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Abstract

Game-theoretic analysis of relational contracts typically studies Pareto optimal equilib-

ria. We illustrate how this equilibrium selection rules out very intuitive hold-up concerns

in stochastic games with long-term decisions. The key problem is that Pareto optimal

equilibria, even if satisfying renegotiation-proofness, do not re�ect plausible concerns of

how today's actions a�ect future bargaining positions within the relationship. We propose

and characterize an alternative equilibrium selection based on the notion that continua-

tion play is repeatedly negotiated in a relationship. We illustrate with several examples

how the concept naturally combines relational contracting and hold-up concerns.
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1 Introduction

In many economic relationships, parties can conduct investments, exert e�ort, or perform other

actions that over shorter or longer time horizons determine their joint surplus and possibly

a�ect the way in which that surplus is distributed. Limitations to formal contracting in

such relationships have inspired two large branches of economic literature. First, there is the

literature on the hold-up problem, which occurs if long-term investments cannot be protected
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by complete contracts.1 Second, there is the literature on relational contracts, which use

repeated interaction and credible punishments to enforce mutually desirable behavior.2 Given

the common motivation and economists' immense interest in both �elds, it is also important

to have comprehensive frameworks for a uni�ed analysis of relational contracting and hold-up

problems. While advances have been made for repeated games3, a tractable framework for

dynamic stochastic games with in�nite horizon is still missing. We seek to �ll this gap by

introducing our concept of repeated negotiation equilibrium (RNE).

Relational contracts are typically formulated as perfect public equilibria (PPE) of in�nitely

repeated games with payo�s on the Pareto frontier. In order to model relationships with long-

term investments and corresponding hold-up problems, we study stochastic games, in which

the stage game can change over time in response to players' actions. As we will illustrate with

a simple example in Section 2, relational contracts can easily overcome many hold-up problems

by making future trade and bargaining outcomes dependent on the conducted investments.

This reveals the stark contrasts between the behavioral assumptions of the hold-up and the

relational contracting literature. This example also introduces the core idea of RNE in a simple

setting that abstracts from the intricacies of the in�nite horizon context.

In Sections 3 and 4, RNE are formally introduced and characterized. The idea behind

repeated negotiation equilibrium is that at the beginning of a period new negotiations are

initiated with some exogenous probability. If new negotiations take place, bygones are bygones

and only the payo�-relevant state matters for the outcome. A larger negotiation probability

means that expected payo�s have to return sooner to history-independent bargaining payo�s.

In the corner case of a negotiation probability of zero, players can commit to any credible

path of play such that an RNE corresponds to a Pareto optimal PPE. If the negotiation

probability is one and the game has a unique Markov perfect equilibrium (MPE), then the

RNE corresponds to that MPE. Both Pareto optimal PPE and MPE are solution concepts

that are widely applied in the analysis of repeated and stochastic games, but they make very

di�erent assumptions about the history dependence of strategies. With a positive probability

of new negotiations, the RNE concept naturally allows for intermediate cases.

In Section 5, we illustrate with a series of applications how the model leads to more plausible

1The hold-up problem has received a lot of attention since Grout's (1984) classic article, which shows how
�rms under-invest in capital because labor unions appropriate a share of the generated surplus in subsequent
wage negotiations. Hold-up concerns play a crucial role for the organization of production (Klein et. al. (1978),
Williamson (1985), Hart and Moore (1988)).

2Self-enforced contracts between �rms and employees or between �rms and their suppliers are for example
studied in Bull (1987), MacLeod and Malcomson (1989), Levin (2002,2003), Baker, Gibbons and Murphy
(2002), and Board (2011). See Malcomson (2012) for a survey. Other applications of relational contracting
include cartels (e.g. Harrington and Skrzypacz (2011)), international trade agreements (e.g. Bagwell and
Staiger (1990), Klimenko, Ramey and Watson (2008)) and environmental treaties (e.g. Barrett (2005), Harstad
(2012, 2016), Gjertsen et al. (2021)). In all these applications, bargaining plays an important role.

3The connection between existing theories of ongoing negotiations in repeated games and our model is
discussed below.
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predictions than the corner cases. RNE are designed for studying the role of hold-up concerns

and bargaining power when decisions have long-term consequences. One example are decisions

to make oneself more vulnerable in a long-term relationship. While Pareto optimal PPE predict

that players make themselves immediately strongly vulnerable to improve relational incentives,

RNE yield a more complex picture in which players increase vulnerabilities in small steps and

only as long as e�ciency gains are su�ciently large. We also revisit a classical question

from bargaining theory about the role of inside and outside option. While in Pareto-optimal

PPE only outside-option payo�s are relevant, RNE stress the importance of inside options.

Another example is the e�ect of asset ownership on investment decisions. We apply the RNE

concept to a relational hold-up model, where the di�erence to the literature is that in an RNE,

negotiations apply in the same way to the distribution of the surplus and to the punishment in

case one party deviated. Despite enabling harsher punishments, joint ownership is dominated

by single ownership as in the static model. Finally, we explore an arms race, where the goal

of a stronger bargaining position leads to costly aquisition and potential usage of weapons in

RNE, which does not happen in Pareto-optimal PPE or Markov perfect equilibria.

Since RNE do not exist in all stochastic games, we introduce an extension to weak RNE,

which always exist, in Appendix A. Appendix B contains an algorithm to �nd RNE in games

with perfect monitoring. All proofs are relegated to Appendix C.

Related literature

Whether hold-up problems arise in existing frameworks for renegotiation in in�nitely repeated

games depends critically on the nature of recurrent negotiation and the implications of dis-

agreement. Renegotiation-proofness re�nements for repeated games (e.g. Farrell and Maskin

(1989), Bernheim and Ray (1989), Asheim (1991)) require that continuation equilibria are

not Pareto dominated within a suitable set of equilibria. The idea behind these concepts is

that the current agreement is the default which players return to under disagreement if one

of the players blocks the negotiations. This Pareto criterion is criticized by Abreu, Pearce

and Stacchetti (1993), who argue that renegotiation might be triggered more easily. The

Pareto criterion is also relatively weak: In games with transfers, the use of �nes often leads to

Pareto e�cient punishments, and therefore these concepts do not severely restrict the set of

sustainable payo�s (Baliga and Evans (2000), Levin (2003), Goldlücke and Kranz (2013)).

While none of these early concepts capture the history independence that is needed to

study hold-up, Miller and Watson (2013) propose a theory of negotiation to study the role of

bargaining power in in�nitely repeated games. Their concept of �contractual equilibrium� is

built on the premise that continuation play under disagreement should not vary with the way

in which bargaining breaks down. In a contractual equilibrium negotiations take place every

period. Relational incentives can be supported by history-dependent disagreement points that
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involve no current period transfers. In contrast, RNE have history-independent disagreement

points that cannot be chosen to support relational incentives, and transfers are possible also

under disagreement.

The idea that many relations are characterized by ongoing negotiations has been explored

in a few related articles. In the �nite horizon context, Watson (2013) de�nes and classi�es

solution concepts according to the e�ect of negotiations and assumptions about disagreement.

In the most �exible theory discussed by Watson (2013), the disagreement point can be a

function of the players' shared history, as is assumed by Miller and Watson (2013). In the

most stringent theory, the disagreement point does not depend on the history of play as in a

repeated negotiation equilibrium. It becomes clear that the predictions of a bargaining theory

crucially depend on the assumptions on disagreement and the degree of history-independence in

the bargaining game. The contribution of RNE is to provide a general and tractable framework

with a �exible speci�cation of disagreement payo�s. Moreover, with the negotiation probability

it introduces a parameter that measures the importance of history-independent bargaining

power.4

While existing concepts are typically de�ned for repeated games, RNE applies to a more

general class of dynamic games. However, Watson (2013) and Watson, Miller and Olsen

(2020) distinguish between internally and externally enforced agreements, where the latter

could alternatively be modeled as moving to another state of a stochastic game. Similarly,

there is an earlier strand of the literature on renegotiation that studies dispute institutions that

can also be viewed as states of the game (Ramey and Watson (2002), Klimenko et al. (2008)).

These papers solve for a �recurrent agreement�, which is characterized by Nash bargaining

where under disagreement players expect to play a stage-game Nash equilibrium and resume

negotiations in the following period. Klimenko et al. (2008) use the theory to explain how a

dispute resolution mechanism can provide a bene�t to the participating countries simply by

allowing them to initiate a costly process following a deviation from cooperation. Such an

institution could be studied with RNE in a model with two states, where moving from the

initial state to the other (dispute settlement) state has to be an equilibrium.

Related is also a small literature that studies hold-up in repeated interactions. To address

speci�c questions regarding for example the e�ect of asset ownership on investment, these

models impose some bargaining structure that is tailored to the particular application. For

example, Halac (2015) considers long-term investments that take place only in the �rst period

and shows how the ensuing relational contract can mitigate the hold-up problem. Che and

Sákovics (2004, 2021) and Pitchford and Snyder (2004) study hold-up in a dynamic setting and

4The negotiation probability can be interpreted as a measure of limited commitment. This is reminiscent
of work on international agreements, where it is unclear how much commitment (legal or otherwise) there is to
contractual agreements. For instance, Harstad (2012, 2016) introduces the length of a commitment period as an
institutional parameter measuring the strength of the international contractual environment and investigates
how it in�uences the hold-up problem.
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show that making investment gradual can help to improve e�ciency. Garvey (1995), Baker et

al. (2002), Halonen (2002), and Blonski and Spagnolo (2007) study the optimal allocation of

property rights and optimal relational contracting in a repeated game with investments that

always fully depreciate after one period.

2 Introducing repeated negotiation equilibria with a simple in-

vestment game

This section motivates repeated negotiation equilibria with a classic hold-up example. The

game starts in an initial state x0 in the �rst period where a buyer (player 1) and a seller (player

2) each choose investments ai from a compact set Ai(x0), i = 1, 2. Investment costs for player i

are given by ci(ai) ≥ 0. Investments determine, possibly stochastically, the state x in period 2,

which determines the total surplus achievable by trade S(x). Payo�s are discounted between

periods with a discount factor δ ∈ (0, 1). First best investments a∗ = (a∗1, a
∗
2) maximize the

sum of expected payo�s given that ex post trade takes place whenever it is e�cient,

a∗ ∈ arg max
a

δEx[max{S(x), 0}|a]− c1(a1)− c2(a2).

In period 2 each player decides whether or not she wants to trade. If both players want to

trade, each player gets a payo� of 1
2S(x). Otherwise each player gets an outside-option payo�

of zero. From period 3 onward, the game is in an absorbing state xend in which all players get

zero payo� forever.5

Before actions are chosen, each period starts with a transfer stage in which each player

can voluntarily transfer money to the other player (or burn money). Transfers are perfectly

observed and strategies can condition actions on the observed transfers. Players are risk-

neutral and net payments are simply added to players' payo�s in that period.

The voluntary transfers at the beginning of period 2 can be used to implement as a subgame

perfect continuation payo� in state x every payo� u that satis�es u1 +u2 ≤ max{S(x), 0} and
grants each player at least the zero outside-option payo�.6 That is because any deviation from

a prescribed transfer can be punished by mutually choosing no-trade. The straight line segment

in Figure 1 (left) illustrates the Pareto frontier of subgame perfect continuation equilibrium

5This game is in essence a two-period game, but we model it as an example of the general class of stochastic
games studied in this article. In Section 5.3, we study an in�nitely repeated version of this two-stage game.

6Being able to implement every split of the surplus as a subgame perfect continuation payo� is a fairly
robust result. We get the same result if the formal contract speci�ed a di�erent split of the surplus or if trade
decisions were modelled by a Nash demand game. Moreover, adding the possibility to come to an agreement in
later periods if both player's reject trade in period 2 would not change the set of continuation payo�s in period
2. A famous exception is Rubinstein's (1982) alternative o�er bargaining game which uniquely implements the
Nash bargaining outcome. However, this unique equilibrium outcome is not robust with respect to plausible
modi�cations of the bargaining game (e.g. Avery and Zemsky (1994)). Evans (2008) shows very generally that
the multiplicity of equilibria of the bargaining game can be used to implement e�cient investment.
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payo�s in period 2 in a state x with positive surplus from trade.

