A more powerful subvector Anderson and Rubin test in linear instrumental variables regression

Patrik Guggenberger
Pennsylvania State University

Joint work with Frank Kleibergen (University of Amsterdam) and Sophocles Mavroeidis (University of Oxford)

University of Konstanz, 4th KoLa workshop

July 30-31, 2018

Overview

- Robust inference on a slope coefficient(s) in a linear IV regression
- "Robust" means uniform control of null rejection probability over all "empirically relevant" parameter constellations
- "Weak instruments"
- pervasive in applied research (Angrist and Krueger, 1991)
- adverse effect on estimation and inference (Dufour, 1997; Staiger and Stock 1997)
- Large literature on "robust inference" for the full parameter vector
- Here: Consider subvector inference in the linear IV model, allowing for weak instruments
- First assume (almost) conditional homoskedasticity
- then relax to general Kronecker-Product structure
- then allow for arbitrary forms of conditional heteroskedasticity
- Presentation based on two papers; one being "A more powerful subvector Anderson and Rubin test in linear instrumental variables regression under conditional homoskedasticity"
- Focus on the Anderson and Rubin (AR, 1949) subvector test statistic:
- "History of critical values":
- Projection of AR test (Dufour and Taamouti, 2005)
- Guggenberger, Kleibergen, Mavroeidis, and Chen (2012, GKMC) provide power improvement:

Using $\chi_{k-m_{W}, 1-\alpha}^{2}$ as critical value, rather than $\chi_{k, 1-\alpha}^{2}$ still controls asymptotic size
"Worst case" occurs under strong identification

- HERE: consider a data-dependent critical value that adapts to strength of identification
- Show: controls finite sample/asymptotic size \& has uniformly higher power than method in GKMC
- One additional main contribution : computational ease
- Implication: Test in GKMC is "inadmissible"

Presentation

- Introduction: \checkmark
- finite sample case
a) $m_{W}=1$: motivation, correct size, power analysis (near optimality result)
b) $m_{W}>1$: correct size, uniform power improvement over GKMC
c) refinement
- asymptotic case:
a) (almost) conditional homoskedasticity
b) general Kronecker-Product structure
c) general case (arbitrary forms of conditional heteroskedasticity)

Model and Objective (finite sample case)

$$
\begin{aligned}
& y=Y \beta+W \gamma+\varepsilon \\
& Y=Z \Pi_{Y}+V_{Y} \\
& W=Z \Pi_{W}+V_{W} \\
& y \in R^{n}, Y \in R^{n \times m_{Y}}\left(\text { end or ex) }, W \in R^{n \times m_{W}} \text { (end) }, Z \in R^{n \times k}(\mathrm{IVs})\right.
\end{aligned}
$$

- Reduced form:

$$
(y: Y: W)=Z\left(\Pi_{Y}: \Pi_{W}\right)\left(\begin{array}{ccc}
\beta & I_{m_{Y}} & 0 \\
\gamma & 0 & I_{m_{W}}
\end{array}\right)+\underbrace{\left(v_{y}: V_{Y}: V_{W}\right)}_{V},
$$

where $v_{y}:=\varepsilon+V_{Y} \beta+V_{W} \gamma$.

- Objective: test

$$
H_{0}: \beta=\beta_{0} \text { versus } H_{1}: \beta \neq \beta_{0}
$$

s.t. size bounded by nominal size \& "good" power

Parameter space:

1. The reduced form error satisfies:

$$
V_{i} \sim \text { i.i.d. } N(0, \Omega), i=1, \ldots, n
$$

where $\Omega \in R^{(m+1) \times(m+1)}$ is assumed to be known and positive definite.
2. $Z \in R^{n \times k}$ fixed, and $Z^{\prime} Z>0 k \times k$ matrix.

- Note: no restrictions on reduced form parameters Π_{Y} and $\Pi_{W} \rightarrow$ allow for weak IV
- Several robust tests available for full vector inference

$$
H_{0}: \beta=\beta_{0}, \gamma=\gamma_{0} \text { vs } H_{1}: \text { not } H_{0}
$$

including AR (Anderson and Rubin, 1949), LM, and CLR tests, see Kleibergen (2002), Moreira $(2003,2009)$.

- Optimality properties: Andrews, Moreira, and Stock (2006), Andrews, Marmer, and Yu (2018), and Chernozhukov, Hansen, and Jansson (2009)

Subvector procedures

- Projection: "inf" test statistic over parameter not under test, same critical value \rightarrow "computationally hard" and "uninformative"
- Bonferroni and related techniques: Staiger and Stock (1997), Chaudhuri and Zivot (2011), McCloskey (2012), Zhu (2015), Andrews (2017), ...; often computationally hard, power ranking with projection unclear
- Plug-in approach: Kleibergen (2004), Guggenberger and Smith (2005)...Requires strong identification of parameters not under test.
- GMM models: Andrews, I. and Mikusheva (2016)
- Models defined by moment inequalities: Gafarov (2016), Kaido, Molinari, and Stoye (2016), Bugni, Canay, and Shi (2017), ...

The Anderson and Rubin (1949) test

- AR test stat for full vector hypothesis

$$
H_{0}: \beta=\beta_{0}, \gamma=\gamma_{0} \text { vs } H_{1}: \text { not } H_{0}
$$

- AR statistic exploits $E Z_{i} \varepsilon_{i}=0$
- AR test stat:

$$
A R_{n}\left(\beta_{0}, \gamma_{0}\right)=\frac{\left(y-Y \beta_{0}-W \gamma_{0}\right)^{\prime} P_{Z}\left(y-Y \beta_{0}-W \gamma_{0}\right)}{\left(1:-\beta_{0}^{\prime}:-\gamma_{0}^{\prime}\right) \Omega\left(1:-\beta_{0}^{\prime}:-\gamma_{0}^{\prime}\right)^{\prime}}
$$

- AR stat is distri. as χ_{k}^{2} under null hypothesis; critical value $\chi_{k, 1-\alpha}^{2}$
- Subvector AR statistic for testing H_{0} is given by

$$
A R_{n}\left(\beta_{0}\right)=\min _{\gamma \in R^{m} W} \frac{\left(\bar{Y}_{0}-W \gamma\right)^{\prime} P_{Z}\left(\bar{Y}_{0}-W \gamma\right)}{\left(1:-\beta_{0}^{\prime}:-\gamma^{\prime}\right) \Omega\left(1:-\beta_{0}^{\prime}:-\gamma^{\prime}\right)}
$$

where $\bar{Y}_{0}=y-Y \beta_{0}$.

