
A more powerful subvector Anderson and Rubin test
in linear instrumental variables regression

Patrik Guggenberger

Pennsylvania State University

Joint work with Frank Kleibergen (University of Amsterdam) and

Sophocles Mavroeidis (University of Oxford)

University of Konstanz, 4th KoLa workshop

July 30-31, 2018



Overview

� Robust inference on a slope coe¢ cient(s) in a linear IV regression

� "Robust" means uniform control of null rejection probability over all "em-
pirically relevant" parameter constellations

� "Weak instruments"

� pervasive in applied research (Angrist and Krueger, 1991)

� adverse e¤ect on estimation and inference (Dufour, 1997; Staiger and
Stock 1997)



� Large literature on "robust inference" for the full parameter vector

� Here: Consider subvector inference in the linear IV model, allowing for
weak instruments

� First assume (almost) conditional homoskedasticity

� then relax to general Kronecker-Product structure

� then allow for arbitrary forms of conditional heteroskedasticity

� Presentation based on two papers; one being "A more powerful subvector
Anderson and Rubin test in linear instrumental variables regression under
conditional homoskedasticity"



� Focus on the Anderson and Rubin (AR, 1949) subvector test statistic:

� "History of critical values":

� Projection of AR test (Dufour and Taamouti, 2005)

� Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) pro-
vide power improvement:

Using �2k�mW ;1�� as critical value, rather than �
2
k;1�� still controls

asymptotic size

"Worst case" occurs under strong identi�cation

� HERE: consider a data-dependent critical value that adapts to strength
of identi�cation



� Show: controls �nite sample/asymptotic size & has uniformly higher
power than method in GKMC

� One additional main contribution : computational ease

� Implication: Test in GKMC is "inadmissible"



Presentation

� Introduction: X

� �nite sample case

a) mW = 1 : motivation, correct size, power analysis (near optimality
result)

b) mW > 1 : correct size, uniform power improvement over GKMC

c) re�nement



� asymptotic case:

a) (almost) conditional homoskedasticity

b) general Kronecker-Product structure

c) general case (arbitrary forms of conditional heteroskedasticity)



Model and Objective (�nite sample case)

y = Y � +W + ";

Y = Z�Y + VY ;

W = Z�W + VW ;

y 2 Rn; Y 2 Rn�mY (end or ex);W 2 Rn�mW (end); Z 2 Rn�k (IVs)

� Reduced form:

(y ... Y ... W ) = Z (�Y
... �W )

 
�


...
ImY
0
...
0

ImW

!
+ (vy

... VY
... VW )| {z }

V

;

where vy := "+ VY � + VW:

� Objective: test

H0 : � = �0 versus H1 : � 6= �0:



s.t. size bounded by nominal size & "good" power

Parameter space:

1. The reduced form error satis�es:

Vi � i.i.d. N (0;
) ; i = 1; :::; n;

where 
 2 R(m+1)�(m+1) is assumed to be known and positive de�nite:

2. Z 2 Rn�k �xed, and Z0Z > 0 k � k matrix.

� Note: no restrictions on reduced form parameters �Y and �W ! allow
for weak IV



� Several robust tests available for full vector inference

H0 : � = �0;  = 0 vs H1 : not H0

including AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleiber-
gen (2002), Moreira (2003, 2009).

� Optimality properties: Andrews, Moreira, and Stock (2006), Andrews,
Marmer, and Yu (2018), and Chernozhukov, Hansen, and Jansson (2009)



Subvector procedures

� Projection: "inf" test statistic over parameter not under test, same critical
value ! "computationally hard" and "uninformative"

� Bonferroni and related techniques: Staiger and Stock (1997), Chaud-
huri and Zivot (2011), McCloskey (2012), Zhu (2015), Andrews (2017),
...; often computationally hard, power ranking with projection unclear

� Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Re-
quires strong identi�cation of parameters not under test.

� GMM models: Andrews, I. and Mikusheva (2016)



� Models de�ned by moment inequalities: Gafarov (2016), Kaido, Molinari,
and Stoye (2016), Bugni, Canay, and Shi (2017), ...