S(x)

S(x)

Nash bargaining

0
0

π2

π1

S(x)

S(x)0
0

π2

π1

Figure 1: The blue line shows the Pareto-frontier of subgame perfect continuation payo�s
in period 2. The thick line segment in the right �gure illustrates the subset that can be
implemented as expected continuation payo�s for a negotiation probability ρ = 0.6.

As a consequence, �rst best investments a∗ are always conducted in a Pareto-optimal sub-

game perfect equilibrium (SPE). A player who unilaterally deviates from a∗ will be punished

with a continuation payo� of zero in all states in period 2. If no player unilaterally deviates,

continuation equilibria split the surplus S(x) such that on average each player gets at least

her cost ci(a
∗
i ) reimbursed. Since the expected discounted joint surplus under �rst best invest-

ments is larger than total investment costs, such a split of trade surplus always exists. Key to

this result is that in a Pareto optimal SPE continuation payo�s are �exibly picked depending

on the conducted investments, as is typically the case in a relational contract.

In contrast, the hold-up literature commonly assumes that surplus from trade is always

split according to the (symmetric) Nash bargaining solution, which in our example corresponds

to an equal split of S(x). As players do not receive the full return to their investment,

underinvestment can arise. An important source of the hold-up problem is that writing a

formal contract that conditions the split of the surplus on conducted investments is not possible

because of a lack of external enforcement or veri�ability.7 Our example illustrates that in

addition to the incompleteness of formal contracts, a limitation to the scope of relational

contracting can also be essential for hold-up problems to arise.

Thus, a crucial di�erence between relational contracting and hold-up lies in whether or

not continuation equilibria can �exibly depend on past actions. We do not attempt to answer

the question which of the two ideas is the more appropriate concept. Experimental �ndings

by Ellingsen and Johannesson (2004) and Ellingsen and Johannesson (2005), who compare

behavior in a hold-up setting with either a Nash demand game or an ultimatum bargaining

7A particular focus of the literature is under which conditions simple contracts can reestablish e�cient
investments. If the seller's investments only in�uence production cost and the buyer's investments only in�uence
her valuation, the hold-up problem can be e�ectively mitigated with simple enforceable contracts that act as a
threat point in renegotiations (Aghion, Dewatripont and Rey (1994), Nöldeke and Schmidt (1995), Edlin and
Reichelstein (1996)). If the seller's investments can in�uence the buyer's valuation and vice versa, Che and
Hausch (1999) show that the hold-up problem cannot be resolved by any contract on output that is renegotiated
according to the Nash bargaining solution.
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State x
observed

Negotiation stage

Public negotiation
signal R ∈ {0, 1}

Transfer stage

Voluntary
monetary transfers

Action stage

Action pro�le
a ∈ A(x)

Realized signal
y observed

Figure 2: Timeline of a period

game, support the view that intermediate cases are plausible.8 The model we propose provides

a framework that unites both ideas by introducing a continuum of intermediate cases.

In an RNE we assume that at the beginning of each period, with some exogenous negoti-

ation probability ρ ∈ [0, 1] new negotiations take place and the players receive a continuation

payo� that corresponds to the Nash bargaining solution over the set of continuation equilib-

rium payo�s (holding future negotiations �xed). Assuming no-trade as disagreement point

and equal bargaining weights, new negotiations in period 2 would mean that the surplus S(x)

is split equally. Consider the case that a player has deviated from required investments and is

supposed to be punished by zero continuation payo�s. Given the possibility of negotiation in

period 2, the deviating player is then still able to guarantee herself an expected continuation

payo� of 0.5ρS(x). Hence, the span of Pareto optimal expected continuation payo�s that can

be implemented in state x is a fraction 1 − ρ of the span of the Pareto optimal continuation

payo�s. Figure 1 (right) shows the range of implementable expected payo�s for ρ = 0.6. Above

a critical negotiation probability, it is no longer possible to implement �rst best investments.

3 Model

We consider n-player stochastic games with in�nitely many periods. Future payo�s are dis-

counted with a common discount factor δ ∈ (0, 1). There is a �nite set of states X, and x0 ∈ X
denotes the initial state. A period is comprised of three stages: a negotiation stage, a transfer

stage and an action stage. There is no discounting between stages. Figure 2 illustrates the

timeline of a period.

At the beginning of each period t, new negotiations take place with an exogenously given

probability ρ ∈ [0, 1]. This is modeled by an exogenous public signal Rt ∈ {0, 1} that the
players observe in the negotiation phase. A positive negotiation signal Rt = 1 indicates new

negotiations while Rt = 0 indicates no new negotiations. We assume that the initial period

t = 0 always starts with negotiations, i.e., R0 = 1. Note that the signal Rt will only be used in

the de�nition of an RNE to trigger continuation equilibria that are interpreted as the outcome

of new negotiations, but otherwise has no direct payo� consequence.

In the transfer stage, every player simultaneously chooses a non-negative vector of transfers

8See also Ellingsen and Robles (2002) and Tröger (2002) for evolutionary arguments why bargaining out-
comes can depend on prior investment.
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to all other players. Players also have the option to transfer money to a non-involved third

party, which has the same e�ect as burning money. Transfers are perfectly observed by all

players. In the action stage, players simultaneously choose actions. In state x ∈ X, player

i can choose an action from a �nite or compact action set Ai(x). The set of (pure) action

pro�les in state x is denoted by A(x) = A1(x)× ...×An(x).

We allow for imperfect public monitoring. After actions have been conducted, a signal y

from a �nite signal space Y and then the next period's state are commonly observed. Both

are jointly drawn from a probability distribution that only depends on the current state x and

action pro�le a. Player i's stage game payo� is denoted by π̂i(x, ai, y) and depends on the

initial state x, player i's action ai, and the signal y. In a game with perfect monitoring, the

signal y is equal to the played action pro�le a. We denote by πi(x, a) player i's expected stage

game payo� in state x if action pro�le a is played. Stage game payo�s and the probability

distribution of signals and new states shall be continuous in the action pro�le a.

We assume that players are risk-neutral and that payo�s are additively separable in the

stage game payo� and money. The expected payo� of player i in a period in state x, in which

she makes a net transfer of pi and action pro�le a is played, is then given by πi(x, a)−pi. When

referring to payo�s of the stochastic game, we mean expected average discounted payo�s, i.e.,

the expected sum of discounted payo�s multiplied by (1− δ).
We either restrict attention to pure strategies or, for �nite action spaces, also consider

behavioral strategies in which players can mix over actions. If behavioral strategies are con-

sidered, A(x) shall denote the set of mixed action pro�les at the action stage in state x,

otherwise A(x) = A(x) shall denote the set of pure action pro�les. For a mixed action pro�le

α ∈ A(x), we denote by πi(x, α) player i's expected stage game payo� taking expectations

over mixing probabilities and signal realizations.

A public history h of the stochastic game is a sequence that speci�es up to a particular

point of play all states, negotiation signals, performed transfers and public signals that have

so far occurred. A public strategy σi of player i maps every public history that ends before a

payment stage into a vector of monetary transfers to other players, and every public history

ending before the action stage into a (possibly mixed) action αi ∈ Ai(x). Let Σ denote the set

of public strategy pro�les. A public perfect equilibrium (PPE) is a pro�le of public strategies

that constitute mutual best replies after every history.

Given a public history h, we denote by hC(h) the ending subsequence of h that starts

with the latest period in which negotiations took place in h. This means that only the �rst

negotiation signal in the history hC(h) is equal to 1. We de�ne by

Σ∗ =
{
σ ∈ Σ| σ(h) = σ(h′) if hC(h) = hC(h′)

}
(1)

the subset of all public strategy pro�les in which the chosen actions and transfers only depend
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on the history since the last negotiations. In particular, directly after new negotiations take

place, i.e. if hC(h) = (x, 1), continuation play of a strategy pro�le in Σ∗ only depends on the

current state x. For any σ ∈ Σ∗, we denote by rσ(x) the well-de�ned pro�le of continuation

payo�s directly after new negotiations take place in state x. We call rσ the negotiation payo�s

of σ.

A repeated negotiation equilibrium will be de�ned as a strategy pro�le σ ∈ Σ∗ that is a

PPE and whose negotiation payo�s correspond for each state to a generalized Nash bargaining

solution over a suitably de�ned bargaining set. Key for the speci�cation of the bargaining set

is to characterize the set of possible continuation payo�s taking future negotiation payo�s

as given. For this characterization, we consider truncated games, which end with some �xed

payo� vector when new negotiations are triggered.

A truncated game Γ(x, r) is de�ned by a state x and an arbitrary vector of (negotiation)

payo�s r that speci�es for every state x′ ∈ X a payo� pro�le r(x′) ∈ Rn. The truncated game

Γ(x, r) is equal to the original game with the following modi�cations: It starts in state x and

whenever play would transit to a state x′ then with probability ρ an absorbing state is reached

in which players receive the terminal payo�s r(x′) in the current and every future period and no

more actions and transfers are possible. Otherwise, action spaces, state transitions and payo�s

of the truncated game are the same as in the original game. The truncated game always starts

with at least one period of regular play before an absorbing state can be reached. For any

strategy pro�le σ of the truncated game Γ(x, r), we denote player i's payo� by ui(σ, x, r).

We can naturally map each strategy pro�le σ ∈ Σ∗ of the original game to a tuple (σx)x∈X

of public strategy pro�les of the truncated games Γ(x, rσ) where σx follows the transfers and

actions of σ starting from new negotiations in state x until again new negotiations take place.

Lemma 1. A strategy pro�le σ ∈ Σ∗ with negotiation payo�s rσ is a PPE in the original

game if and only if for its representation as strategy pro�les (σx)x∈X in the truncated games

Γ(x, rσ), each σx is a PPE of Γ(x, rσ) with payo� pro�le u(σx, x, rσ) = rσ(x).

As in every stochastic game with transfers, the PPE payo� set of a truncated game Γ(x, r)

is a simplex, which we denote by

U(x, r) = {u ∈ Rn|
n∑
i=1

ui ≤ Ū(x, r) and ui ≥ v̄i(x, r) for all i = 1, ..., n}, (2)

where Ū(x, r) denotes the maximum joint PPE payo� and v̄i(x, r) the minimum PPE payo�

for player i.

To model negotiation outcomes that follow a positive negotiation signal as a generalized

Nash bargaining solution, additional ingredients are needed: bargaining weights and disagree-

ment points. Bargaining weights are given exogenously by β1, ..., βn ∈ [0, 1] with
∑n

i=1 βi = 1.
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Disagreement points are speci�ed by a function d(x, r) that assigns to every state x a

payo� pro�le for any given vector of negotiation payo�s r. The crucial aspect is that the

disagreement point only depends on future negotiation payo�s and the current state x, but

not on any other aspect of the history. Our model allows for di�erent speci�cations of the

disagreement points, which shall satisfy

Assumption 1. For any truncated game Γ(x, r) it must hold that d(x, r) ∈ U(x, r). Moreover,

if for truncated games Γ(x, r) and Γ(x, r′) there is a vector b ∈ Rn such that u(σ, x, r) =

u(σ, x, r′) + b for every strategy pro�le σ of the truncated game that starts in state x, then

d(x, r) = d(x, r′) + b.

Hence, disagreement payo�s are required to be PPE payo�s in the truncated game. More-

over, if negotiation payo�s in a truncated game are changed in such a way as to only shift

the payo�s of all strategies by some constant, then the disagreement points should shift in the

same way.

De�nition 1. A PPE σ ∈ Σ∗ is a repeated negotiation equilibrium (RNE) for bargaining

weights β1, ..., βn and disagreement point function d(x, r) if its negotiation payo�s rσ satisfy

rσi (x) = di(x, r
σ) + βi(Ū(x, rσ)−

n∑
j=1

dj(x, r
σ)) for all x ∈ X and i = 1, .., n. (3)

In the corner case of a negotiation probability of zero, players can commit to any credible

path of play such that an RNE corresponds to a Pareto optimal PPE, with the additional

assumption that at the beginning of the game, players receive their Nash bargaining payo�.

If the negotiation probability is one and the game has a unique MPE payo�, then the RNE is

an MPE.