- Alternative representation (using $\kappa_{\min }(A)=\min _{x,\|x\|=1} x^{\prime} A x$):

$$
A R_{n}\left(\beta_{0}\right)=\hat{\kappa}_{p}
$$

where $\hat{\kappa}_{i}$ for $i=1, \ldots, p=1+m_{W}$ be roots of characteristic polynomial in κ

$$
\left|\kappa I_{p}-\Omega\left(\beta_{0}\right)^{-1 / 2}\left(\bar{Y}_{0}: W\right)^{\prime} P_{Z}\left(\bar{Y}_{0}: W\right) \Omega\left(\beta_{0}\right)^{-1 / 2}\right|=0
$$

ordered non-increasingly, where we define variance matrix of $\left(\bar{Y}_{0 i}, V_{W i}^{\prime}\right)^{\prime}$ as

$$
\Omega\left(\beta_{0}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\beta_{0} & 0 \\
0 & I_{m_{W}}
\end{array}\right)^{\prime} \Omega\left(\begin{array}{cc}
1 & 0 \\
-\beta_{0} & 0 \\
0 & I_{m_{W}}
\end{array}\right)
$$

- When using $\chi_{k, 1-\alpha}^{2}$ critical values, as for projection, trivially, test has correct size;

GKMC show that this is also true for $\chi_{k-m_{W}, 1-\alpha}^{2}$ critical values

- Next show: AR statistic is the minimum eigenvalue of a non-central Wishart matrix
- For par space above, the roots $\hat{\kappa}_{i}$ solve

$$
0=\left|\hat{\kappa}_{i} I_{1+m_{W}}-\bar{\Xi}^{\prime} \equiv\right|, \quad i=1, \ldots, p=1+m_{W}
$$

where

$$
\equiv \sim N\left(M, I_{k} \otimes I_{p}\right),
$$

and M is a $k \times p$.

- Under H_{0}, the noncentrality matrix becomes $M=\left(0^{k}, \Theta_{W}\right)$, where

$$
\begin{aligned}
\Theta_{W} & =\left(Z^{\prime} Z\right)^{1 / 2} \Pi_{W} \Sigma_{V_{W} V_{W} \cdot \varepsilon}^{-1 / 2} \\
\Sigma_{V_{W} V_{W} \cdot \varepsilon} & =\Sigma_{V_{W} V_{W}}-\Sigma_{\varepsilon V_{W}}^{\prime} \sigma_{\varepsilon \varepsilon}^{-1} \Sigma_{\varepsilon V_{W}}
\end{aligned}
$$

and

$$
\left(\begin{array}{cc}
\sigma_{\varepsilon \varepsilon} & \Sigma_{\varepsilon V_{W}} \\
\Sigma_{\varepsilon V_{W}}^{\prime} & \Sigma_{V_{W} V_{W}}
\end{array}\right)=\left(\begin{array}{cc}
1 & 0 \\
-\beta_{0} & 0 \\
-\gamma & I_{m_{W}}
\end{array}\right)^{\prime} \Omega\left(\begin{array}{cc}
1 & 0 \\
-\beta_{0} & 0 \\
-\gamma & I_{m_{W}}
\end{array}\right)
$$

- Summarizing, under H_{0} the $p \times p$ matrix

$$
\Xi^{\prime} \equiv \sim W\left(k, I_{p}, M^{\prime} M\right)
$$

has non-central Wishart with noncentrality matrix

$$
M^{\prime} M=\left(\begin{array}{cc}
0 & 0 \\
0 & \Theta_{W}^{\prime} \Theta_{W}
\end{array}\right)
$$

and

$$
A R_{n}\left(\beta_{0}\right)=\kappa_{\min }\left(\Xi^{\prime}\right. \text { 三) }
$$

- The distribution of the eigenvalues of a noncentral Wishart matrix only depends on the eigenvalues of the noncentrality matrix $M^{\prime} M$.
- Hence, distribution of $\hat{\kappa}_{i}$ only depends on the eigenvalues of $\Theta_{W}^{\prime} \Theta_{W}, \kappa_{i}$ say, $i=1, \ldots, m_{W}$ and $\kappa=\left(\kappa_{1}, \ldots, \kappa_{m_{W}}\right)^{\prime}$
- When $m_{W}=1, \kappa=\kappa_{1}=\Theta_{W}^{\prime} \Theta_{W}$ is scalar.

Theorem: Suppose $m_{W}=1$. Then, under the null hypothesis $H_{0}: \beta=\beta_{0}$, the distribution function of the subvector AR statistic, $A R_{n}\left(\beta_{0}\right)$, is monotonically decreasing in the parameter κ_{1}.

Figure 1: The cdf of the subset AR statistic with $k=3$ instruments, for different values of $\kappa_{1}=5,10,15,100$

New critical value for subvector Anderson and Rubin test: $m_{W}=1$

- Relevance: If we knew κ_{1} we could implement the subvector AR test with a smaller critical value than $\chi_{k-m_{W}, 1-\alpha}^{2}$ which is the critical value in the case when κ_{1} is "large".
- Muirhead (1978): Under null, when κ_{1} "is large", the larger root $\widehat{\kappa}_{1}$ (which measures strength of identification) is a sufficient statistic for κ_{1}
- More precisely: the conditional density of $A R_{n}\left(\beta_{0}\right)=\hat{\kappa}_{2}$ given $\hat{\kappa}_{1}$ can be approximated by

$$
f_{\hat{\kappa}_{2} \mid \hat{\kappa}_{1}}(x) \sim f_{\chi_{k-1}^{2}}(x)\left(\hat{\kappa}_{1}-x\right)^{1 / 2} g\left(\hat{\kappa}_{1}\right)
$$

where $f_{\chi_{k-1}^{2}}$ is the density of a χ_{k-1}^{2} and g is a function that does not depend on κ_{1}.