The Anderson and Rubin (1949) test

� AR test stat for full vector hypothesis

H0 : � = �0;  = 0 vs H1 : not H0

� AR statistic exploits EZi"i = 0

� AR test stat:

ARn(�0; 0) =
(y � Y �0 �W0)

0PZ(y � Y �0 �W0)�
1 ... � �00

... � 00
�


�
1 ... � �00

... � 00
�0

� AR stat is distri. as �2k under null hypothesis; critical value �
2
k;1��



� Subvector AR statistic for testing H0 is given by

ARn (�0) = min
2RmW

(Y 0 �W)0PZ(Y 0 �W)�
1 ... � �00

... � 0
�


�
1 ... � �00

... � 0
�;

where Y 0 = y � Y �0:

� Alternative representation (using �min(A) = minx;jjxjj=1 x0Ax):

ARn (�0) = �̂p;

where �̂i for i = 1; :::; p = 1+mW be roots of characteristic polynomial
in � �����Ip � 
(�0)�1=2 �Y 0 ... W�0

PZ
�
Y 0

... W
�

(�0)

�1=2
���� = 0;



ordered non-increasingly, where we de�ne variance matrix of (Y 0i; V 0Wi)
0

as


(�0) =

0B@ 1 0
��0 0
0 ImW

1CA
0




0B@ 1 0
��0 0
0 ImW

1CA :

� When using �2k;1�� critical values, as for projection, trivially, test has
correct size;

GKMC show that this is also true for �2k�mW ;1�� critical values



� Next show: AR statistic is the minimum eigenvalue of a non-central
Wishart matrix

� For par space above, the roots �̂i solve

0 =
����̂iI1+mW � �0�

��� ; i = 1; :::; p = 1 +mW ;

where

� � N (M; Ik 
 Ip) ;

and M is a k � p.

� Under H0, the noncentrality matrix becomes M =
�
0k;�W

�
; where

�W =
�
Z0Z

�1=2
�W�

�1=2
VWVW :"

;

�VWVW :" = �VWVW � �0"VW�
�1
"" �"VW



and  
�"" �"VW
�0"VW �VWVW

!
=

0B@ 1 0
��0 0
� ImW

1CA
0




0B@ 1 0
��0 0
� ImW

1CA

� Summarizing, under H0 the p� p matrix

�0� �W
�
k; Ip;M

0M
�
;

has non-central Wishart with noncentrality matrix

M 0M =

 
0 0
0 �0W�W

!
and

ARn (�0) = �min(�
0�)



� The distribution of the eigenvalues of a noncentral Wishart matrix only
depends on the eigenvalues of the noncentrality matrix M 0M .

� Hence, distribution of �̂i only depends on the eigenvalues of �0W�W ; �i
say; i = 1; : : : ;mW and � = (�1; :::; �mW )

0

� When mW = 1; � = �1 = �
0
W�W is scalar:



Theorem: Suppose mW = 1. Then, under the null hypothesis H0 : � = �0,
the distribution function of the subvector AR statistic, ARn (�0) ; is monoton-
ically decreasing in the parameter �1.



Figure 1: The cdf of the subset AR statistic with k = 3 instruments, for
di¤erent values of �1 = 5; 10; 15; 100



New critical value for subvector Anderson and Rubin test: mW = 1

� Relevance: If we knew �1 we could implement the subvector AR test with
a smaller critical value than �2k�mW ;1�� which is the critical value in the
case when �1 is "large".

� Muirhead (1978): Under null, when �1 "is large", the larger root b�1 (which
measures strength of identi�cation) is a su¢ cient statistic for �1

� More precisely: the conditional density of ARn (�0) = �̂2 given �̂1 can
be approximated by

f�̂2j�̂1 (x) � f�2k�1
(x) (�̂1 � x)1=2 g (�̂1) ;



where f�2k�1
is the density of a �2k�1 and g is a function that does not

depend on �1.

� Analytical formula for g

� The new critical value for the subvector AR-test at signi�cance level 1��
is given by

1� � quantile of (approximation of ARn given b�1)
� Denote cv by

c1��(�̂1; k �mW )

Depends only on �; k �mW ; and �̂1



� Conditional quantiles can be computed by numerical integration

� Conditional critical values can be tabulated! implementation of new test
is trivial and fast

� They are increasing in �̂1 and converging to quantiles of �2k�1

� We �nd, by simulations over �ne grid of values of �1; that new test

1(ARn (�0) > c1��(�̂1; k �mW ))

controls size

� It improves on the GKMC procedure in terms of power



� Theorem: Suppose mW = 1. The new conditional subvector Anderson
Rubin test has correct size under the assumptions above.

