - ea(xt,eg)f

«

(1= o) (a9} (g0 (X2, 0)) + 64 (ea(Xt, 05))) = fe(aa (X, 08)

Then, AL (Xt) # Ag,6(Xt) with positive probability for somet = 1,...,T. Thus, the
M-estimator cannot attain the efficiency bound theoretically.
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DQR Simulation Setup, iid errors
X~ (1,U100,3)) ur ~ N (0,1), (48)
Yi = X 50+ (X no)us (70, m0) = (1,1,1,1) 9
g (Xt,08) = X, (70+7702a) ap(Xe,00) = x| (“/o+n025) (50)
X¢,609
P> We need that M is not deterministic
Fe(ag(X¢.,05))
P In location-scale models with wy ~ iid:
X, 05
fr(qa (Xt 0)) _ fut (za) _ fu(za) — constant 1)
frlap(Xe,00))  Sfur(23)  Fu(zp)
o | — 0.25-quantile OODCE?O ® o @ \%) &°
- ——— 0.75-quantile
-
7 O@O o o
o o o °
T T T T T T T
00 05 1.0 15 20 25 30
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DQR Simulation Setup, non-iid errors

ug ~ ty, (1t, 0t), vy =2+ t/T(100 — 2) (52)
Qaltug) — Qpltyy)
b ed E ] A 'EA = vo) — ov v 53
ot Qa(ty) = Qaltn) wt = Qp(tyy) —ouvQp(ty)  (53)
= qo.1(ut) = —1.88 q0.6(ut) = 0.62 (54)
_ f1(q0.1(u1)) 098 fr(aoa(ur)) _ 0.50 55)
f1(q0.6(u1)) fr(qo.62(ur))
S —i 7
=g
° T T T LI T ° T T T LI T
2 -1 0 062 2 2 -1 0 062 2
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DQR Simulation Results, non-iid errors
Estimation Method ur ~ ty
21 02 03 04
True Asymptotic SD

M-est 24351 21294 54898 4.7882
Z-est 24351 21294 54898 4.7882

|~ Meesteff. | 21829 19124 51889 ~ 4.5350 |
Z-est p.eff 21829 19124 51889  4.5350

|~ Zest ] 21694 19005 5.1569 4.5070 |

Estimated Asymptotic SD

M-est 24344 21288 54806 4.7906
Z-est 24344 21288 5.4806 4.7906

|~ 7 Me-esteff. ~ ~ | 21829 19125 51794 45367 |
Z-est p.eff 2.1833 19127 5.1804 4.5370

| Zest [ 21693 19006 51474 ~4.5085 |

Empirical SD

M-est 2.3575 2.0358 5.3285  4.6281
Z-est 23559 2.0347 53201 4.6231

|~ 7 Meesteff. ~ ~ | 21002 1.8103° 5.0785 ~ 4.4149 |
Z-est p.eff 2.1022 1.8064 5.1095 4.4414

|~ Zeest | 21271 '1.8247 52245 45301 |

The Efficiency Gap
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QESR Simulation Setup, iid errors

Xt~ (17U[073]) Ut NN(071)7 (56)
Yy = X 0 + (X, mo)ue (y0,m0) = (—1,1,0.5,0.5) 7)
0a(Xt,08) = X (0 + m0%a) ea(X1,05) = X, (70 + nota) (58)

6 —— 0.5-Quantile
—— 0.5-Expected Shortfall
4
2
04
2
-4 — o o
T T T T T T T
0.0 05 1.0 15 2.0 25 3.0
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QESR, Simulation Results:

g ¢’ True Asymptotic SD
M-est g(z) ==z ¢'(2) = Flog(z) | 59924 45612 55715 6.4873
Zest  g(z) =z ¢'(2) = Flog(z) | 59924 45612 55715 64873
M-est  g(z) = Fi(2) ¢'(2) = Fiog(2) | 54118 42179 55715 64873
Zest  g(z) =z () =—1/z | 57265 44176 50074 3.8683
| Zeesteff -~~~ " T 7 7 7 7 7 77 7 7 153484 41389 4.9828 ~3.8560 |
g ¢’ Estimated Asymptotic SD
M-est  g(z) = 2 #(2) = Flog(z) | 60181 45629 55894 65037
Z-est g(z) ==z @' (2) = Flog(2) | 6.0181 45630 55895 6.5023
M-est  g(z) = Fi(2) ¢'(2) = Fiog() | 54352 42195 55837 65060
Z-est  g(z) =z ¢(z)=—1/z | 57509 44186 50422 3.8707
| Zesteft ~ " " 7 7 7 7 " 153753 47420 5.0020 3.8554 |
g @’ Empirical SD
M-est g(z) =z ¢'(2) = Flog(z) | 57764 45348 54280 6.3952
Zest  g(z) =z ¢'(2) = Flog(z) | 57875 45308 54273 63953
M-est 9(z) = Fi(z) ¢'(2) = Fiog(z) | 52376 4.1857 54237 6.4019
Zest  g(z) =z #(z)=—1/2 | 61330 46506 95877 5.6558
| Zeesteff -~~~ " T T T T T 7 7 77 156945 43757 52574 41761 |
The Efficiency Gap Dimitriadis, Fissler, Ziegel
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Conclusions

For univariate models: (M-Estimator)=(Z-Estimator).
However, for multivariate models: (M-Estimator) C (Z-Estimator)

For univariate models, the efficiency bound can be reached by both, the M-
and Z-estimator.

» For multivariate models, there are examples where the efficiency bound
cannot be reached by the M-estimator.

» This depends on the richness of the class of strictly consistent loss
functions.
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Mean Regression

> Bregman class of loss functions:
p(Yma(X,0)) = —¢(mi(X,0)) + ¢/ (ma(X, 0)) (m1(X,0) = Y) + a(Y),

(59)
where ¢ is a strictly convex function.
» The associated identification functions are given by
B(Y, X,0) = Vomi(X,0)¢" (m1(X,0)) (m1(X,0) = Y) (60)
= A(X,0)(mi(X,0) - Y). (61)
» Efficient choice:
AE(X,00) = C - Voma(X, ao)m (62)
and thus C = I and
8'(2) - (63)

~ Var (Y|m1(X7 0) = z)

> Here, we need the additional condition that Var(Y|X) is almost surely
uniquely determined by the value of m1 (X, 6y) = E[Y|X].
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