Disagreement points

While our concept allows for di�erent speci�cations of disagreement points, we will assume

in our applications that the disagreement point d(x, r) corresponds to the lowest PPE payo�s

v̄(x, r) of the truncated game Γ(x, r). This speci�cation is particularly tractable since the

computation of the PPE payo� set U(x, r) of the truncated game anyway requires to compute

the corresponding lowest PPE payo�s. It is also intuitive in so far that in optimal equilibria of

the truncated games, observable deviations will also be punished with minimal PPE payo�s,

such that players threaten with similar punishment actions after deviations and disagreement.

The resulting negotiation payo�s are also consistent with a random dictator speci�cation

of disagreement proposed in the literature (see Watson, 2013). Translated to our framework,

under disagreement each player i is a random dictator with probability βi and chooses con-

tinuation play that grants all other players j 6= i their minimum continuation payo� v̄j(x, r)
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and him the surplus Ū(x, r)−
∑

j 6=i v̄j(x, r). Then d(x, r) denotes the expected disagreement

payo�. The resulting negotiation payo�s speci�ed by (3) are the same as under our assumption

d(x, r) = v̄(x, r).

Another idea (e.g. Miller and Watson, 2013) is that under disagreement no transfers are

conducted. One could translate this assumption to our framework using a random dictator

formulation in which only continuation equilibria of the truncated game without transfers can

be chosen under disagreement. However, that assumption would make characterization of

RNE considerably more complex and it can become quickly intractable in stochastic games

with several states.9

Another tractable and in some applications very natural assumption on disagreement points

is that temporarily a stage game Nash equilibrium is played (Ramey and Watson, 2002). In

our framework, this is most closely matched by assuming that disagreement payo�s correspond

to MPE payo�s of the truncated game. In most of our applications, worst punishment payo�s

v̄(x, r) indeed also constitute MPE payo�s. Yet, the arms race application in Section 5.4

illustrates di�erent predictions of the two concepts.

Endogenous negotiations

RNE can be interpreted as outcomes of endogenous negotiations in the following way. In the

negotiation stage each player can always attempt to force new negotiations of the relational

contract. Rt = 1 then indicates that there was a successful negotiation attempt while Rt = 0

indicates that there was no negotiation attempt or no attempt was successful. A negotia-

tion attempt shall only be successful with an exogenously given probability ρ, and if it is not

successful, it is not observed. This assumption rules out that players can be punished for

unsuccessful negotiation attempts.10 Neither are players punished for successful negotiation

attempts, which yield the negotiation payo�s. Since negotiation payo�s are Pareto optimal

continuation payo�s (taking future negotiation outcomes as given), either all players are indif-

ferent between negotiating or not, or there is always a player who strictly prefers to attempt

new negotiations. Assuming that also indi�erent players attempt new negotiations, we get the

same outcome as in the RNE: negotiations take place with probability ρ each period.

Of course, ex-ante players would typically bene�t from being able to commit to never

initiate such renegotiation attempts. With this alternative model, 1− ρ can be interpreted as

an exogenous measure of the institutional strength to ignore such renegotiation attempts.

9A more important di�erence to Miller and Watson (2013) is that in RNE disagreement payo�s must only
depend on the current state and not on any other aspect of the history. The application in Section 5.1 sheds
additional light on this point.

10See for example Safronov and Strulovici (2018) for a repeated game model in which players might be
deterred from proposing new negotiations. In a setting with transfers, punishing a player for a proposal would
always be feasible if the consequences of disagreement could depend on the identity of the proposer.
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4 Characterization of RNE

4.1 Simple RNE

An important step when characterizing RNE is to �nd PPE payo� sets of truncated games.

Goldlücke and Kranz (2018) show that every PPE payo� of a stochastic game with transfers

can be implemented with a class of simple equilibria. For convenience, we give a brief summary

here.

A simple strategy pro�le is characterized by n + 2 phases. Play starts in the up-front

transfer phase, in which players are required to make up-front transfers described by a vector

of net payments p0. Afterwards play can be either in the equilibrium phase, indexed by k = e,

or in the punishment phase of some player i, indexed by k = i. A simple strategy pro�le

speci�es for each phase k ∈ K = {e, 1, ..., n} and state x an action pro�le αk(x) ∈ A(x).

We refer to αe as the equilibrium phase policy and to αi as the punishment policy for player

i. From period 2 onwards, required net transfers are described by a vector pk(x, y, x′) that

depends on the current phase k, the current state x′, and the realized signal y and state x of

the previous period. If no player unilaterally deviates from a required transfer, play transits

to the equilibrium phase: k = e. If player i unilaterally deviates from a required transfer, play

transits to the punishment phase of player i, i.e., k = i. In all other situations the phase does

not change. A simple PPE has a simple strategy pro�le. There is always an optimal policy

{αk}k such that every PPE payo� can be implemented with a simple PPE with that optimal

policy by varying �rst period's upfront transfers (possibly burning money).

In a simple strategy pro�le with negotiations, transfers can in addition condition on the

negotiation signal: Whenever new negotiations take place in state x, players perform transfers

de�ned by a vector of net transfers p0(x) that only depends on the state x. A simple RNE

shall be such a simple strategy pro�le with negotiations that is a RNE. Moreover, a simple

RNE's policy {αk}k shall be an optimal policy in all truncated games. Since negotiations

a�ect the path of play only by modifying the subsequent upfront payments, a simple RNE has

a particularly tractable structure. Conveniently, we can restrict attention to simple RNE.

Proposition 1. For every RNE there exists a simple RNE with the same negotiation payo�s.

4.2 Computing pure strategy, simple RNE in games with perfect monitor-

ing

We now present a brute-force method to compute all simple pure strategy RNE in a game

with perfect monitoring given the assumption that disagreement payo�s are equal to worst

punishment payo�s. One iterates through all possible policies {αk}k=e,1,..,n as candidate policy
for a simple RNE. For any state x, the highest joint equilibrium payo� that can be implemented
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with αe is computed as

U(x|αe) = (1− δ)Π(x, αe) + δE[U(x′|αe)|x, αe], (4)

where Π is the joint stage game payo� and the expectation is taken over the transition probabil-

ities to the next period's state x′. For given negotiation payo� vector r the lowest punishment

payo�s that can be imposed on player i given a punishment policy αi are characterized by the

solution of the following Bellman equation:

vi(x|αi, r) = max
âi∈Ai(x)

{(1− δ)πi(x, âi, αi−i) + δE[(1− ρ)vi(x
′|αi, r) + ρri(x

′)|x, âi, αi−i]}. (5)

Given the assumption that under disagreement optimal punishment payo�s are imple-

mented, we can use (3) to substitute the negotiation payo�s r. Punishment payo�s thus

satisfy:

vi(x|α) = max
âi∈Ai(x)

{(1− δ)πi(x, âi, αi−i)+

δE[vi(x
′|α) + ρ(βi(U(x|αe)−

n∑
j=1

vj(x
′|α)))|x, âi, αi−i]}. (6)

This system of linear Bellman equations can be jointly solved for all players. Resulting nego-

tiation payo�s are simply computed as

ri(x) = vi(x|α) + βi(U(x|αe)−
n∑
j=1

vj(x, α)) for all i = 1, .., n. (7)

It then follows from Goldlücke and Kranz (2018, Theorem 2) that a simple SPE with policies

(αk)k exists in the corresponding truncated game if and only if for every state x ∈ X and

every phase k ∈ {e, 1, ..., n} the following joint incentive constraint is satis�ed:

(1− δ)Π(x, αk) + δE
[
U(x′|αe)|x, αk

]
≥

n∑
i=1

max
âi∈Ai(x)

{
(1− δ)πi(x, âi, αk−i) + δE

[
(1− ρ)vi(x

′|αi, r) + ρri(x
′)|x, âi, αi−i

]}
. (8)

If (8) is violated, no simple RNE with policy {αk}k=e,1,..,n exists. Otherwise, it is neccessary
and su�cient that the candidate policy implements the highest joint SPE payo�s and worst

SPE punishment payo�s in the truncated game with negotiation payo�s r. To check this

condition, one could run a similar inner loop through all possible policies. As in the outer

loop, one uses conditions (4) and (5) to compute equilibrium path and punishment payo�s

and then checks the incentive constraints (8). The only di�erence is that in this inner loop
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negotiation payo�s r are �xed. Alternatively, one could use the faster algorithm from Goldlücke

and Kranz (2018) to compute the set of SPE payo�s in the truncated game.

We will illustrate in our applications that the procedure above can often be simpli�ed, e.g.

because one can easily narrow the set of candidate policies or symmetry considerations can pin

down negotiation payo�s. In Section 4.4 we introduce the related concept of T-RNE, which

can be far more e�ciently computed numerically than RNE in large games.

4.3 Non-existence: Gangsta's Paradise game

The following example has two purposes: it showcases how to compute RNE using the condi-

tions above and it illustrates that RNE can fail to exist. The Gangsta's Paradise game has two

states: a prisoners' dilemma state x0 and paradise. In x0 players play a prisoners' dilemma

game with the following payo� matrix:

C D

C 2,2 −10,3

D 3,−10 0,0

Players move to paradise if and only if both players cooperate. In paradise, players get a

�xed payo� of (2, 2) without performing any actions. Paradise is an absorbing state in which

players stay forever. Players shall have equal bargaining weight and mutually defect under

disagreement in x0. We will show that there is a range of discount factors and negotiation

probabilities in which this Gangsta's Paradise game has no RNE.

First consider a candidate for a simple RNE in which players mutually cooperate on the

equilibrium path so that for each player i negotiation payo�s satisfy ri(x0) = 2. The Bellman

equation for the punishment payo�s (5) becomes

vi(x0) = δ[(1− ρ)vi(x0) + ρri(x0)] (9)

which yields

vi(x0) =
2δρ

1− δ(1− ρ)
. (10)

If we want to implement mutual cooperation, the incentive constraint (8) becomes in this

symmetric situation

2 ≥ (1− δ) · 3 + δ[(1− ρ)vi(x0) + ρri(x0)]. (11)

and simpli�es to

2 ≥ (1− δ) · 3 + vi(x0). (12)

If and only if this incentive constraint is satis�ed, an RNE with mutual cooperation exists.

Assume now (12) is violated. Consider a candidate for a simple RNE in which players mutually
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defect in state x0, yielding ri(x0) = vi(x0) = 0. This candidate can only be an RNE if the

more e�cient action pro�le (C,C) cannot be implemented in the corresponding truncated

game.11 For an optimal simple SPE with mutual cooperation in the truncated game, joint

equilibrium payo�s according to (4) are simply U(x0) = 4, since after mutual cooperation

paradise is always reached. The incentive constraint (8) to implement mutual cooperation in

this truncated game becomes

2 ≥ (1− δ) · 3. (13)

Note that (13) is satis�ed for a larger set of δ and ρ combinations than (12). That is because

lower negotiation payo�s in state x0 reduce incentives to deviate from mutual cooperation since

staying in state x0 becomes less attractive. Assume e.g. δ = 0.5 for which condition (13) is

strictly satis�ed. But for ρ > 1
3 condition (12) is strictly violated and no RNE exists. The

problem is that for those parameters mutual cooperation can be implemented today if and only

if players expect that mutual cooperation is not implemented in future negotiations. Note that

the non-existence result is not due to an unusual selection of disagreement payo�s, as mutual

defection is an MPE of the original game and also yields the minimum payo�. The absorbing

state is not the reason behind the non-existence result, either. We could alternatively assume

that with some exogenous probability ε > 0 play transits from paradise back to x0. If ε is

not too large, the existence problem prevails, although for a smaller parameter range. In the

remainder of this section we identify classes of games for which RNE always exist and have a

unique payo�. Moreover, in Appendix A we introduce and illustrate weak RNE, which always

exist.

4.4 Repeated games

A repeated game corresponds to the special case of a stochastic game with a single state. The

set of PPE payo�s of a repeated game with transfers for discount factor δ is given by

U(δ) = {u ∈ Rn|
∑

ui ≤ Ū(δ) and ui ≥ v̄i(δ) for all i}, (14)

where Ū(δ) is the highest joint PPE payo� and v̄i(δ) is the lowest PPE payo� for player i.