� Proof partly based on simulations; Veri�ed for e.g. � 2 f1%; 5%; 10%g
and k �mW 2 f1; :::; 20g :

� Summary mW = 1: the cond�l test rejects when

�̂2 > c1��(�̂1; k � 1);

where (�̂1; �̂2) are the eigenvalues of 2�2matrix �0� �W
�
k; Ip;M 0M

�
;

Under the null M 0M is of rank 1; test has size �
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Table of conditional critical values cv=c1��(�̂1; k �mW )

� = 5%; k �mW = 4
�̂1 cv �̂1 cv �̂1 cv �̂1 cv �̂1 cv �̂1 cv
0.22 0.2 2.00 1.8 3.92 3.4 6.10 5.0 8.95 6.6 14.46 8.2
0.44 0.4 2.23 2.0 4.17 3.6 6.41 5.2 9.40 6.8 15.88 8.4
0.65 0.6 2.46 2.2 4.43 3.8 6.73 5.4 9.89 7.0 17.85 8.6
0.87 0.8 2.70 2.4 4.69 4.0 7.05 5.6 10.42 7.2 20.89 8.8
1.10 1.0 2.94 2.6 4.96 4.2 7.39 5.8 11.01 7.4 26.42 9.0
1.32 1.2 3.18 2.8 5.24 4.4 7.75 6.0 11.68 7.6 39.82 9.2
1.54 1.4 3.42 3.0 5.52 4.6 8.13 6.2 12.44 7.8 114.76 9.4
1.77 1.6 3.67 3.2 5.81 4.8 8.52 6.4 13.35 8.0 +.Inf 9.5

* For simplicity of implementation we suggest linear interpolation of tabulated
cvs; we verify resulting test has correct size
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Null rejection frequency of subset AR test based on conditional (red) and
�2k�1 (blue) critical values, as function of �1:



Extension to mW > 1

We de�ne a new subvector Anderson Rubin test that rejects when

ARn (�0) > c1��(�max
�
�0�

�
; k �mW ):

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem: The test above has i) correct size and ii) has uniformly larger
power than the test in GKMC.

Lemma: Under the nullH0 : � = �0, there exists a random matrix O 2 O(p);
such that for

e� := �O 2 Rk�p; and its upper left submatrix ~�11 2 Rk�mW+1�2



~�011~�11 is a non-central Wishart 2 � 2 matrix of order k �mW + 1 (cond�l
on O); whose noncentrality matrix, ~M 0

1
~M1 say, is of rank 1;

Proof of Theorem:

(i) Note that

ARn (�0) = �min
�
�0�

�
= �min

�
~�0~�

�
� �min

�
~�011~�11

�
� �max

�
~�011~�11

�
� �max

�
~�0~�

�
= �max

�
�0�

�
(1)

and thus

P (ARn (�0) > c1��(�max
�
�0�

�
; k �mW ))

� P (�min
�
~�011~�11

�
> c1��(�max

�
~�011~�11

�
; k �mW ))

= P (�2
�
~�011~�11

�
> c1��(�1

�
~�011~�11

�
; k �mW ))

� �;



where �rst inequality follows from (1) and last inequality from correct size for
mW = 1 (by conditionning on O) and the lemma

Recall summary when mW = 1: new test rejects when

�̂2 > c1��(�̂1; k � 1)

where (�̂1; �̂2) are the eigenvalues of �0� �W
�
k; I2;M

0M
�
and M 0M is of

rank 1 under the null

(ii) new conditional test is uniformly more powerful than test in GKMC (because
c1��(�; k �mW )) is increasing and converging to �2k�mW ;1�� as argument
goes to in�nity), i.e. the test in GKMC is inadmissible



Power analysis of tests based on (�̂1; :::; �̂p)

� For A = E
�
Z0 (y � Y �0 ... W )