- Analytical formula for g
- The new critical value for the subvector AR-test at significance level $1-\alpha$ is given by

$$
\left.1-\alpha \text { quantile of (approximation of } A R_{n} \text { given } \widehat{\kappa}_{1}\right)
$$

- Denote cv by

$$
c_{1-\alpha}\left(\hat{\kappa}_{1}, k-m_{W}\right)
$$

Depends only on $\alpha, k-m_{W}$, and $\hat{\kappa}_{1}$

- Conditional quantiles can be computed by numerical integration
- Conditional critical values can be tabulated \rightarrow implementation of new test is trivial and fast
- They are increasing in $\hat{\kappa}_{1}$ and converging to quantiles of χ_{k-1}^{2}
- We find, by simulations over fine grid of values of κ_{1}, that new test

$$
1\left(A R_{n}\left(\beta_{0}\right)>c_{1-\alpha}\left(\hat{\kappa}_{1}, k-m_{W}\right)\right)
$$

controls size

- It improves on the GKMC procedure in terms of power
- Theorem: Suppose $m_{W}=1$. The new conditional subvector Anderson Rubin test has correct size under the assumptions above.
- Proof partly based on simulations; Verified for e.g. $\alpha \in\{1 \%, 5 \%, 10 \%\}$ and $k-m_{W} \in\{1, \ldots, 20\}$.
- Summary $m_{W}=1$: the cond'l test rejects when

$$
\hat{\kappa}_{2}>c_{1-\alpha}\left(\hat{\kappa}_{1}, k-1\right)
$$

where $\left(\hat{\kappa}_{1}, \hat{\kappa}_{2}\right)$ are the eigenvalues of 2×2 matrix $\bar{\Xi}^{\prime} \equiv \sim W\left(k, I_{p}, M^{\prime} M\right)$;
Under the null $M^{\prime} M$ is of rank 1 ; test has size α

Critical value function $c_{1-\alpha}\left(\widehat{\kappa}_{1}, k-1\right)$ for $\alpha=0.05$.

Table of conditional critical values $\mathrm{cv}=c_{1-\alpha}\left(\hat{\kappa}_{1}, k-m_{W}\right)$

$\alpha=5 \%$																	$k-m_{W}=4$
$\hat{\kappa}_{1}$	CV																
0.22	0.2	2.00	1.8	3.92	3.4	6.10	5.0	8.95	6.6	14.46	8.2						
0.44	0.4	2.23	2.0	4.17	3.6	6.41	5.2	9.40	6.8	15.88	8.4						
0.65	0.6	2.46	2.2	4.43	3.8	6.73	5.4	9.89	7.0	17.85	8.6						
0.87	0.8	2.70	2.4	4.69	4.0	7.05	5.6	10.42	7.2	20.89	8.8						
1.10	1.0	2.94	2.6	4.96	4.2	7.39	5.8	11.01	7.4	26.42	9.0						
1.32	1.2	3.18	2.8	5.24	4.4	7.75	6.0	11.68	7.6	39.82	9.2						
1.54	1.4	3.42	3.0	5.52	4.6	8.13	6.2	12.44	7.8	114.76	9.4						
1.77	1.6	3.67	3.2	5.81	4.8	8.52	6.4	13.35	8.0	.$+ \operatorname{lnf}$	9.5						

* For simplicity of implementation we suggest linear interpolation of tabulated cvs; we verify resulting test has correct size

Null rejection frequency of subset AR test based on conditional (red) and χ_{k-1}^{2} (blue) critical values, as function of κ_{1}.

Extension to $m_{W}>1$

We define a new subvector Anderson Rubin test that rejects when

$$
A R_{n}\left(\beta_{0}\right)>c_{1-\alpha}\left(\kappa_{\max }\left(\bar{\Xi}^{\prime} \bar{\Xi}\right), k-m_{W}\right)
$$

Note: We condition on the LARGEST eigenvalue of the Wishart matrix.

Theorem: The test above has i) correct size and ii) has uniformly larger power than the test in GKMC.

Lemma: Under the null $H_{0}: \beta=\beta_{0}$, there exists a random matrix $O \in O(p)$, such that for

$$
\widetilde{\equiv}:=\equiv O \in R^{k \times p}, \text { and its upper left submatrix } \tilde{\bar{\Xi}}_{11} \in R^{k-m_{W}+1 \times 2}
$$

$\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}$ is a non-central Wishart 2×2 matrix of order $k-m_{W}+1$ (cond'l on O), whose noncentrality matrix, $\tilde{M}_{1}^{\prime} \tilde{M}_{1}$ say, is of rank 1 ;

Proof of Theorem:
(i) Note that

$$
\begin{align*}
A R_{n}\left(\beta_{0}\right) & =\kappa_{\min }\left(\bar{\Xi}^{\prime} \bar{\Xi}\right)=\kappa_{\min }\left(\tilde{\bar{\Xi}}^{\prime} \tilde{\bar{\Xi}}\right) \\
& \leq \kappa_{\min }\left(\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}\right) \leq \kappa_{\max }\left(\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}\right) \\
& \leq \kappa_{\max }\left(\tilde{\bar{\Xi}}^{\prime} \tilde{\bar{\Xi}}\right)=\kappa_{\max }\left(\bar{\Xi}^{\prime} \bar{\Xi}\right) \tag{1}
\end{align*}
$$

and thus

$$
\begin{aligned}
& P\left(A R_{n}\left(\beta_{0}\right)>c_{1-\alpha}\left(\kappa_{\max }\left(\bar{\Xi}^{\prime} \bar{\Xi}\right), k-m_{W}\right)\right) \\
\leq & P\left(\kappa_{\min }\left(\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}\right)>c_{1-\alpha}\left(\kappa_{\max }\left(\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}\right), k-m_{W}\right)\right) \\
= & P\left(\kappa_{2}\left(\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}\right)>c_{1-\alpha}\left(\kappa_{1}\left(\tilde{\bar{\Xi}}_{11}^{\prime} \tilde{\bar{\Xi}}_{11}\right), k-m_{W}\right)\right) \\
\leq & \alpha,
\end{aligned}
$$

where first inequality follows from (1) and last inequality from correct size for $m_{W}=1$ (by conditionning on O) and the lemma

Recall summary when $m_{W}=1$: new test rejects when

$$
\hat{\kappa}_{2}>c_{1-\alpha}\left(\hat{\kappa}_{1}, k-1\right)
$$

where $\left(\hat{\kappa}_{1}, \hat{\kappa}_{2}\right)$ are the eigenvalues of $\Xi^{\prime} \equiv \sim W\left(k, I_{2}, M^{\prime} M\right)$ and $M^{\prime} M$ is of rank 1 under the null
(ii) new conditional test is uniformly more powerful than test in GKMC (because $\left.c_{1-\alpha}\left(\cdot, k-m_{W}\right)\right)$ is increasing and converging to $\chi_{k-m_{W}, 1-\alpha}^{2}$ as argument goes to infinity), i.e. the test in GKMC is inadmissible