We will show that in a repeated game, new negotiations have a similar e�ect as a restart of

the relationship, such that a positive negotiation probability essentially reduces the e�ective

discount factor to an adjusted discount factor δ̃ = (1− ρ)δ. Since a repeated game has only a

single state, we suppress the dependence on the state in the notation, such that d(0) denotes

the pro�le of disagreement payo�s for the truncated game with zero negotiation payo�s.

11While also mixed action pro�les may be more e�cient than (D,D) given a su�cient a high probability to
cooperate, they can be neglected because they are even harder to implement than (C,C).
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Proposition 2. In a repeated game, an RNE always exists and RNE payo�s are uniquely

given by

ri = d̃i + βi(Ū(δ̃)−
n∑
j=1

d̃j), (15)

where δ̃ = δ(1−ρ) is an adjusted discount factor and d̃ = (1−δ̃)
(1−δ)d(0) is an adjusted disagreement

payo�. If one assumes that under disagreement players continue with a Nash equilibrium

α∗ of the stage game, then d̃i = πi(α
∗). If ones assumes that players continue with worst

punishments under disagreement, then d̃i = v̄i(δ̃).

In applications of repeated games, critical discount factors are often used to compare

institutions with respect to the ability to sustain �rst-best outcomes in a relational contract.

Our result that in repeated games critical negotiation probabilities are basically equivalent

to critical discount factors is reassuring since it means that the usual analysis of institutions

and relational contracting is robust to the introduction of repeated negotiations. In contrast,

in stochastic games �rst-best strategies may depend on the discount factor, so that it has

anyway little appeal to study the minimal discount factors for which �rst-best strategies can be

implemented.12 First-best strategies are not a�ected by the negotiation probability, however,

which makes the critical negotiation probability a more suitable measure to study comparative

statics of relational contracting in stochastic games.

4.5 Strongly directional games and T-RNE

The RNE existence and uniqueness result for repeated games can be extended to an important

subclass of stochastic games in which play will eventually reach an absorbing state and the

stochastic game becomes a repeated game.

De�nition 2. A stochastic game is strongly directional if each non-absorbing state can be

visited at most once.13

Possible state transitions in a strongly directional game can be described by a directed

acyclic graph, in which nodes represent the states and edges represent possible transitions

from one state to another.

Proposition 3. Any strongly directional game has an RNE and RNE payo�s are unique.

12Consider the example in Section 2, in which players can perform costly investments that have positive
externalities in the future. The critical discount factor to implement the �rst best is then trivially δ∗ = 0.
That is because for δ = 0, the �rst best solution, which is also the outcome in every SPE, is to never conduct
any costly investments.

13We have adapted the terminology from Iskhakov et. al. (2015). They de�ne directional games for which
they develop an algorithm to quickly compute the set of all MPE. In a directional game, one can remain in
a non-absorbing state for more than one period, which is not possible in a strongly directional game. Both
de�nitions exclude cycles between multiple non-absorbing states.
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The assumption that every state is only entered once avoids the recursive structure of

negotiation payo�s and makes it possible to �nd an RNE via backward induction. If one

restricts attention to pure strategies and games of perfect monitoring, there is an algorithm

that can numerically compute RNE in a very quick fashion (see Appendix B).14

T-RNE

The following construction is very useful to e�ectively numerically study repeated negotiations

in stochastic games that are not strongly directional. Take any stochastic game and �x some

large period T , e.g. T = 10000. Consider the following derived strongly directional game.

In period T the strongly directional game reaches an absorbing state (x, T ) with x ∈ X that

has a truncated PPE payo� set equal to the PPE payo� set of the original stochastic game

starting in state x.15 A non-absorbing state consists of a tuple (t, x) of the current period

t < T and a state x of the original game. The component x transits as in the original game

and t is incremented by 1 each period.

The interpretation of this strongly directional game is as following. The original stochastic

game is played but new negotiations can occur only up to period T . Afterward no new

negotiations take place, but the state can still change as in the original stochastic game. We

call the RNE of this strongly directional game a T-RNE of the original game. Applying

Proposition 3 we �nd

Corollary 1. Consider a stochastic game, �x some period T ≥ 1 and assume that new ne-

gotiations can occur only up to period T . A corresponding T-RNE always exists and we have

unique T-RNE payo�s.

5 Applications

5.1 Vulnerability and starting small in a principal-agent relationship

Consider a principal-agent relationship where in each period the agent (player 2) picks an

e�ort level e ∈ {0, 0.01, ..., 1} that bene�ts the principal (player 1) but is costly to the agent.

Part of the state de�nition is for each player i = 1, 2 a value xi ∈ {0, 0.1, ..., 0.5} that shall
measure how dependent player i is on the other player. One reason why a stronger dependency

could be bene�cial in real world relationships is that it may entail direct cost savings. Yet, a

stronger dependency typically also makes a party more vulnerable. To highlight the strategic

aspects of a stronger dependency, we abstract from any direct technological bene�ts. This

14We have implemented this and other algorithms in an R package that contains several examples, see
https://skranz.github.io/RelationalContracts.

15Since the PPE payo� set for the original stochastic game is just a simplex, it is clear that one can always
construct a repeated game for the absorbing state that has the same PPE payo� set. The exact structure of
that repeated game is irrelevant, however.
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Figure 3: Transitions of vulnerabilities starting from x1 = x2 = 0 for δ̃ = 0.15 with ρ = 0.5
(left) and ρ = 0 (right).

means xi shall only measure how vulnerable player i is towards the other player. Each period

the principal can choose harm h1 ∈ {0, x2} against the agent and the agent can choose harm

h2 ∈ {0, x1} against the principal. Resulting stage game payo�s are

π1(e, h) = e− h2,

π2(e, h) = −1

2
e2 − h1.

To guarantee existence and a unique RNE payo�, we assume that it is only possible to

change vulnerabilities until period T = 100. Afterwards the game reaches absorbing states in

which players face repeated games: vulnerabilities remain �xed at their current level while ef-

fort and harm levels can still be freely chosen every period. We thus have a strongly directional

game in which a state in period t ≤ T is described by a tuple (x1, x2, t).

In a repeated game with �xed vulnerabilities x1 and x2 the implementable e�ort level

only depends on the adjusted discount factor δ̃ = (1− ρ)δ, which means a higher negotiation

probability is equivalent to a lower discount factor. Yet, in the stochastic game repeated

negotiations can strongly a�ect the dynamics of endogenous vulnerabilities. Figure 3 shows

the development of vulnerabilities and e�ort levels on the equilibrium path starting with

x1 = x2 = 0. We �x the adjusted discount factor at δ̃ = 0.15 and compare a positive

negotiation probability of ρ = 0.5 (left) with the case of no repeated negotiation ρ = 0 (right),

which constitutes a Pareto optimal SPE.

We see that with repeated negotiations both players increase their vulnerabilities in small

steps. Increasing vulnerability is bene�cial since higher e�ort levels can be implemented with

harsher punishment opportunities. Yet, it is not incentive compatible that both players im-

mediately increase their vulnerability to the maximum level in one large step. The problem is

that by deviating and keeping low vulnerability a player can keep a strong bargaining position

that can be used to extort payments from the vulnerable player in future negotiations. In
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other words, a unilaterally vulnerable player faces a hold-up problem. Smaller steps can be

incentivized since one can reward such a step with positive transfers and punish deviations if

there are no new negotiations in the next period. Players increase their mutual vulnerability

only up to intermediate levels x1 = x2 = 0.3. Even though higher vulnerabilities can incen-

tivize even higher e�ort, there is the short run cost that one can incentivize less e�ort in a

period where a player shall be incentivized to take an additional vulnerability step. Due to

the convex cost function the gains from increasing vulnerabilities beyond 0.3 are just too small

compared to those short run costs.

The diagram on the right shows that without repeated negotiations, in a Pareto optimal

SPE, both players immediately make themselves maximally vulnerable. This is e�cient as

the highest implementable e�ort levels can be implemented as quickly as possible. It is also

incentive compatible, because without repeated negotiations a player faces no hold-up problem

when being more vulnerable: in a Pareto optimal SPE it is assumed that harm is only in�icted

as a punishment while players can coordinate to ignore all attempts to exploit the vulnerability

on the equilibrium path. Indeed, one can generally show that even if just a single player could

make herself very vulnerable, she would immediately do so in a Pareto optimal SPE.

Vulnerabilities can stem from various sources, depending on the application. They can for

example be the consequence of formal contracts, which �if enforced- would yield an outcome

that one or both parties would like to avoid. In buyer-supplier relationships, higher vulner-

ability often is a consequence of tighter integration, e.g. when manufacturers and upstream

suppliers build up a just-in-time supply chain that reduces the amount of inventory. Repeated

negotiations provide one reason why in relationships such tighter integration will gradually

evolve over time.16

This example shows how RNE incorporate hold-up concerns in relational contracting. In

contrast, the renegotiation-proofness concept of strong optimality (Levin, 2003) requires that

all continuation payo�s lie on the Pareto frontier of SPE payo�s. Strong optimality therefore

forces the Pareto optimal SPE outcome that both players make themselves immediately vul-

nerable in one large step. A direct comparison to contractual equilibria (Miller and Watson,

2013) is di�cult as they are de�ned for repeated games only. However, a crucial aspect of

contractual equilibria is that disagreement actions depend on the history, which means that

players can coordinate to not exploit vulnerabilities under disagreement. Therefore, a Pareto

criterion would suggest that also in a contractual equilibrium players would immediately choose

the highest vulnerability level.17

Thus, a gradual increase in vulnerability is one testable implication of RNE not implied by

16Another reason to start small in relationships is that parties need time to learn each other's types in a
framework of incomplete information, see Watson (1999) and Watson (2002).

17Note that although vulnerability in general helps to implement higher e�ort levels in a contractual equi-
librium, it cannot substitute for complete lack of bargaining power: If the agent has zero bargaining power,
the attainable surplus in a contractual equilibrium is zero independent of the vulnerability.
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other concepts of renegotiation in repeated relationships. Kopányi-Peuker, O�erman and Sloof

(2017) show in an experiment that if players can choose how much they can be punished for not

cooperating in a subsequent prisoner's dilemma, then a gradual mechanism with incremental

and conditional increases in vulnerability is more e�ective than simple simultaneous choices

of the vulnerability level.

5.2 Inside options versus outside options

An important insight of non-cooperative bargaining models is the distinction between inside

options, which describe the payo�s during periods of disagreement within the relationship,

and outside options, which describe the payo�s if the relationship breaks up. The well-known

outside option principle states that outside options should only in�uence bargaining outcomes

if they are binding, while otherwise only inside options are relevant (see Binmore, Rubinstein

and Wolinsky (1986) and Binmore, Shaked and Sutton (1989)). The di�erence between out-

side options and inside options can have important implications for hold-up problems and

optimal asset ownership (de Meza and Lockwood (1998)) or wage bargaining (Hall and Mil-

grom (2008)). In contrast, these di�erences typically do not matter for traditional models of

relational contracting.

To see how repeated negotiations naturally extend the outside option principle to relational

contracting, consider a variation of the repeated principal-agent game. We assume again that

disagreement payo�s are equal to the worst punishment payo�s, i.e. di(x, r) = v̄i(x, r). Within

the relationship, the principal's and agent's stage game payo�s shall be given by

π1(e) = πio1 + e,

π2(e) = πio2 − k(e).

The payo� vector πio denotes players' inside options and describes the payo�s in case zero e�ort

is chosen. In each period the principal and agent can also decide to end their relationship. If

both want to break up their relationship, the break-up is permanent and each player i gets in

the current and all future periods an outside option payo� of πooi . We assume that πioi < πooi ,

which means that both players prefer a break-up compared to staying in an unproductive

relationship. To rule out that a player is indi�erent between quitting or not if the other player

wants to quit, we assume that if just one player wants to leave, there is a very small probability

ε > 0 that the break-up is not successful and players remain in the relationship next period.

Proposition 4. If the negotiation probability is zero, RNE payo�s are only determined by the

outside options and uniquely given by

rooi = πooi + βi(Ū − πoo1 − πoo2 ), (16)
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where Ū denotes the joint payo� of the RNE. If instead ρ > 0, then in the limit δ → 1,

RNE payo�s satisfy the outside option principle: Unless the outside option is binding for some

player, they are solely determined by the inside options and given by

rioi = πioi + βi(e
io − k(eio)) for i = 1, 2, (17)

where eio is the optimal e�ort level in the repeated game without the outside options. If the

outside option is binding for player i (meaning πooi ≥ rioi ), then player i gets a negotiation

payo� of πooi .