�
2 Rk�p, consider

H 00 : � (A) � mW versus H 01 : � (A) = p = mW + 1

� H0 : � = �0 implies H 00 but the converse is not true:

� H 00 holds i¤ [� (�W ) < mW or �Y (� � �0) 2 span(�W )]

� UnderH 00; (�̂1; :::; �̂p) are distributed as eigenvalues of WishartW
�
k; Ip;M 0M

�
with rank de�cient noncentrality matrix - a distribution that appears also
under H0



� Thus, every test '(�̂1; :::; �̂p) 2 [0; 1] that has size � under H0 must
also have size � under H 00 - so cannot have power exceeding size under
alternatives H 00nH0.

� In other words, size � tests '(�̂1; :::; �̂p) underH0 can only have nontrivial
power under alternatives � (A) = p.

� We use this insight to derive a power envelope for tests of the form
' (�̂1; :::; �̂p) :



Power bounds

� Consider only the case mW = 1:

� Equivalently, H 00 : �2 = 0; �1 � �2 against H 01 : �2 > 0; �1 � �2:

� Obtain point-optimal power bounds using approximately least favorable
distribution �LF over nuisance parameter �1 based on algorithm in Elliott,
Müller, and Watson (2015)
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Power of conditional subvector AR test 'c (�̂) = 1f�̂2>c1��(�̂1;k�1)g relative to power
bound (left) and power of 'c, 'GKMC (�̂) = 1

n
�̂2>�

2
k�1;1��

o = 1f�̂2>c1��(1;k�1)g
and bound at �1 = �2 (right) for k = 5. Computed using 10000 MC replications.



� Little scope for power improvement over proposed test. But not zero
scope...:

Re�nement: For the case k = 5, mW = 1, and � = 5%, let 'adj be the test
that uses the critical values in Table above where the smallest 8 critical values
are divided by 5



Asymptotic case: a) almost "conditional homoskedasticity"

� De�ne parameter space F under the null hypothesis H0 : � = �0:

Let Ui = ("i; V 0W;i)
0 and F distribution of (Ui; VY i; Zi)

F is set of all (;�W ;�Y ; F ) s.t.

 2 RmW ;�W 2 Rk�mW ;�Y 2 Rk�mY ;
EF (jjTijj2+�) �M; for Ti 2 fZi"i; vec(ZiV 0W;i); VW;i"i; "i; VW;i; Zig;
EF (Zi("i; V

0
Wi; V

0
Y i)) = 0;

EF (vec(ZiU
0
i)(vec(ZiU

0
i))
0) = (EF (UiU

0
i)
 EF (ZiZ0i));

�min(A) � � for A 2 fEF (ZiZ0i); EF (UiU 0i)g

for some � > 0, M <1

� Note: no restriction is imposed on the variance matrix of vec(ZiV 0Y i)



� subvector AR stat equals smallest solution of������b�I1+mW � (Y
0
MZY

n� k
)�1=2(Y 0PZY )(

Y
0
MZY

n� k
)�1=2

������ = 0
where

Y := (y � Y �0 ... W ) 2 Rn�(1+mW )

� Note: Same as in �nite sample case with 
 (�0) replaced by
Y
0
MZY
n�k

� critical value is again

c1��(�̂1; k �mW )

the 1� � quantile of (the approximation of) ARn given b�1



� Theorem: The new subvector AR test has correct asymptotic size for
parameter space F .

� Again, part of the proof is based on simulations.



Asymptotic case: b) general Kronecker Product Structure

� For Ui := ("i + V 0W;i; V
0
W;i)

0; p := 1 +mW ; and m := mY +mW let

FKP = f(;�W ;�Y ; F ) :  2 <mW ;�W 2 <k�mW ;�Y 2 <k�mY ;
EF (jjTijj2+�1) � B; for Ti 2 fvec(ZiU 0i); vec(ZiZ0i)g;
EF (ZiV

0
i ) = 0

k�(m+1); EF (vec(ZiU
0
i)(vec(ZiU

0
i))
0) = G1
G2;

�min(A) � �2 for A 2 fEF
�
ZiZ

0
i

�
; G1; G2gg

for pd G1 2 <p�p (whose upper left element is normalized to 1) and
G2 2 <k�k and �1; �2 > 0; B <1