Power analysis of tests based on $\left(\hat{\kappa}_{1}, \ldots, \hat{\kappa}_{p}\right)$

- For $A=E\left[Z^{\prime}\left(y-Y \beta_{0}: W\right)\right] \in R^{k \times p}$, consider

$$
H_{0}^{\prime}: \rho(A) \leq m_{W} \text { versus } H_{1}^{\prime}: \rho(A)=p=m_{W}+1
$$

- $H_{0}: \beta=\beta_{0}$ implies H_{0}^{\prime} but the converse is not true:
- H_{0}^{\prime} holds iff $\left[\rho\left(\Pi_{W}\right)<m_{W}\right.$ or $\left.\Pi_{Y}\left(\beta-\beta_{0}\right) \in \operatorname{span}\left(\Pi_{W}\right)\right]$
- Under $H_{0}^{\prime},\left(\hat{\kappa}_{1}, \ldots, \hat{\kappa}_{p}\right)$ are distributed as eigenvalues of Wishart $W\left(k, I_{p}, M^{\prime} M\right)$ with rank deficient noncentrality matrix - a distribution that appears also under H_{0}
- Thus, every test $\varphi\left(\hat{\kappa}_{1}, \ldots, \hat{\kappa}_{p}\right) \in[0,1]$ that has size α under H_{0} must also have size α under H_{0}^{\prime} - so cannot have power exceeding size under alternatives $H_{0}^{\prime} \backslash H_{0}$.
- In other words, size α tests $\varphi\left(\hat{\kappa}_{1}, \ldots, \hat{\kappa}_{p}\right)$ under H_{0} can only have nontrivial power under alternatives $\rho(A)=p$.
- We use this insight to derive a power envelope for tests of the form $\varphi\left(\hat{\kappa}_{1}, \ldots, \hat{\kappa}_{p}\right)$.

Power bounds

- Consider only the case $m_{W}=1$.
- Equivalently, $H_{0}^{\prime}: \kappa_{2}=0, \kappa_{1} \geq \kappa_{2}$ against $H_{1}^{\prime}: \kappa_{2}>0, \kappa_{1} \geq \kappa_{2}$.
- Obtain point-optimal power bounds using approximately least favorable distribution $\Lambda^{L F}$ over nuisance parameter κ_{1} based on algorithm in Elliott, Müller, and Watson (2015)

Power of conditional subvector AR test $\varphi_{c}(\hat{\kappa})=1_{\left\{\hat{\kappa}_{2}>c_{1-\alpha}\left(\hat{\kappa}_{1}, k-1\right)\right\}}$ relative to power bound (left) and power of $\varphi_{c}, \varphi_{G K M C}(\hat{\kappa})=1_{\left\{\hat{\kappa}_{2}>\chi_{k-1,1-\alpha}^{2}\right\}}=1_{\left\{\hat{\kappa}_{2}>c_{1-\alpha}(\infty, k-1)\right\}}$ and bound at $\kappa_{1}=\kappa_{2}$ (right) for $k=5$. Computed using 10000 MC replications.

- Little scope for power improvement over proposed test. But not zero scope...:

Refinement: For the case $k=5, m_{W}=1$, and $\alpha=5 \%$, let $\varphi_{\text {adj }}$ be the test that uses the critical values in Table above where the smallest 8 critical values are divided by 5

Asymptotic case: a) almost "conditional homoskedasticity"

- Define parameter space \mathcal{F} under the null hypothesis $H_{0}: \beta=\beta_{0}$.

Let $U_{i}=\left(\varepsilon_{i}, V_{W, i}^{\prime}\right)^{\prime}$ and F distribution of $\left(U_{i}, V_{Y i}, Z_{i}\right)$
\mathcal{F} is set of all $\left(\gamma, \Pi_{W}, \Pi_{Y}, F\right)$ s.t.

$$
\begin{aligned}
& \quad \gamma \in R^{m_{W}}, \Pi_{W} \in R^{k \times m_{W}}, \Pi_{Y} \in R^{k \times m_{Y}}, \\
& \quad E_{F}\left(\left\|T_{i}\right\|^{2+\delta}\right) \leq M, \text { for } T_{i} \in\left\{Z_{i} \varepsilon_{i}, \operatorname{vec}\left(Z_{i} V_{W, i}^{\prime}\right), V_{W, i} \varepsilon_{i}, \varepsilon_{i}, V_{W, i}, Z_{i}\right\}, \\
& \quad E_{F}\left(Z_{i}\left(\varepsilon_{i}, V_{W i}^{\prime}, V_{Y i}^{\prime}\right)\right)=0, \\
& E_{F}\left(\operatorname{vec}\left(Z_{i} U_{i}^{\prime}\right)\left(\operatorname{vec}\left(Z_{i} U_{i}^{\prime}\right)\right)^{\prime}\right)=\left(E_{F}\left(U_{i} U_{i}^{\prime}\right) \otimes E_{F}\left(Z_{i} Z_{i}^{\prime}\right)\right), \\
& \quad \kappa_{\min }(A) \geq \delta \text { for } A \in\left\{E_{F}\left(Z_{i} Z_{i}^{\prime}\right), E_{F}\left(U_{i} U_{i}^{\prime}\right)\right\} \\
& \text { for some } \delta>0, M<\infty
\end{aligned}
$$

- Note: no restriction is imposed on the variance matrix of $\operatorname{vec}\left(Z_{i} V_{Y i}^{\prime}\right)$
- subvector AR stat equals smallest solution of

$$
\left|\widehat{\kappa} I_{1+m_{W}}-\left(\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}\right)^{-1 / 2}\left(\bar{Y}^{\prime} P_{Z} \bar{Y}\right)\left(\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}\right)^{-1 / 2}\right|=0
$$

where

$$
\bar{Y}:=\left(y-Y \beta_{0}: W\right) \in R^{n \times\left(1+m_{W}\right)}
$$

- Note: Same as in finite sample case with $\Omega\left(\beta_{0}\right)$ replaced by $\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}$
- critical value is again

$$
c_{1-\alpha}\left(\hat{\kappa}_{1}, k-m_{W}\right)
$$

the $1-\alpha$ quantile of (the approximation of) $A R_{n}$ given $\widehat{\kappa}_{1}$

- Theorem: The new subvector AR test has correct asymptotic size for parameter space \mathcal{F}.
- Again, part of the proof is based on simulations.