First consider the case that the probability of future negotiations is zero, such that ne-

gotiation payo�s are described by (16). The disagreement payo�s are given by the lowest

SPE payo� πoo, implemented by the credible threat to choose the outside option under dis-

agreement. With a larger negotiation probability choosing the outside option can cease to be

incentive compatible. While a refusal to take the outside option can be punished until new

negotiations take place, the prospect of su�ciently high negotiation payo�s can make it just

too attractive to stay in the relationship.

This observation yields a simple intuition for the limit case δ → 1 with a �xed ρ > 0.

In this limit case, continuation payo�s after every history are always approximately equal to

the subsequently expected negotiation payo�s, since the periods until new negotiations are

discounted. This means it is not incentive compatible to take the outside option if negotiation

payo�s are strictly above the outside option payo�. Equation (17) describes the negotiation

payo�s of a repeated game in which players do not have the possibility to choose the outside

option so that the disagreement point is determined by the inside option payo�s πio. If these

negotiation payo�s rio exceed for both players their outside option payo�s, the outside option

can indeed be ignored; taking it cannot be incentivized.

Also for the case that for some player i the outside option payo� exceeds this negotiation

payo�, i.e. πooi > rioi , there cannot be any RNE in which player i can negotiate some surplus

above her outside option payo�, since then taking the outside option would not be incentive

compatible. Then either no positive surplus can be generated and in the RNE player i imme-

diately takes the outside option, or no RNE exists. For the latter case the proof of Proposition

4 characterizes the unique weak RNE payo�s as de�ned in Appendix A, and shows that player

i then also only gets her outside option payo�.

If one were to augment this game for long-term, institutional-design actions that can

in�uence both inside and outside options, repeated negotiations thus emphasize the importance

of the e�ect of institutions on the inside options compared to the e�ect on outside options.
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5.3 Property rights and repeated hold-up

In this application we illustrate how the model of Section 2 can be extended to study the opti-

mal allocation of property rights, which is a typical question from the hold-up literature (Hart

and Moore (1990)), for a long-term relationship. More precisely, we construct a repeated nego-

tiation version of Halonen (2002), who compares the relational e�ciency of di�erent ownership

structures.

The game starts in state x0, in which each player i can choose an investment xi ≥ 0 at

cost c(xi). The cost function is assumed to be smooth, strictly increasing and strictly convex

with c(0) = c′(0) = 0. In the next period in state (x1, x2), the players can agree to trade and

split a surplus S(x1, x2) = x1 + x2.

If there is no agreement to trade, payo�s are determined by property rights and the asset

speci�city. Under joint ownership, players cannot use any assets outside the relationship and

their no-trade payo�s are zero. If player 1 has single ownership over her assets, she gets a

no-trade payo� of λx1. The parameter λ ∈ [0, 1] is a measure of asset speci�city and describes

how well the assets can be utilized outside the relationship. Joint ownership is equivalent to

single ownership with λ = 0. Following Halonen (2002), we assume for simplicity that player

2 never has single ownership over any assets and always gets a no-trade payo� of zero.

In a one shot version of this game, single ownership and a larger value of λ help to reduce the

hold-up problem. Player 1 has stronger incentives for investments than under joint ownership

as her investments also increase her no-trade payo� and bargaining position. Yet, Halonen

(2002) shows that if the two stage game is inde�nitely repeated, joint ownership dominates

single ownership for a su�ciently convex cost function because the lower no-trade payo�s acts

as a more severe punishment in future interactions.

We study RNE in this in�nite horizon setting and assume that after two periods, the game

always starts again in state x0. To be close to Halonen (2002), we assume that the players

have equal bargaining power and that discounting with discount factor δ takes place only after

a two-period cycle is �nished.18

New negotiations can take place every period with negotiation probability ρ. We denote

by

G(x) = S(x1, x2)− c(x1)− c(x2)

the joint payo� that is generated in a cycle with investments x = (x1, x2) and trade. First

best investments xo maximize G(x). Let

ū1(λ) = max
x1

λx1 − c(x1)

18This is equivalent to a regular stochastic game with discounting after every period with a discount factor
δ̂ =

√
δ and the trade surplus and the no-trade payo�s multiplied by 1/δ̂.
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denote the maximum payo� player 1 can achieve without trade. We assume that players can

already decide in x0 to work alone and then receive the no-trade payo�s of (ū1, 0) for this

cycle without any opportunity for trade, even if new negotiations take place in the 2nd period

of the cycle. Like Halonen (2002) we study the conditions under which �rst best investments

can be implemented.

Proposition 5. An RNE with �rst best investments xo exists if and only if

max
x1

(
ρ

1

2
(S(x1, x

o
2) + λx1) + (1− ρ)λx1 − c(x1)

)
+ (18)

max
x2

(
ρ

1

2
(S(xo1, x2)− xo1λ)− c(x2)

)
−G(xo) ≤

δ̃(1− ρ)

(1− δ̃(1− ρ))
(G(xo)− ū1(λ))

The �rst part of the left hand side of (18) is the sum of both players' expected payo�s

from their best deviation in the one shot game. If no negotiations take place at the beginning

of period 2, the deviating player is punished and only gets her no trade-payo�, otherwise the

surplus is split according to the Nash bargaining solution. Moreover, the joint equilibrium

path payo� G(xo) is subtracted from this term, so that the complete left hand side measures

the joint incentives to deviate in the one shot game. The right hand side measures the scope

of relational incentives by using punishment in future periods to prevent such deviations. It

is the di�erence between the joint equilibrium path payo� and the players' no-trade payo�

appropriately discounted and adjusted for the probability of new negotiations.

Without repeated negotiations (ρ = 0), the incentive constraint (18) can be simpli�ed to

G(xo) ≥ ū1(λ) and is always satis�ed. As in the example from Section 2, any deviation from

�rst best investments can be immediately punished by holding back in period 2 any trade

surplus from the deviating player.

In general, the allocation of property rights generates similar trade-o�s in our model as in

Halonen (2002). A larger value of λ makes higher investments more attractive for player 1,

as it increases the positive impact of investments on her bargaining position. On the other

hand, a larger value of λ reduces the scope to punish today's deviations in future cycles. We

can establish for RNE that the �rst e�ect always dominates the second.

Proposition 6. Larger levels of λ can implement �rst-best investments in an RNE for a

weakly larger set of δ and ρ, i.e, single ownership generally facilitates implementation of �rst

best investments compared to joint ownership.

This means that di�erent from Halonen (2002), comparative statics with respect to own-

ership structure remain qualitatively the same as in the one-shot game. Halonen (2002) as-

sumes that after any deviation from prescribed investments, the remaining surplus will be split

23



equally and punishment consists of an inde�nite repetition of the one-shot hold-up solution.

A crucial di�erence of RNE is that punishment is not assumed to last forever but will also

be newly negotiated with probability ρ each period. This reduces the importance of future

punishment and optimal property rights are more strongly shaped by the familiar e�ects from

static hold-up models.

5.4 Arms race

Arms races have been widely studied with economic models and game theory. One branch of

literature, including Jervis (1978), Baliga and Sjöström (2004) and Abbink, Dong and Huang

(2020), models arms races as coordination failure assuming that if a country could be sure that

other countries do not invest into arms, it also has no incentives for such investment. Another

branch, including van der Ploeg and de Zeeuw (1990) and Gar�nkel (1990), study macroeco-

nomic models that include an explicit term in a country's utility function that increases in the

own weapon arsenal and decreases in the other country's weapons arsenal. Gar�nkel (1990)

refers to this function as a tribute function with the idea that a larger weapon arsenal can

be used to extract payments or favors from other countries. This provides a motive for arms

races beyond coordination failure.

Our example explores the microfoundation and implications of such a tribute motive in a

two-player setting where the costs of attacks exceed any direct bene�ts. In Pareto optimal

SPE and in MPE arms races do not occur, but they naturally arise in our model of repeated

negotiations. We denote by xi ∈ {0, 1, ..., x̄} the integer valued weapon arsenal of player

i = 1, 2. A state x = (x1, x2) describes the arsenals of both players. A weapon arsenal xi

causes maintenance costs of cmxi each period for player i. As long as xi is below x̄ a player

can invest in order to attempt to increase his weapon arsenal by one unit. An investment

successfully increases the arsenal only with probability πI and involves costs of cI . A player

can also decrease its arsenal by one unit at no cost.

Each period each player also decides whether or not to attack the other player. If player

i attacks, it creates harm that reduces the other player's payo� by xi, while player i bears

attack costs of cxi. All cost coe�cients are strictly positive.

Fact 1. In every Pareto optimal SPE and in the unique Markov perfect equilibrium no weapons

are bought or used.

There is no direct bene�t from acquiring, maintaining, and using weapons: it only involves

costs. The only reason to acquire weapons can be that the threat of using them increases a

player's bargaining position and allows him to extort payments from the other player. However,

in a Pareto optimal SPE players can perfectly coordinate to ignore such threats and doing so is

welfare optimal. In an MPE attacks have no consequences for future periods since they do not

change the state. Attacks will thus never be performed due to their costs. Hence, no player
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Figure 4: T-RNE of two arms race games with x̄ = 3, δ = 0.99, ρ = 0.65, cI = 0.01, c = 0.05,
cm = 0.3, T = 1000. The left panel shows the case of a small success probability of investments
(πI = 0.08), and the right hand panel the case that investments are always successful (πI = 1).
A directed arrow indicates a positive transition probability on the equilibrium path from one
state to another. No arrow is drawn to indicate a positive probability to remain in the current
state.

has an incentive to bear the costs of acquiring weapons. For a similar reason, no weapons are

acquired in an RNE if one assumes that disagreement payo�s correspond to MPE payo�s of

the truncated game.

However, assuming optimal punishments under disagreement, arms races can occur in

RNE for intermediate negotiation probabilities. Figure 4 illustrates the state transitions for

two numerically solved T-RNE in which negotiations only take place until period T = 1000

(recall Section 4.5).

The left panel corresponds to a game in which weapon investments only have a small

success probability of 8%. We see that in the state (0, 0) without weapons both players try to

increase their arsenal. If both investments have been successful, play moves to state (1, 1) and

then no more investments take place. Players can then use the acquired weapons to punish

any further investment attempts and thereby e�ectively prevent a continuation of the arms

race.

If only one player successfully acquired weapons (state (0, 1) or state (1, 0)) then only the

other player continues investing until state (1, 1) is reached. This result may seem surprising:

one might have suspected that e.g. in the state (1, 0) player 1 can use the threat of an attack

to prevent player 2 from investing, while player 1 continues investing himself. To understand

the result, �rst note that player 1 can extort higher payments from player 2 in state (1, 0) on

the equilibrium path if he allows player 2 to invest. Preventing investments by player 2 would

require that player 2 has to make higher payments (backed by an attack threat) when deviating

by investing than on the equilibrium path. But that means that the extorted payments on the

25



equilibrium path cannot not be too high. In the illustrated equilibrium player 1 thus reaps

relatively high payo�s while being in state (1, 0) but accepts that after some time player 2 will

have successfully invested and then no payments can be extorted anymore.

There are indeed multiple T-RNE for the given parametrization. In another T-RNE the

state (1, 0) transits to state (2, 0) instead. In that equilibrium player 1 extracts smaller pay-

ments in state (1, 0) but can extort higher payments in the future once the state (2, 0) is

reached. Given that all T-RNE have the same unique negotiation payo�s, we can rule out,

however, T-RNE in which starting from state (0, 0) players ever permanently end up in a state

in which the total weapon arsenal is di�erent from 2. Since maintenance costs are relatively

high in our setting, a major priority of negotiations is to keep the total weapon arsenal as

small as can possibly be incentivized, and the total punishment potential from a total arsenal

size of 2 su�ces to achieve this goal.