� Covers conditional homoskedasticity, but also cases of cond hetero



Example. Take (e"i; eV 0Wi)
0 2 <p i.i.d. zero mean with pd variance matrix,

independent of Zi; and

("i; V
0
Wi)

0 := f(Zi)(e"i; eV 0Wi)
0

for some scalar valued function f of Z; e.g. f(Zi) = jjZijj=k1=2: Then

EF (vec(ZiU
0
i)(vec(ZiU

0
i))
0)

=EF
�
UiU

0
i 
 ZiZ0i

�
=EF

�
("i + V

0
W;i; V

0
W;i)

0("i + V
0
W;i; V

0
W;i)
 ZiZ

0
i

�
=EF

�
(e"i + eV 0W;i; eV 0W;i)0(e"i + eV 0W;i; eV 0W;i)�
 EF �f(Zi)2ZiZ0i�

has KP structure even though

EF (UiU
0
ijZi) = f(Zi)2EF (e"i + eV 0W;i; eV 0W;i)0(e"i + eV 0W;i; eV 0W;i)

depends on Zi:



� Modi�ed AR subvector statistic. Estimate EF (UiU 0i 
 ZiZ0i) by

bRn := n�1 nP
i=1

fif
0
i 2 <kp�kp; where

fi := ((MZ(y � Y �0))i; (MZW )0i)
0 
 Zi 2 <kp:

� Let

( bG1; bG2) = argmin jjG1 
G2 � bRnjjF ;
where the minimum is taken over (G1; G2) for G1 2 <p�p; G2 2 <k�k
being pd, symmetric matrices, normalized such that the upper left element
of G1 equals 1. Estimators are unique and given in closed form.

� The subvector AR statistic, ARKP;n(�0) is de�ned it as the smallest
root �̂pn of the roots �̂in; i = 1; :::; p (ordered nonincreasingly) of the



characteristic polynomial�����̂Ip � n�1 bG�1=21

�
Y 0;W

�0
Z bG�12 Z0

�
Y 0;W

� bG�1=21

���� = 0:
� Note: Relative to previous de�nition,

bG1 replaces Y 0MZY
n�k and bG2 replaces Z0Zn

� The conditional subvector ARKP test rejects H0 at nominal size � if

ARKP;n(�0) > c1��(�̂1n; k �mW );

where c1�� (�; �) is de�ned as above.



Theorem: The conditional subvector ARKP test implemented at nominal size
� has asymptotic size, i.e.

lim sup
n!1

sup
(;�W ;�Y ;F )2FKP

P(�0;;�W ;�Y ;F )(ARAKP;n(�0) > c1��(�̂1n; k�mW ))

equal to �.



Asymptotic case: c) General forms of Cond Hetero

� Perform a Wald type pretest based on bG1 
 bG2 � bRn to test the null of
Kronecker Product structure

� If pretest rejects continue with a robust (to cond hetero and weak IV)
subvector procedure, like the AR type tests proposed in Andrews (2017)

� Otherwise, continue with the test ARKP test

� Resulting test has correct asymptotic size no matter what the pretest nom-
inal size is



� Reasons:

� pretest is consistent against deviations from null for which

n1=2min jjG1 
G2 � EF (UiU 0i 
 ZiZ0i)jj ! 1

and the AR type tests in Andrews (2017) have correct asymptotic size

� when

n1=2min jjG1 
G2 � EF (UiU 0i 
 ZiZ0i)jj = O(1)

the conditional subvector ARKP test has correct asymptotic size and
rejects whenever the AR type test in Andrews (2017) rejects.