Asymptotic case: b) general Kronecker Product Structure

- For $U_{i}:=\left(\varepsilon_{i}+V_{W, i}^{\prime} \gamma, V_{W, i}^{\prime}\right)^{\prime}, p:=1+m_{W}$, and $m:=m_{Y}+m_{W}$ let

$$
\begin{gathered}
\mathcal{F}_{K P}=\left\{\left(\gamma, \Pi_{W}, \Pi_{Y}, F\right): \gamma \in \Re^{m_{W}}, \Pi_{W} \in \Re^{k \times m_{W}}, \Pi_{Y} \in \Re^{k \times m_{Y}}\right. \\
E_{F}\left(\left\|T_{i}\right\|^{2+\delta_{1}}\right) \leq B, \text { for } T_{i} \in\left\{\operatorname{vec}\left(Z_{i} U_{i}^{\prime}\right), \operatorname{vec}\left(Z_{i} Z_{i}^{\prime}\right)\right\} \\
E_{F}\left(Z_{i} V_{i}^{\prime}\right)=0^{k \times(m+1)}, \mathbf{E}_{F}\left(\operatorname{vec}\left(\mathbf{Z}_{i} \mathbf{U}_{i}^{\prime}\right)\left(\operatorname{vec}\left(\mathbf{Z}_{i} \mathbf{U}_{i}^{\prime}\right)\right)^{\prime}\right)=\mathbf{G}_{1} \otimes \mathbf{G}_{2} \\
\left.\kappa_{\min }(A) \geq \delta_{2} \text { for } A \in\left\{E_{F}\left(Z_{i} Z_{i}^{\prime}\right), G_{1}, G_{2}\right\}\right\}
\end{gathered}
$$

for pd $G_{1} \in \Re^{p \times p}$ (whose upper left element is normalized to 1) and $G_{2} \in \Re^{k \times k}$ and $\delta_{1}, \delta_{2}>0, B<\infty$

- Covers conditional homoskedasticity, but also cases of cond hetero

Example. Take $\left(\widetilde{\varepsilon}_{i}, \widetilde{V}_{W i}^{\prime}\right)^{\prime} \in \Re^{p}$ i.i.d. zero mean with pd variance matrix, independent of Z_{i}, and

$$
\left(\varepsilon_{i}, V_{W i}^{\prime}\right)^{\prime}:=f\left(Z_{i}\right)\left(\widetilde{\varepsilon}_{i}, \widetilde{V}_{W i}^{\prime}\right)^{\prime}
$$

for some scalar valued function f of Z, e.g. $f\left(Z_{i}\right)=\left\|Z_{i}\right\| / k^{1 / 2}$. Then

$$
\begin{aligned}
& E_{F}\left(\operatorname{vec}\left(Z_{i} U_{i}^{\prime}\right)\left(\operatorname{vec}\left(Z_{i} U_{i}^{\prime}\right)\right)^{\prime}\right) \\
& =E_{F}\left(U_{i} U_{i}^{\prime} \otimes Z_{i} Z_{i}^{\prime}\right) \\
& =E_{F}\left(\left(\varepsilon_{i}+V_{W, i}^{\prime} \gamma, V_{W, i}^{\prime}\right)^{\prime}\left(\varepsilon_{i}+V_{W, i}^{\prime} \gamma, V_{W, i}^{\prime}\right) \otimes Z_{i} Z_{i}^{\prime}\right) \\
& =E_{F}\left(\left(\widetilde{\varepsilon}_{i}+\widetilde{V}_{W, i}^{\prime} \gamma, \widetilde{V}_{W, i}^{\prime}\right)^{\prime}\left(\widetilde{\varepsilon}_{i}+\widetilde{V}_{W, i}^{\prime} \gamma, \widetilde{V}_{W, i}^{\prime}\right)\right) \otimes E_{F}\left(f\left(Z_{i}\right)^{2} Z_{i} Z_{i}^{\prime}\right)
\end{aligned}
$$

has KP structure even though

$$
E_{F}\left(U_{i} U_{i}^{\prime} \mid Z_{i}\right)=f\left(Z_{i}\right)^{2} E_{F}\left(\widetilde{\varepsilon}_{i}+\widetilde{V}_{W, i}^{\prime} \gamma, \tilde{V}_{W, i}^{\prime}\right)^{\prime}\left(\widetilde{\varepsilon}_{i}+\tilde{V}_{W, i}^{\prime} \gamma, \widetilde{V}_{W, i}^{\prime}\right)
$$

depends on Z_{i}.

- Modified AR subvector statistic. Estimate $E_{F}\left(U_{i} U_{i}^{\prime} \otimes Z_{i} Z_{i}^{\prime}\right)$ by

$$
\begin{aligned}
\widehat{R}_{n} & :=n^{-1} \sum_{i=1}^{n} f_{i} f_{i}^{\prime} \in \Re^{k p \times k p} \text {, where } \\
f_{i} & :=\left(\left(M_{Z}\left(y-Y \beta_{0}\right)\right)_{i},\left(M_{Z} W\right)_{i}^{\prime}\right)^{\prime} \otimes Z_{i} \in \Re^{k p} .
\end{aligned}
$$

- Let

$$
\left(\widehat{G}_{1}, \widehat{G}_{2}\right)=\arg \min \left\|\bar{G}_{1} \otimes \bar{G}_{2}-\widehat{R}_{n}\right\|_{F}
$$

where the minimum is taken over $\left(\bar{G}_{1}, \bar{G}_{2}\right)$ for $\bar{G}_{1} \in \Re^{p \times p}, \bar{G}_{2} \in \Re^{k \times k}$ being pd, symmetric matrices, normalized such that the upper left element of \bar{G}_{1} equals 1. Estimators are unique and given in closed form.