The pane on the right in Figure 4 illustrates state transitions in a T-RNE assuming that

investments are now always successful (πI = 1) while keeping all other parameters the same as

in the previous scenario. One might suspect that this change yields more weapon investments

on the equilibrium path since a higher success probability without changing the investment

costs e�ectively makes investments cheaper. Yet, we actually �nd that now in no state weapon

investments are conducted. Moreover, if players start with strictly positive weapon arsenals,

they reduce their weapon arsenals step by step until the weapon-free state (0, 0) is reached.

To understand the result, note that players invest as punishment (and attack if the current

arsenal of the punisher is positive). Since investments are always successful, the threat of a

quick acquisition of weapons, which will be used if the punished player refuses to pay a �ne, is

su�cient to prevent any weapon acquisition on the equilibrium path. Moreover, this threat is

so e�ective that it can even incentivize players to reduce their weapon arsenal. This outcome

is facilitated by the fact that a large weapon arsenal generally gives less scope for extortion if

the other player can quickly and cheaply build his own arsenal.

One can easily show that for all parametrizations of the game above attacks will never take

place on the equilibrium path but will only be used as an o�-equilibrium path threat. There is

simply no gain for any player to perform attacks on the equilibrium path. However, consider

now a variant of the game in which an attack by player i destroys with probability φxi/x̄ one

unit of the other player's weapons arsenal. Figure 5 shows the corresponding T-RNE for the

case φ = 0.5, a small success probability of investments πI = 0.08, and all other parameters

as in the previous scenarios.
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Figure 5: T-RNE of the arms race where an attack can destroy other player's weapons and
small success probability of investments. Blue circles correspond to states without attack on
equilibrium path, yellow boxes to states with attacks on the equilibrium path.

We now �nd that in many states attacks take place on the equilibrium path. The rationale

for an equilibrium path attack is that it can directly reduce the other player's weapon arsenal

and thus put the attacker into a better future bargaining position. Even though players

negotiate and would try to prevent such wasteful actions, the incentives for attacks are simply

too large for attacks to be avoided. We see that in this variant of the game also investments

take place in almost all states and that there are only two absorbing states: the extremes (3, 0)

and (0, 3) in which one player has obtained a dominant position.

6 Concluding remarks

This paper has been motivated by the discrepancy between the behavioral assumptions of

relational contracting models and hold-up models. An important facet of this discrepancy is

how and to what extent players will make themselves vulnerable in repeated relationships.

Pareto e�cient PPE predict that players not only do not take explicit measures against being

held-up, but are willing to actively make themselves vulnerable, without accounting for any

risk of a weaker bargaining position in future interactions. We have studied how repeated

negotiation equilibria reconcile relational contracting with hold-up concerns in a tractable

fashion by assuming that relational contracts are repeatedly newly negotiated. In our model,

the advantage of creating vulnerabilities through formal contracts or institutions is traded

o� against the e�ects on future bargaining positions. We have shown that players prefer to

27



increase their vulnerability gradually rather than committing to a high level from the start of

the relationship.

With the probability of new negotiations ρ we have introduced a parameter that measures

the importance of history-independent bargaining power. Factors that could a�ect the negoti-

ation probability in applications include the frequency of communication, how well agreements

are recorded, technological progress, the competitiveness of the environment, the duration of

the relationship, or the frequency of changes of the external environment. Studying these

applications in detail to derive new testable predictions is an area of future research.

A related straightforward extension of our model are negotiation probabilities ρ(x) that

depend on the current state.19 One application are models in which negotiation probabilities

decrease over time or after streaks of successful cooperation, formalizing the idea that longer

relationships become more stable over time. State-dependent negotiation probabilities could

also be used to model incompleteness of relational contracts. To model that some state is not

considered in an initial relational contract, one can assign a negotiation probability of one to

such states while having smaller or zero negotiation probabilities for states that have been

initially considered. A further application of state-dependent negotiation probabilities is to

model di�erent forms of endogenous negotiations, by letting players choose to move to states

in which new negotiations take place.

19The existence and uniqueness result in strongly directional games (Proposition 3) and the general existence
of weak RNE (Theorem 1 in Appendix A) also hold for this more general model.
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Appendix A: Weak RNE and Existence

Another example of non-existence of RNE: The blackmailing game

In this appendix, we introduce the concept of weak RNE, for which we prove a general existence

result. For better intuition, we �rst provide another example where RNE fail to exist: the

blackmailing game. Player 1 (the blackmailer) has evidence about some illegal activity of

player 2 (the target) and can decide in the initial state x0 whether to reveal it, a = aR, or to

keep it secret, a = aS . As long as the evidence has not been revealed, the state stays x0, and

once the evidence has been revealed, the game moves to an absorbing state x1, in which no

actions can be taken. Stage game payo�s are

π(x0, aS) = (0, 1)

π(x1) = π(x0, aR) = (0, 0).

Revealing the evidence involves no cost for the blackmailer but reduces the target's payo�s by

1 in the current and all future periods. We assume that disagreement payo�s correspond to

the worst continuation payo�s in the corresponding truncated games. Simple arguments show

that no RNE exists in this game for 0 < ρ < 1. One might suspect that by the threat to reveal

the evidence the blackmailer could extract money from the target and thereby get a positive

negotiation payo� in the initial state, i.e., r1(x0) > 0. Yet, this is not possible for a positive

negotiation probability. A truncated game Γ(x0, r) with r1(x0) > 0 has no SPE in which the

blackmailer reveals the evidence. The reason is that in state x1 payo�s are 0 forever. Hence,

the blackmailer would always prefer to stay in state x0, predicting that he will again extract

money from the target in future negotiations.

If instead the blackmailer has zero negotiation payo�s in state x0, it becomes credible to

reveal the information in the corresponding truncated game. Both players would then have

punishment payo�s of zero in the truncated game. The Nash bargaining solution then implies

that the blackmailer gets a payo� equal to his bargaining weight, since

r1(x0) = v̄1 + β1(Ū(x0)− v̄1 − v̄2) = β1. (19)

Hence, if the blackmailer has a strictly positive bargaining weight, this contradicts the require-

ment that the blackmailer must get zero negotiation payo�s. Therefore, no RNE exists.

Weak repeated negotiation equilibrium

The reason why RNE may not exist is that U(x, r) is in general not lower hemi-continuous in

the parameter r and therefore the mapping from future to current negotiations payo�s may

not have a �xed point. The de�nition of weak RNE therefore relies on stable equilibrium

29



payo�s, which are robust to perturbations in r. We say that a pro�le of PPE payo�s u in the

truncated game Γ(x, r) is stable if the correspondence τ 7→ U(x, τ) has, locally around r, a

continuous selection through the point (r, u).

De�nition 3. A PPE payo� pro�le u ∈ U(x, r) is stable if there exists a neighborhood N of

r and a continuous function f : N → Rn such that f(r) = u and f(τ) ∈ U(x, τ) for all τ ∈ N .

For example, a PPE payo� pro�le u ∈ U(x, r) is stable if it is the payo� of a PPE σ that

stays a PPE for small changes in r. Stability is a generic property in the sense that it holds

for a dense set of negotiation payo�s. However, recall the truncated game in the blackmailing

game in which the blackmailer has zero negotiation payo�. PPE payo�s of Γ(x0, 0) that grant

the proposer a positive payo� are not stable, because they cease to be equilibrium payo�s if

the blackmailer's negotiation payo� becomes slightly positive. The key assumption of a weak

RNE is that such unstable continuation payo�s can be ignored in negotiations. Let

Ud(x, r) = {u ∈ U(x, r), ui ≥ di(x, r) for all i = 1, ..., n} (20)

denote the set of PPE payo�s that grant every player i at least the payo� di(x, r).

De�nition 4. For given bargaining weights β and disagreement point function d, a PPE

σ ∈ Σ∗ is a weak repeated negotiation equilibrium if for all states x ∈ X its negotiation payo�s

rσ can be written as rσ(x) =
∑n

i=1 βir(x, i) such that r(x, i) ∈ Ud(x, r) and ri(x, i) ≥ ũi for

all stable PPE payo�s ũ ∈ Ud(x, r).

The idea behind this de�nition is that in the negotiation phase, �nature� determines

whether new negotiations are initiated and by whom. With probability βi, the continua-

tion equilibrium is selected by player i, who picks his preferred continuation equilibrium under

the constraint that the other players have to receive at least their disagreement payo�. An

RNE would correspond to the case that each proposer picks the continuation equilibrium that

gives him the maximum payo� and the other players their disagreement payo�s. In contrast,

in a weak RNE, the proposer only compares his payo� to the stable payo�s. Hence, as the

name suggests, weak RNE is indeed a weaker concept.

Note that the characterization result in Proposition 1 continues to hold: For every weak

RNE there exists a simple weak RNE with the same negotiation payo�s. To guarantee existence

of a weak RNE, we have to make a stronger assumption about disagreement payo�s.

Assumption 2. Let d(x, r) ∈ U(x, r) be either equal to the lowest possible payo� for each

player, d(x, r) = v̄(x, r), or a continuous function in r.

While this assumption already implies that U(x, r) is nonempty, U(x, r) is generally non-

empty if one assumes that action sets are �nite and mixed actions are allowed (see e.g. Sobel

(1971) for existence of Markov equilibria in stochastic games).
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Theorem 1. If Assumption 2 holds, a weak RNE exists.

In general, there can be multiple weak RNE, as we will illustrate in the examples below.

We propose to select a weak RNE that is not Pareto dominated by any other weak RNE.

Weak RNE in the blackmailing game

The blackmailing game has a weak RNE with negotiation payo� r(x0) = (0, 1). Although the

blackmailer's Nash bargaining payo� would be larger for these negotiation payo�s, these payo�s

are not stable, since the threat to reveal the evidence is credible only if r1(x0) = 0. This also

implies that there can be no weak RNE in which the blackmailer has a positive negotiation

payo�. There are, however, weak RNE in which the blackmailer reveals the evidence with

positive probability on the equilibrium path. This means that there are multiple weak RNE

payo�s that di�er only in player 2's payo�, ranging from her Nash bargaining payo� up to

a payo� of one. When restricting attention to weak RNE that are not Pareto dominated by

other weak RNE, the unique payo� pro�le is (0, 1).

Intuitively, one can interpret this weak RNE outcome as follows. Assume player 2 promises

the blackmailer to pay an amount ε each period for not revealing the evidence. Since any

positive payment destroys the blackmailer's incentive to reveal the evidence, the weak RNE

outcome corresponds to the limit case of ε → 0. By a similar intuition the T-RNE payo�

pro�les also converge to (0, 1) as T goes to in�nity.

Extension: brinkmanship

The blackmailer may be able to extort positive payments if there is the possibility to conduct

brinkmanship (Schelling (1960) and Schwarz and Sonin (2008)).20 The blackmailer needs

an observable action that reveals the evidence with positive probability smaller than 1. For

example, he could leave an envelope with a copy of the evidence addressed to a journalist

next to a postal box on the street and then inform the target about it. There is a positive

probability that the envelope will still be lying on the street when the target comes to fetch

it, but the envelope might already have been put into the postal box by some helpful minded

pedestrian. Hence, in the following we assume that there is an observable brinkmanship action

that reveals the evidence only with probability φ ∈ (0, 1).

Proposition 7. For all φ ∈ (0, 1), there exists a weak RNE in which the brinkmanship action

is used by the blackmailer to extort a payment from the target. This payment is maximized if

20Brinkmanship is the ability of an aggressor to choose an observable action that leads with some positive
probability to a mutually undesirable outcome. Schwarz and Sonin (2008) show that such a divisible threat can
dramatically increase the bargaining value of an otherwise non-credible threat by making punishment possible
in a subgame-perfect equilibrium. In contrast, in our model revealing the evidence can be part of a subgame
perfect equilibrium and the commitment problem instead results from renegotiation.
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φ is equal to φ∗ = (1−δ)(1−ρ)
ρβ1+(1−δ)(1−ρ) . For φ ≤ φ∗ the weak RNE is also an RNE and for φ > φ∗

only weak RNE but no RNE exist.

A larger value of φ means a harsher punishment which can be used to extract larger pay-

ments. Therefore, the blackmailer's negotiation payo� increases in φ as long as φ is small

enough. However, once φ exceeds φ∗, credibility of the punishment imposes an upper bound

on the blackmailer's negotiation payo�. An RNE then fails to exist and the blackmailer's ne-

gotiation payo� in the weak RNE decreases in φ. Note that φ∗ decreases in the blackmailer's

bargaining power β1, the frequency of renegotiation ρ, and the weight on future payo�s δ.