Asymptotic Size: General theory

� Distinction between pointwise (asymptotic) null rejection probability and
(asymptotic) size

�Discontinuity� in limiting distribution of test statistic

Staiger and Stock (1997): simpli�ed version of linear IV model with one IV

y1 = y2� + u;

y2 = Z� + v

Let �n = (�1n; �2n; �3n) be sequence of parameters s.t. �3n = (Fn; �n)

�1n = (EZ
2
i )
1=2�=�v and �2n = corr(ui; vi)



satis�es

hn;1(�n) = n
1=2�1n ! h1 <1 and hn;2(�n) = �2n ! h2:

We will denote such a sequence �n by �n;h:

Work out limiting distribution of 2SLS under �n;h :

�v

�u
(b�2SLS � �) = �v

�u

y02PZu
y02PZy2

=
(n�1Z0Z)�1=2n�1=2Z0u=�u
(n�1Z0Z)�1=2n�1=2Z0y2=�v

=
(n�1Z0Z)�1=2n�1=2Z0u=�u

(n�1Z0Z)1=2n1=2�=�v + (n�1Z0Z)�1=2n�1=2Z0v=�v

! d
zu;h2

h1 + zv;h2
; where

 
zu;h2
zv;h2

!
� N(0;�h2) and �h2 =

 
1 h2
h2 1

!



� Similarly for t test statistic Tn(�0) :

Tn(�0)!d Jh

for h = (h1; h2) under the parameter sequence �n;h:

� So, to implement the test, we should take the 1 � �-quantile ch(1 � �)
of Jh as the critical value

� If we implement a test using a Wald statistics with chi-square critical
values, the asymptotic size is 1, see Dufour (1997)

� Problem: we cannot consistently estimate h; we can only estimate consis-
tently �1n



� (h1; h2) takes on values in H = (R [ f�1g)� [�1; 1]

� We say the limit distribution of Tn(�0) �depends discontinuously on
nuisance parameter �1�and continuously on �2

Continuity: when x! x0 then f(x)! f(x0)

Here (EZ2i )
1=2�=�v ! 0; but limit of Tn(�0) does not just depend on 0

� Situation arises frequently in applied econometrics and leads to size distor-
tion for various "classical" inference procedures:

weak IVs/identi�cation, use of pretests, moment inequalities, (nuisance)
parameters on boundary, inference in (V)ARs with unit root(s)



General Theory: Asymptotic Size of Tests

� f'n : n � 1g sequence of tests for null hypothesis H0

� � indexes the true null distribution of the observations

� Parameter space for � is some space �

� RPn(�) denotes rejection probability of 'n under �

� The asymptotic size of 'n for the parameter space � is de�ned as:

AsySz = lim sup
n!1

sup
�2�

RPn(�)



Formula for Calculation of AsySz
Recall relevance of limits of hn;1(�n) = n1=2�1n = n1=2(EZ2i )

1=2�=�v and
hn;2(�n) = �2n = corr(ui; vi) for limit distributions of test statistics in weak
IV example

Generalizing, let

fhn(�) = (hn;1(�); :::; hn;J(�))0 2 RJ : n � 1g
be a sequence of functions on �; where hn;j(�) 2 R 8j = 1; :::; J:

For any subsequence fpng of fng and h 2 (R [ f�1g)J denote a sequence
f�pn 2 � : n � 1g such that hpn(�pn)! h by

�pn;h

De�ne

H = fh 2 (R[f�1g)J : there is subsequence fpng and sequence �pn;hg:



Theorem, Andrews, Cheng, and Guggenberger (2011)

Assume that under any sequence �pn;h

RPpn(�pn;h)! RP (h)

for some RP (h) 2 [0; 1]: Then:

AsySz = sup
h2H

RP (h):

Proof. i) Let h 2 H: To show AsySz � RP (h): By de�nition of H; there is
�pn;h: Then

AsySz = lim sup
n!1

sup
�2�

RPn(�)

� lim sup
n!1

RPpn(�pn;h)

= RP (h)



Proof. (continued)

ii) To show AsySz � suph2H RP (h): Let f�n 2 � : n � 1g be a sequence
such that

lim sup
n!1

RPn(�n) = AsySz:

Let fpn : n � 1g be a subsequence of fng such that limn!1RPpn(�pn)
exists and equals AsySz and hpn(�pn) ! h: Therefore this sequence is of
type �pn;h; and thus, by assumption, RPpn(�pn) ! RP (h): Because also
RPpn(�pn)! AsySz; it follows that AsySz = RP (h): �



Speci�cation of � for subvector Anderson and Rubin test

� Given F let

WF := (EFZiZ
0
i)
1=2 and UF := 
(�0)

�1=2:

� Consider a singular value decomposition

CF�FB
0
F

of

WF (�W;�W )UF

� i.e. BF denote a p� p orthogonal matrix of eigenvectors of

U 0F (�W;�W )
0W 0

FWF (�W;�W )UF



and CF denote a k � k orthogonal matrix of eigenvectors of

WF (�W;�W )UFU
0
F (�W;�W )

0W 0
F

� �F denotes a k � p diagonal matrix with singular values (�1F ; :::; �pF )
on diagonal, ordered nonincreasingly

� Note �pF = 0



� De�ne the elements of �F to be

�1;F : = (�1F ; :::; �pF )
0 2 Rp;

�2;F : = BF 2 Rp�p;
�3;F : = CF 2 Rk�k;
�4;F : = WF 2 Rk�k;
�5;F : = UF 2 Rp�p;
�6;F : = F;

�F : = (�1;F ; :::; �9;F ):

� A sequence �n;h denotes a sequence �Fn such that (n1=2�1;Fn; :::; �5;Fn)!
h = (h1; :::; h5)

� Let q = qh 2 f0; :::; p� 1g be such that

h1;j =1 for 1 � j � qh and h1;j <1 for qh + 1 � j � p� 1



� Roughly speaking, need to compute asy null rej probs under seq�s with (i)
strong ident�n,(ii) semi-strong ident�n, (iii) std weak ident�n (all parameters
weakly ident�d) & (iv) nonstd weak ident�n

� strong identi�cation: limn!1 �mW ;Fn > 0

� semi-strong ident�n: limn!1 �mW ;Fn = 0 & limn!1 n
1=2�mW ;Fn =

1

� weak ident�n: limn!1 n1=2�mW ;Fn <1

� standard (of all parameters): limn!1 n1=2�1;Fn < 1 as in Staiger
& Stock (1997)

� nonstandard: limn!1 n1=2�mW ;Fn < 1 & limn!1 n1=2�1;Fn =
1 includes some weakly/some strongly ident�d parameters, as in Stock
& Wright (2000); also includes joint weak ident�n



Andrews and Guggenberger (2014): Limit distribution of eigenvalues of
quadratic forms

� Consider a singular value decomposition CF�FB0F of WFDFUF

� De�ne �F ; h; �n;h::: as above

Let b�jn 8j = 1; :::; p denote jth eigenval of
n bU 0ncD0ncW 0

n
cWn

cDn bUn;



where under �n;h

n1=2(cDn �DFn) ! dDh 2 Rk�p;cWn �WFn ! p0
k�k;bUn � UFn ! p0
p�p;

WFn ! h4; UFn ! h5

with h4; h5 nonsingular

Theorem (AG, 2014): under f�n;h : n � 1g;

(a) b�jn !p 1 for all j � q

(b) vector of smallest p�q eigenvals of n bU 0ncD0ncW 0
n
cWn

cDn bUn; i.e., (b�(q+1)n; :::; b�pn)0;
converges in dist�n to p� q vector of eigenvals of random matrixM(h;Dh) 2
R(p�q)�(p�q)



� complicated proof;
� eigenvalues can diverge at any rate or converge to any number
� can become close to each other or close to 0 as n!1



� We apply this result with

WF = (EFZiZ
0
i)
1=2; cWn = (n

�1PZiZ0i)1=2;
UF = 
(�0)

�1=2; bUn =
0@Y 0MZY

n� k

1A�1=2 ;
DF = (�W;�W );

cDn = (Z0Z)�1Z0Y
to obtain the joint limiting distribution of all eigenvalues



Joint asymptotic dist�n of eigenvalues

� Recall: test statistic and critical value are functions of p = 1+mW roots
of ������b�I1+mW � (Y

0
MZY

n� k
)�1=2(Y 0PZY )(

Y
0
MZY

n� k
)�1=2

������ = 0

� To obtain joint limiting distribution of eigenvalues, we use general result
in Andrews and Guggenberger (2014) about joint limiting distribution of
eigenvalues of quadratic forms

Results:

� the joint limit depends only on localization parameters h1;1; :::; h1;mW



� asymptotic cases replicate �nite sample, normal, �xed IV, known variance
matrix setup

� together with above proposition, correct asymptotic size then follows from
correct �nite sample size