- The subvector AR statistic, $A R_{K P, n}\left(\beta_{0}\right)$ is defined it as the smallest root $\hat{\kappa}_{p n}$ of the roots $\hat{\kappa}_{i n}, i=1, \ldots, p$ (ordered nonincreasingly) of the
characteristic polynomial

$$
\left|\hat{\kappa} I_{p}-n^{-1} \widehat{G}_{1}^{-1 / 2}\left(\bar{Y}_{0}, W\right)^{\prime} Z \widehat{G}_{2}^{-1} Z^{\prime}\left(\bar{Y}_{0}, W\right) \widehat{G}_{1}^{-1 / 2}\right|=0
$$

- Note: Relative to previous definition,
\widehat{G}_{1} replaces $\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}$ and \widehat{G}_{2} replaces $\frac{Z^{\prime} Z}{n}$
- The conditional subvector $\mathrm{AR}_{K P}$ test rejects H_{0} at nominal size α if

$$
A R_{K P, n}\left(\beta_{0}\right)>c_{1-\alpha}\left(\hat{\kappa}_{1 n}, k-m_{W}\right),
$$

where $c_{1-\alpha}(\cdot, \cdot)$ is defined as above.

Theorem: The conditional subvector $\mathrm{AR}_{K P}$ test implemented at nominal size α has asymptotic size, i.e.
$\lim \sup _{n \rightarrow \infty} \sup _{\left(\gamma, \Pi_{W}, \Pi_{Y}, F\right) \in \mathcal{F}_{K P}} P_{\left(\beta_{0}, \gamma, \Pi_{W}, \Pi_{Y}, F\right)}\left(A R_{A K P, n}\left(\beta_{0}\right)>c_{1-\alpha}\left(\hat{\kappa}_{1 n}, k-m_{W}\right)\right)$ equal to α.

Asymptotic case: c) General forms of Cond Hetero

- Perform a Wald type pretest based on $\widehat{G}_{1} \otimes \widehat{G}_{2}-\widehat{R}_{n}$ to test the null of Kronecker Product structure
- If pretest rejects continue with a robust (to cond hetero and weak IV) subvector procedure, like the AR type tests proposed in Andrews (2017)
- Otherwise, continue with the test $\mathrm{AR}_{K P}$ test
- Resulting test has correct asymptotic size no matter what the pretest nominal size is
- Reasons:
- pretest is consistent against deviations from null for which

$$
n^{1 / 2} \min \left\|\bar{G}_{1} \otimes \bar{G}_{2}-E_{F}\left(U_{i} U_{i}^{\prime} \otimes Z_{i} Z_{i}^{\prime}\right)\right\| \rightarrow \infty
$$

and the AR type tests in Andrews (2017) have correct asymptotic size

- when

$$
n^{1 / 2} \min \left\|\bar{G}_{1} \otimes \bar{G}_{2}-E_{F}\left(U_{i} U_{i}^{\prime} \otimes Z_{i} Z_{i}^{\prime}\right)\right\|=O(1)
$$

the conditional subvector $\mathrm{AR}_{K P}$ test has correct asymptotic size and rejects whenever the AR type test in Andrews (2017) rejects.

Asymptotic Size: General theory

- Distinction between pointwise (asymptotic) null rejection probability and (asymptotic) size

"Discontinuity" in limiting distribution of test statistic

Staiger and Stock (1997): simplified version of linear IV model with one IV

$$
\begin{aligned}
& y_{1}=y_{2} \theta+u \\
& y_{2}=Z \pi+v
\end{aligned}
$$

Let $\lambda_{n}=\left(\lambda_{1 n}, \lambda_{2 n}, \lambda_{3 n}\right)$ be sequence of parameters s.t. $\lambda_{3 n}=\left(F_{n}, \pi_{n}\right)$

$$
\lambda_{1 n}=\left(E Z_{i}^{2}\right)^{1 / 2} \pi / \sigma_{v} \text { and } \lambda_{2 n}=\operatorname{corr}\left(u_{i}, v_{i}\right)
$$

satisfies

$$
h_{n, 1}\left(\lambda_{n}\right)=n^{1 / 2} \lambda_{1 n} \rightarrow h_{1}<\infty \text { and } h_{n, 2}\left(\lambda_{n}\right)=\lambda_{2 n} \rightarrow h_{2}
$$

We will denote such a sequence λ_{n} by $\lambda_{n, h}$.
Work out limiting distribution of 2SLS under $\lambda_{n, h}$:

$$
\begin{aligned}
& \frac{\sigma_{v}}{\sigma_{u}}\left(\widehat{\theta}_{2 S L S}-\theta\right)=\frac{\sigma_{v}}{\sigma_{u}} \frac{y_{2}^{\prime} P_{Z} u}{y_{2}^{\prime} P_{Z} y_{2}}=\frac{\left(n^{-1} Z^{\prime} Z\right)^{-1 / 2} n^{-1 / 2} Z^{\prime} u / \sigma_{u}}{\left(n^{-1} Z^{\prime} Z\right)^{-1 / 2} n^{-1 / 2} Z^{\prime} y_{2} / \sigma_{v}} \\
&=\frac{\left(n^{-1} Z^{\prime} Z\right)^{-1 / 2} n^{-1 / 2} Z^{\prime} u / \sigma_{u}}{\left(n^{-1} Z^{\prime} Z\right)^{1 / 2} n^{1 / 2} \pi / \sigma_{v}+\left(n^{-1} Z^{\prime} Z\right)^{-1 / 2} n^{-1 / 2} Z^{\prime} v / \sigma_{v}} \\
& \rightarrow d \frac{z_{u, h_{2}}^{h_{1}+z_{v, h_{2}}}, \text { where }}{} \\
&\binom{z_{u, h_{2}}}{z_{v, h_{2}}} \sim N\left(0, \Sigma_{h_{2}}\right) \text { and } \Sigma_{h_{2}}=\left(\begin{array}{cc}
1 & h_{2} \\
h_{2} & 1
\end{array}\right)
\end{aligned}
$$

- Similarly for t test statistic $T_{n}\left(\theta_{0}\right)$:

$$
T_{n}\left(\theta_{0}\right) \rightarrow_{d} J_{h}
$$

for $h=\left(h_{1}, h_{2}\right)$ under the parameter sequence $\lambda_{n, h}$.