Hence, the optimal brinkmanship action has a lower probability of revealing the evidence,

meaning that punishment needs to be more gradual, the more severe the blackmailer's com-

mitment problem is.

1 -

1 r1(x0)

1 -

1 r1(x0)

Figure 6: This �gure shows the blackmailer's payo� set U1(x0, r) (light blue) and Nash bargain-
ing payo� (dark blue) for each possible negotiation payo� r1(x0) for the parameters ρ = 0.7,
δ = 0.8, β1 = 0.7 and φ = 0.4 (left), respectively, φ = 0.7 (right).

Figure 6 provides some graphical intuition for the �xed point conditions determining an

RNE (left) and a weak RNE (right). The shaded area shows the set of player 1's SPE payo�s

in the truncated game in state x0 in dependence on r1(x0), assuming r2(x0) = 1− r1(x0). As
a �xed point, every (weak) RNE must lie on the 45◦ line. An RNE (left panel) also lies on the

blue line that shows player 1's bargaining payo�s in the corresponding truncated games. In the

case that only a weak RNE exists (right panel), there is no such intersection, instead player 1

gets the highest negotiation payo� for which it is still credible to use the brinkmanship action.

One can interpret the bargaining outcome in this weak RNE as follows: It is not possible

that player 1 can negotiate an even higher transfer by player 2 since both players would

expect that such a negotiation outcome would then be repeated in future negotiations. This

mutual expectation would destroy the incentive compatibility of player 1's threat to punish

via brinkmanship. Player 2 has therefore no reason to accept higher payment demands in

negotiations.
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Weak RNE in Gangsta's Paradise game

Consider now the Gangsta's Paradise game with a parameter constellation for which no RNE

exists. These are cases in which mutual cooperation cannot be implemented in state x0 if fu-

ture negotiations in x0 implement mutual cooperation (without money burning), but mutual

cooperation could be implemented if future negotiations in x0 implement mutual defection.

Here the weak RNE outcome involves money burning in state x0 together with mutual coop-

eration. Money burning must reduce both players' negotiation payo� so much that staying

in state x0 becomes su�ciently unattractive. More precisely, negotiation payo�s ri(x0) must

decrease so far that incentive constraint (12) holds with equality. Note that it is not crucial

that players literally burn money, just that the negotiation outcome entails a particular inef-

�ciency. Money burning could for example be replaced by using a public correlation device to

coordinate on playing mutual defection with a certain probability.

First period negotiations and weak RNE

The intuition for money burning in the negotiation outcome in the Gangsta's Paradise game

seems more plausible if players negotiate after period 1 in state x0, after some player has

previously defected. Yet, one may argue that there is no need for money burning in the �rst

period, because negotiations in the �rst period are likely perceived di�erently from negotiations

when state x0 is reached after a defection. One can model this assumption by simply assuming

that in the �rst period the game starts in a separate state xF . Then a weak RNE exists that

implements mutual cooperation without money burning in the �rst period and would only

entail money burning if players negotiate in state x0 in the future. While also weak RNE with

money burning in the �rst period would still exist, they are Pareto dominated by the weak

RNE without money burning.

Similarly, we also �nd for the blackmailing game weak RNE with positive payo�s for the

blackmailer if one assumes that the �rst period is a separate state. Importantly, however,

such �rst period e�ects do not arise in RNE. It is straightforward to show that the set of RNE

payo�s does not change when relabelling the initial state in the �rst period as a separate state.

Appendix B: Algorithm to compute RNE in strongly directional

games

Step 1

We �rst compute for each absorbing state x the set of pure SPE payo�s of the repeated

game given a discount factor δ̃ = (1 − ρ)δ, e.g. using the algorithm described in Goldlücke

and Kranz (2012). With the maximum joint payo�s Ũ(x) and punishment payo�s ṽi(x), we

can compute the negotiation payo�s ri(x) = d̃i(x) + βi(Ũ(x) −
∑n

j=1 d̃j(x)). The payo� set
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of the truncated game starting in state x is then characterized by the maximum joint payo�s

Ū(x) = Ũ(x) and punishment payo�s v̄i(x) = δρri(x)+(1−δ)ṽi(x)
1−δ̃ . When this step is completed,

all absorbing states are solved in the sense that negotiation payo�s and payo� set are known.

We denote by Xs the set of solved states.

Step 2

We pick some unsolved state x from which the game can only transit to solved states. For

all pure action pro�les a ∈ A(x) we compute the joint equilibrium payo�s as in (4),

U(x|a) = (1− δ)Π(x, a) + δE[Ū(x′)|x, a],

and punishment payo�s for each player i = 1, 2 as in (5)

vi(x|a) = max
âi∈Ai(x)

[
(1− δ)πi(x, âi, a−i) + δE[(1− ρ)v̄i(x

′) + ρri(x
′)|x, âi, a−i

]
.

This allows us to determine the set of pure action pro�les Â(x) that can be implemented in

state x as all action pro�les a ∈ A(x) that satisfy the summed incentive constraint

U(x|a) ≥ v1(x|a) + v2(x|a).

The set of (pure) SPE payo�s of the truncated game starting in state x is then characterized

by the joint payo� Ū(x) = maxa∈Â(x) U(x|a) and for each player i the punishment payo�s

v̄i(x) = mina∈Â(x) vi(x|a). Since negotiation payo�s of the solved states are known, renegotia-

tion payo�s in state x can be easily computed as ri(x) = di(x, r) + βi(Ū(x) −
∑n

j=1 dj(x, r).

We mark state x as solved and repeat step 2 until all states are solved.

Appendix C: Proofs

Proof of Lemma 1

Consider a public strategy pro�le of the original game for which only the history since the

last negotiations matters, σ ∈ Σ∗. Let h0 be a history of a truncated game Γ(x, rσ), and let

hsignal(h0) be the history h0 but with negotiation signals R0 = 1 and Rt = 0 for all t ≥ 1.

The tuple (σx)x∈X of public strategy pro�les of the truncated games Γ(x, rσ) corresponding

to σ is de�ned by σx(h0) = σ(h) for all histories h0 of the truncated game, where h is a

history of the original game with hC(h) = hsignal(h0). Then σ|h in the original game and

σx|h0 in the truncated game Γ(x, rσ) prescribe the same play until a new positive negotiation

signal/an absorbing state is reached. By de�nition, continuation payo�s of σ following a

positive negotiation signal are the same as the payo�s in the corresponding absorbing states.

Therefore, a pro�table one-shot deviation from σ at history h induces a pro�table deviation
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from σx at h0, and vice versa. �

Proof of Proposition 1 (Simple RNE)

Let σ be a RNE with negotiation payo�s rσ. Goldlücke and Kranz (2018) show that Γ(x0, r
σ)

has an optimal simple PPE σ̂ such that for any state x ∈ X, varying the up-front transfers of

σ̂|h, where h is an arbitrary history ending in state x, yields all PPE payo�s of Γ(x, rσ). Let

σ̂ be such an optimal simple PPE in the truncated game Γ(x0, r
σ). We can construct a simple

RNE σ∗ ∈ Σ∗ from σ̂ by de�ning transfers following a negotiation signal. Let h0 = (..., (x, 0))

be a history that ends in state x with no new negotiations, and let u(σ̂|h0 , x0, rσ) denote the

continuation payo� created by σ̂ in the truncated game Γ(x0, r
σ) following such a history.

De�ne for all x ∈ X the payments p0(x) such that u(σ̂|h0 , x0, rσ) − p0(x) = rσ(x). Let

σ∗(h) = p0(x) for hC(h) = (x, 1) and otherwise σ∗(h) = σ̂(hc(h)). Then σ∗ is a simple PPE

and has the same payo�s as σ following a positive negotiation signal and is therefore a weak

repeated negotiation equilibrium. �

Proof of Proposition 2 (Repeated Games)

For a given strategy pro�le σ, let π̃(t, σ) denote the expected payo�s in period t in a repeated

game with negotiation probability equal to zero. For �xed negotiation payo�s r, the expected

payo� in the truncated game Γ(r) can be written as

u(σ, r) =

∞∑
t=0

(δ(1− ρ))t ((1− δ)π̃(t, σ) + δρr) (21)

= (1− δ)
∞∑
t=0

(δ(1− ρ))t π̃(t, σ) +
δρr

1− (1− ρ)δ
.

This is a positive a�ne transformation of the payo� of the repeated game without negotiations

with discount factor δ̃ = δ(1− ρ). Hence, the set of public perfect equilibria in the truncated

game is independent of the negotiation payo�s r and the same as in the repeated game with

discount factor δ̃. De�ning

a =
1− δ
1− δ̃

,

we have that
δρr

1− (1− ρ)δ
= (1− a)r.

The PPE payo� set of the truncated game Γ(r) is equal to

U(r) = {au+ (1− a)r : u ∈ U(δ̃)}.
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Hence, the maximum attainable joint surplus in the truncated game Γ(r) is equal to

U(r) = aŪ(δ̃) + (1− a)

n∑
i=1

ri, (22)

and the minimum attainable payo� for player i is equal to

v̄i(r) = av̄i(δ̃) + (1− a)ri.

Given Assumption 1, it holds that d(r) ∈ U(r). Moreover, since for any strategy pro�le σ we

have that u(σ, r) = u(σ, 0) + (1− a)r it must also be true that

d(r) = d(0) + (1− a)r. (23)

An RNE exists if the equation

ri = di(r) + βi(U(r)−
n∑
j=1

dj(r)) (24)

is satis�ed for some negotiation payo� r. Using (23) and (22), this equation can be rewritten

as

ri =
1

a
di(0) + βi(U(δ̃)−

n∑
j=1

1

a
dj(0)). (25)

This shows that an RNE exists with these payo�s. If the disagreement points are always the

minimum PPE payo�s, then di(0) = v̄i(0) = av̄i(δ̃). If the disagreement payo�s result from

playing a Nash equilibrium αNE , then di(0) = aπi(α
NE). �

Proof of Proposition 3 (Strongly Directional Games)

We can order the states such that for l < m the state xl cannot be reached from state xm. There

exists an m̄ such that for all m ≥ m̄, the states xm are absorbing states. For the absorbing

states, the results for repeated games apply given that Assumption 1 is imposed. Hence, for all

states xm with m ≥ m̄ there is a unique RNE payo� r(xm). Let all negotiation payo�s in those

states be �xed at r(xm). Consider l < m̄ such that for all states xm with m > l there is such

a unique �xed RNE payo�. Since state xl is only visited once, all future negotiation payo�s

are �xed. There is a unique largest joint payo� Ū(xl) in the game that starts in this state.

Hence, there is also a unique RNE payo�, which we can �x as the negotiation payo� in state

xl. Note that if a game is only weakly directional like the Gangsta's paradise game, in which

players can stay in state x0 or move to paradise, then changing equilibrium actions in state x0

also changes future negotiation payo�s. Here, however, there is no interdependency between
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equilibrium actions in state xl and future negotiation payo�s. By induction, we eventually

�nd the unique RNE payo� of the initial state. �

Proof of Proposition 4 (Outside Option Principle)

This proof �nds all weak RNE (see Appendix A) to then show that they all ful�ll the

proposition's claim. The players are either in the original state x0 in which they can create a

surplus within the relationship, or they have taken the outside option and receive πoo forever

after. De�ne S(e) = πio1 + πio2 + e− k(e). Fix negotiation payo�s r = r(x0) and consider �rst

the case that for both players the outside option payo� is lower than the minimum payo� that

they could get in the relationship:

πooi <
(1− δ)πioi + δρri

1− δ̃
for i = 1, 2. (26)

Since taking the outside option is not credible in this case, it holds that vi(x0, r) =
(1−δ)πio

i +δρri

1−δ̃
for both players. An e�ort level e can then be played on the equilibrium path of a simple

equilibrium in the truncated game if and only if

δ̃(S(e)− S(0)) ≥ (1− δ̃)k(e). (27)

As in a repeated game, this condition does not depend on the negotiation payo�s. De�ne eio

as the e�ort level that maximizes S(e) among all e that satisfy (27). Since all payo�s are

stable in this truncated game, if a weak RNE exists in this parameter region it must be an

RNE with payo�s equal to rioi = πioi + βi(S(eio) − S(0)). An RNE with this payo� indeed

exists if condition (26) is satis�ed for these negotiation payo�s, possibly with equality21, i.e.,

if

(πooi − πioi )(1− δ̃) ≤ δρβi(S(eio)− S(0)) for i = 1, 2. (28)

In particular, for ρ > 0 and δ → 1, condition (28) becomes πooi ≤ rioi . For ρ = 0, this type of

RNE does not exist.