- So, to implement the test, we should take the $1-\alpha$-quantile $c_{h}(1-\alpha)$ of J_{h} as the critical value
- If we implement a test using a Wald statistics with chi-square critical values, the asymptotic size is 1 , see Dufour (1997)
- Problem: we cannot consistently estimate h; we can only estimate consistently $\lambda_{1 n}$
- $\left(h_{1}, h_{2}\right)$ takes on values in $H=(R \cup\{ \pm \infty\}) \times[-1,1]$
- We say the limit distribution of $T_{n}\left(\theta_{0}\right)$ "depends discontinuously on nuisance parameter λ_{1} " and continuously on λ_{2}

Continuity: when $x \rightarrow x_{0}$ then $f(x) \rightarrow f\left(x_{0}\right)$
Here $\left(E Z_{i}^{2}\right)^{1 / 2} \pi / \sigma_{v} \rightarrow 0$, but limit of $T_{n}\left(\theta_{0}\right)$ does not just depend on 0

- Situation arises frequently in applied econometrics and leads to size distortion for various "classical" inference procedures:
weak IVs/identification, use of pretests, moment inequalities, (nuisance) parameters on boundary, inference in (V)ARs with unit root(s)

General Theory: Asymptotic Size of Tests

- $\left\{\varphi_{n}: n \geq 1\right\}$ sequence of tests for null hypothesis H_{0}
- λ indexes the true null distribution of the observations
- Parameter space for λ is some space Λ
- $R P_{n}(\lambda)$ denotes rejection probability of φ_{n} under λ
- The asymptotic size of φ_{n} for the parameter space Λ is defined as:

$$
A s y S z=\limsup _{n \rightarrow \infty} \sup _{\lambda \in \Lambda} R P_{n}(\lambda)
$$

Formula for Calculation of AsySz

Recall relevance of limits of $h_{n, 1}\left(\lambda_{n}\right)=n^{1 / 2} \lambda_{1 n}=n^{1 / 2}\left(E Z_{i}^{2}\right)^{1 / 2} \pi / \sigma_{v}$ and $h_{n, 2}\left(\lambda_{n}\right)=\lambda_{2 n}=\operatorname{corr}\left(u_{i}, v_{i}\right)$ for limit distributions of test statistics in weak IV example

Generalizing, let

$$
\left\{h_{n}(\lambda)=\left(h_{n, 1}(\lambda), \ldots, h_{n, J}(\lambda)\right)^{\prime} \in R^{J}: n \geq 1\right\}
$$

be a sequence of functions on Λ, where $h_{n, j}(\lambda) \in R \forall j=1, \ldots, J$.
For any subsequence $\left\{p_{n}\right\}$ of $\{n\}$ and $h \in(R \cup\{ \pm \infty\})^{J}$ denote a sequence $\left\{\lambda_{p_{n}} \in \Lambda: n \geq 1\right\}$ such that $h_{p_{n}}\left(\lambda_{p_{n}}\right) \rightarrow h$ by

$$
\lambda_{p_{n}, h}
$$

Define
$H=\left\{h \in(R \cup\{ \pm \infty\})^{J}:\right.$ there is subsequence $\left\{p_{n}\right\}$ and sequence $\left.\lambda_{p_{n}, h}\right\}$.

Theorem, Andrews, Cheng, and Guggenberger (2011)
Assume that under any sequence $\lambda_{p_{n}, h}$

$$
R P_{p_{n}}\left(\lambda_{p_{n}, h}\right) \rightarrow R P(h)
$$

for some $R P(h) \in[0,1]$. Then:

$$
A s y S z=\sup _{h \in H} R P(h)
$$

Proof. i) Let $h \in H$. To show $A s y S z \geq R P(h)$. By definition of H, there is $\lambda_{p_{n}, h}$. Then

$$
\begin{aligned}
\text { AsySz } & =\limsup _{n \rightarrow \infty} \sup _{\lambda \in \Lambda} R P_{n}(\lambda) \\
& \geq \limsup _{n \rightarrow \infty} R P_{p_{n}}\left(\lambda_{p_{n}, h}\right) \\
& =R P(h)
\end{aligned}
$$

Proof. (continued)

ii) To show $A \operatorname{syS} S \leq \sup _{h \in H} R P(h)$. Let $\left\{\lambda_{n} \in \Lambda: n \geq 1\right\}$ be a sequence such that

$$
\limsup _{n \rightarrow \infty} R P_{n}\left(\lambda_{n}\right)=A s y S z
$$

Let $\left\{p_{n}: n \geq 1\right\}$ be a subsequence of $\{n\}$ such that $\lim _{n \rightarrow \infty} R P_{p_{n}}\left(\lambda_{p_{n}}\right)$ exists and equals A sy $S z$ and $h_{p_{n}}\left(\lambda_{p_{n}}\right) \rightarrow h$. Therefore this sequence is of type $\lambda_{p_{n}, h}$, and thus, by assumption, $R P_{p_{n}}\left(\lambda_{p_{n}}\right) \rightarrow R P(h)$. Because also $R P_{p_{n}}\left(\lambda_{p_{n}}\right) \rightarrow A s y S z$, it follows that $A s y S z=R P(h)$.

Specification of λ for subvector Anderson and Rubin test

- Given F let

$$
W_{F}:=\left(E_{F} Z_{i} Z_{i}^{\prime}\right)^{1 / 2} \text { and } U_{F}:=\Omega\left(\beta_{0}\right)^{-1 / 2}
$$

- Consider a singular value decomposition

$$
C_{F} \Lambda_{F} B_{F}^{\prime}
$$

of

$$
W_{F}\left(\Pi_{W} \gamma, \Pi_{W}\right) U_{F}
$$

- i.e. B_{F} denote a $p \times p$ orthogonal matrix of eigenvectors of

$$
U_{F}^{\prime}\left(\Pi_{W} \gamma, \Pi_{W}\right)^{\prime} W_{F}^{\prime} W_{F}\left(\Pi_{W} \gamma, \Pi_{W}\right) U_{F}
$$

and C_{F} denote a $k \times k$ orthogonal matrix of eigenvectors of

$$
W_{F}\left(\Pi_{W} \gamma, \Pi_{W}\right) U_{F} U_{F}^{\prime}\left(\Pi_{W} \gamma, \Pi_{W}\right)^{\prime} W_{F}^{\prime}
$$

- Λ_{F} denotes a $k \times p$ diagonal matrix with singular values $\left(\tau_{1 F}, \ldots, \tau_{p F}\right)$ on diagonal, ordered nonincreasingly
- Note $\tau_{p F}=0$
- Define the elements of λ_{F} to be

$$
\begin{aligned}
\lambda_{1, F} & :=\left(\tau_{1 F}, \ldots, \tau_{p F}\right)^{\prime} \in R^{p}, \\
\lambda_{2, F} & :=B_{F} \in R^{p \times p} \\
\lambda_{3, F} & :=C_{F} \in R^{k \times k} \\
\lambda_{4, F} & :=W_{F} \in R^{k \times k} \\
\lambda_{5, F} & :=U_{F} \in R^{p \times p} \\
\lambda_{6, F} & :=F \\
\lambda_{F} & :=\left(\lambda_{1, F}, \ldots, \lambda_{9, F}\right) .
\end{aligned}
$$

- A sequence $\lambda_{n, h}$ denotes a sequence $\lambda_{F_{n}}$ such that $\left(n^{1 / 2} \lambda_{1, F_{n}}, \ldots, \lambda_{5, F_{n}}\right) \rightarrow$ $h=\left(h_{1}, \ldots, h_{5}\right)$
- Let $q=q_{h} \in\{0, \ldots, p-1\}$ be such that

$$
h_{1, j}=\infty \text { for } 1 \leq j \leq q_{h} \text { and } h_{1, j}<\infty \text { for } q_{h}+1 \leq j \leq p-1
$$

- Roughly speaking, need to compute asy null rej probs under seq's with (i) strong ident'n,(ii) semi-strong ident'n, (iii) std weak ident'n (all parameters weakly ident'd) \& (iv) nonstd weak ident'n
- strong identification: $\lim _{n \rightarrow \infty} \tau_{m_{W}, F_{n}}>0$
- semi-strong ident'n: $\lim _{n \rightarrow \infty} \tau_{m_{W}, F_{n}}=0 \& \lim _{n \rightarrow \infty} n^{1 / 2} \tau_{m_{W}, F_{n}}=$ ∞
- weak ident'n: $\lim _{n \rightarrow \infty} n^{1 / 2} \tau_{m_{W}, F_{n}}<\infty$
- standard (of all parameters): $\lim _{n \rightarrow \infty} n^{1 / 2} \tau_{1, F_{n}}<\infty$ as in Staiger \& Stock (1997)
- nonstandard: $\lim _{n \rightarrow \infty} n^{1 / 2} \tau_{m_{W}, F_{n}}<\infty \& \lim _{n \rightarrow \infty} n^{1 / 2} \tau_{1, F_{n}}=$ ∞ includes some weakly/some strongly ident'd parameters, as in Stock \& Wright (2000); also includes joint weak ident'n

Andrews and Guggenberger (2014): Limit distribution of eigenvalues of quadratic forms

- Consider a singular value decomposition $C_{F} \Lambda_{F} B_{F}^{\prime}$ of $W_{F} D_{F} U_{F}$
- Define $\lambda_{F}, h, \lambda_{n, h} \ldots$ as above

Let $\widehat{\kappa}_{j n} \forall j=1, \ldots, p$ denote j th eigenval of

$$
n \widehat{U}_{n}^{\prime} \widehat{D}_{n}^{\prime} \widehat{W}_{n}^{\prime} \widehat{W}_{n} \widehat{D}_{n} \widehat{U}_{n}
$$

where under $\lambda_{n, h}$

$$
\begin{aligned}
n^{1 / 2}\left(\widehat{D}_{n}-D_{F_{n}}\right) & \rightarrow d^{D_{h}} \in R^{k \times p} \\
\widehat{W}_{n}-W_{F_{n}} & \rightarrow p 0^{k \times k} \\
\widehat{U}_{n}-U_{F_{n}} & \rightarrow p 0^{p \times p} \\
W_{F_{n}} & \rightarrow h_{4}, U_{F_{n}} \rightarrow h_{5}
\end{aligned}
$$

with h_{4}, h_{5} nonsingular

Theorem (AG, 2014): under $\left\{\lambda_{n, h}: n \geq 1\right\}$,
(a) $\widehat{\kappa}_{j n} \rightarrow p \infty$ for all $j \leq q$
(b) vector of smallest $p-q$ eigenvals of $n \widehat{U}_{n}^{\prime} \widehat{D}_{n}^{\prime} \widehat{W}_{n}^{\prime} \widehat{W}_{n} \widehat{D}_{n} \widehat{U}_{n}$, i.e., $\left(\widehat{\kappa}_{(q+1) n}, \ldots, \widehat{\kappa}_{p n}\right)^{\prime}$, converges in dist'n to $p-q$ vector of eigenvals of random matrix $M\left(h, \bar{D}_{h}\right) \in$ $R^{(p-q) \times(p-q)}$

- complicated proof;
- eigenvalues can diverge at any rate or converge to any number
- can become close to each other or close to 0 as $n \rightarrow \infty$
- We apply this result with

$$
\begin{aligned}
W_{F} & =\left(E_{F} Z_{i} Z_{i}^{\prime}\right)^{1 / 2}, \widehat{W}_{n}=\left(n^{-1} \sum Z_{i} Z_{i}^{\prime}\right)^{1 / 2} \\
U_{F} & =\Omega\left(\beta_{0}\right)^{-1 / 2}, \widehat{U}_{n}=\left(\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}\right)^{-1 / 2} \\
D_{F} & =\left(\Pi_{W} \gamma, \Pi_{W}\right), \widehat{D}_{n}=\left(Z^{\prime} Z\right)^{-1} Z^{\prime} \bar{Y}
\end{aligned}
$$

to obtain the joint limiting distribution of all eigenvalues

Joint asymptotic dist'n of eigenvalues

- Recall: test statistic and critical value are functions of $p=1+m_{W}$ roots of

$$
\left|\widehat{\kappa} I_{1+m_{W}}-\left(\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}\right)^{-1 / 2}\left(\bar{Y}^{\prime} P_{Z} \bar{Y}\right)\left(\frac{\bar{Y}^{\prime} M_{Z} \bar{Y}}{n-k}\right)^{-1 / 2}\right|=0
$$

- To obtain joint limiting distribution of eigenvalues, we use general result in Andrews and Guggenberger (2014) about joint limiting distribution of eigenvalues of quadratic forms

Results:

- the joint limit depends only on localization parameters $h_{1,1}, \ldots, h_{1, m_{W}}$
- asymptotic cases replicate finite sample, normal, fixed IV, known variance matrix setup
- together with above proposition, correct asymptotic size then follows from correct finite sample size