Next, consider the case that taking the outside option is credible for at least one player:

πooi >
(1− δ)πioi + δρri

1− δ̃
for some i ∈ {1, 2}. (29)

In this case, vj(x
0, r) ≈ πooj for both j = 1, 2. An e�ort e can be sustained with the threat of

the outside option as a punishment if

(1− δ)S(e) + δρR

1− δ̃
≥ (1−δ)(πio1 +e)+δρr1+(1−δ̃) max{πoo2 ,

(1− δ)πio2 + δρr2

1− δ̃
}+δ̃(πoo1 +πoo2 ).

21If (26) holds with equality, the truncated game has SPE in which the outside option is taken but no stable
payo�s that are larger than a player's maximum payo� with inside option punishment.
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Let eoo be the e�ort level that maximizes S(e) among all e�ort levels e that satisfy

δ̃(S(e)− (πoo1 + πoo2 )) ≥ (1− δ)(k(e) + πoo2 − πio2 )− δρβ2(S(e)− (πoo1 + πoo2 ))

and δ̃(S(e)− (πoo1 + πoo2 )) ≥ (1− δ)k(e).

An RNE with surplus Ū = max{S(eoo), πoo1 + πoo2 } and negotiation payo�s

rooj = πooj + βj(Ū − (πoo1 + πoo2 ))

indeed exists if (29) is satis�ed for these negotiation payo�s, i.e., if

(1− δ)(πooi − πioi ) > δρβi(Ū − (πoo1 + πoo2 )) for some i ∈ {1, 2}. (30)

In particular, for ρ = 0 an RNE with payo�s roo as described in the proposition exists. For

ρ > 0 and δ → 1, condition (30) becomes πoo1 + πoo2 ≥ Ū , which is the case that no e�ort can

be sustained on the equilibrium path and ri = πooi .

If neither (28) nor (30) holds, then there must be a weak RNE that is not an RNE. The

only case in which the truncated game has payo�s that are not stable is

πooi =
(1− δ)πioi + δρri

1− δ̃
and πoo−i <

(1− δ)πio−i + δρr−i

1− δ̃
for some i ∈ {1, 2}. (31)

In this case, a small increase in ri will make the outside option punishment payo� unattainable.

The maximum stable payo� for player i is (1−δ)(S(eio)−S(0))
1−δ̃ +πooi . A weak RNE with negotiation

payo�s ri = πooi +
(1−δ)(πoo

i −πio
i )

δρ and r−i = S(eoo)−ri exists if for r = β1r
1 +β2r

2 it holds that

rii is larger than the maximum stable payo� for player i, which is equivalent to the following

condition:

(1− δ̃)(πooi − πioi ) ≥ δρβi(S(eio)− S(0)). (32)

In addition, condition (31) has to be satis�ed:

δρ(S(eoo)− (πoo1 + πoo2 )) > (1− δ)(πoo1 + πoo2 − S(0)).

Note that for ρ = 0, this parameter region is empty, and for ρ > 0 and δ → 1, the weak RNE

exists if πooi ≥ rioi , with negotiation payo� ri = πooi . �

Proof of Proposition 5 (Property rights and RNE)

Let ū1 = ū1(λ) and ū2 = 0 be the payo�s that the players can receive if they do not work

together. In state x0, working alone yields the minmax payo� ūi for one two-period cycle

and is an equilibrium because each player can decide unilaterally not to enter the productive

relationship with the other player. In the truncated game starting in state x0, the optimal
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punishment payo� is therefore

v̄i(x0, r) =
δρ(2− ρ)r1(x0) + (1− δ)ūi

1− δ̃(1− ρ)
.

We are interested here in the conditions under which an RNE exists that has �rst best invest-

ments and trade decision on the equilibrium path. An RNE with such an equilibrium policy

must have

ri(x0) = ūi +
1

2
(G(xo)− (ū1 + ū2)). (33)

In state (x1, x2), the optimal punishment is not to trade, which is also incentive compatible

for all δ and ρ. Consequently,

v̄1((x1, x2), r) = (1− δ)λx1 +
δρ(1 + δ̃)r1(x0) + δ̃(1− δ)ū1

1− δ̃(1− ρ)
(34)

and

v̄2((x1, x2), r) =
δρr2(x0)

1− δ̃(1− ρ)
. (35)

Using (33), negotiation payo�s in state x can be calculated as in a strongly directional game:

r1(x1, x2) = (1− δ)1

2
(S(x1, x2) + λx1)) + δ

1

2
(G(xo) + ū1), (36)

and

r2(x1, x2) = (1− δ)1

2
(S(x1, x2)− λx1)) + δ

1

2
(G(xo)− ū1). (37)

Note that r1(x1, x2) + r2(x1, x2) are equal to the maximum joint surplus in that state, as

always in an RNE in a game with perfect monitoring. There is indeed an RNE with these

payo�s if and only if (8) holds for ae(x0) = xo:

G(xo) ≥ max
x1

((1− ρ)v̄1((x1, x
o
2), r) + ρr1(x1, x

o
2)− (1− δ)c(x1))

+ max
x2

((1− ρ)v̄2((x
o
1, x2), r) + ρr2(x

o
1, x2)− (1− δ)c(x2)).

Plugging in (34) and (35) yields

G(xo)(1− δ̃ρ(1 + δ̃)

1− δ̃(1− ρ)
)− (1− ρ)(1− δ)δ̃

1− δ̃(1− ρ)
ū1 ≥ max

x1
(ρr1(x1, x

o
2) + (1− δ)((1− ρ)λx1 − c(x1)))

+ max
x2

(ρr2(x
o
1, x2)− (1− δ)c(x2)).
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Plugging in (36) and (37 ) yields

G(xo)

1− δ
(1− δ̃ρ(1 + δ̃)

1− δ̃(1− ρ)
− δρ)− (1− ρ)δ̃

1− δ̃(1− ρ)
ū1 ≥ max

x1
(ρ

1

2
(S(x1, x

o
2) + λx1) + (1− ρ)λx1 − c(x1))

+ max
x2

(ρ
1

2
(S(xo1, x2)− λxo1)− c(x2)).

Rearranging yields (18). �

Proof of Proposition 6 (Comparison of ownership structures)

Let x∗(λ) = arg maxx1 λx1 − c(x1) be the investment choice that maximizes player 1's

payo� if she takes her assets outside of the relationship. Since the surplus S(x1, x2) = x1 +x2

is additively separable, it holds that x∗(1) = xo and ū1(1) = 1
2G(xo). Note also that x∗(λ) is

increasing in λ. By de�ning

F (λ) = G(xo) +
(1− ρ)δ̃

1− δ̃(1− ρ)
(G(xo)− ū1(λ))− ρ1

2
(xo1 + xo2) + ρ

1

2
λxo1

−max
x1

(ρ
1

2
(x1 − λx1) + λx1 − c(x1))−max

x2
(ρ

1

2
x2 − c(x2)),

we write condition (18) as F (λ) ≥ 0. For λ = 0, which corresponds to joint ownership, it holds

that

F (0) = G(xo) +
(1− ρ)δ̃

1− δ̃(1− ρ)
G(xo)− ρ1

2
(xo1 + xo2)−max

x1
(ρ

1

2
x1− c(x1))−max

x2
(ρ

1

2
x2− c(x2)).

For λ = 1, it holds that

F (1) =
1

2
G(xo) +

δ̃(1− ρ)

1− δ̃(1− ρ)

1

2
G(xo)− ρ1

2
xo2 −max

x2
(ρ

1

2
x2 − c(x2)) =

1

2
F (0).

Hence, if the �rst best can be implemented for λ = 0, then also for λ = 1. To show this also

for λ ∈ (0, 1), we show that F is concave on this range, which implies that F (λ) ≥ F (1) for

all λ. Applying the envelope theorem, the derivative of F is

F ′(λ) = − δ̃(1− ρ)

1− δ̃(1− ρ)
x∗1(λ) + ρ

1

2
x∗1(1)− (1− ρ1

2
)x∗1(ρ

1

2
(1− λ) + λ).

Since x∗ is increasing in λ, this derivative is indeed decreasing in λ. Hence, 1-ownership can

implement e�ciency for a weakly larger range of parameters than joint ownership. �
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Proof of Theorem 1 (Existence Weak RNE)

Let F (x) denote the convex and compact set of feasible payo�s of the game starting in state

x and R = ΠxF (x). For all r ∈ R, we de�ne the correspondence φ : R → R by

φ(r) =

{
r̂ ∈ R : r̂(x) =

n∑
i=1

βir̂
x,i s.t. r̂x,i ∈ Ud(x, r) and r̂x,ii ≥ ui for all stable u ∈ Ud(x, r)

}
.

We �rst show that for a given r ∈ R, the set φ(r) is a nonempty, compact and convex subset

of R. Since d(x, r) ∈ U(x, r), the set Ud(x, r) is nonempty. It is also a convex and compact

subset of F (x). Since the stable payo�s are a subset, there must exist an r̂x,i ∈ Ud(x, r) with
r̂x,ii ≥ ui for all stable u ∈ Ud(x, r). Moreover, these inequalities remain true in the limit of a

sequence of payo�s or for a convex combination of payo�s.

It remains to show that the correspondence φ is upper hemi-continuous to conclude that

it has a �xed point. Let rm → r and r̂m ∈ φ(rm) with limit r̂ = limm→∞ r̂m. For all m,

there are r̂x,im ∈ Ud(x, rm) with r̂m(x) =
∑n

i=1 βir̂
x,i
m and r̂x,im,i ≥ ui for all stable u ∈ Ud(x, rm).

Since U(x, τ) is upper hemi-continuous in τ it must hold that r̂x,im → r̂x,i ∈ U(x, r) with

r̂(x) =
∑n

i=1 βir̂
x,i. According to Assumption 2, d(x, r) is either continuous in r or equal to

v̄(x, r). In both cases, τ 7→ di(x, τ) is lower semi-continuous. Therefore, r̂x,im,j ≥ dj(x, rm)

implies r̂x,ij ≥ dj(x, r).
If for r there exists no stable u ∈ Ud(x, r), or none with ui > di(x, r), we already have

that r̂x,ii ≥ ui for all stable u ∈ Ud(x, r). Otherwise, take any stable ũx,i ∈ U(x, r) with

ũx,ii > di(x, r). By de�nition of stability, there exists a neighborhood N of r and a continuous

function f : N → F (x) such that f(r) = ũx,i and f(r̃) ∈ U(x, r̃) for all r̃ ∈ N. For m large

enough such that rm ∈ N it must be true that f(rm) ∈ U(x, rm) is stable. To see this, note

that to show that f(rm) is stable one can take a neighborhood Nm of rm with Nm ⊂ N and

the same function f, restricted to Nm.

Assume �rst that di(x, .) = v̄i(x, .). Since f(rm) ∈ U(x, rm) is stable, it must hold that

r̂x,im,i ≥ f(rm)i. In the limit m → ∞ this becomes r̂x,ii ≥ ũx,ii , and hence it holds that

r̂ ∈ φ(r). Now assume that d(x, τ) is continuous in τ . Consider the sequence of payo�s ũm

with ũm,i = f(rm)i and ũm,j = dj(x, rm). Continuity of d(x, .) implies that d(x, rm) is stable

in Ud(x, rm). For m large enough such that f(rm) is stable and f(rm)i ≥ di(x, rm), the payo�

vector ũm is stable in Ud(x, rm). For those m it must hold that r̂x,im,i ≥ f(rm)i and hence in

the limit also here r̂x,ii ≥ ũ
x,i
i . We thus have shown that r̂ ∈ φ(r) in both cases.

Because of the Kakutani �xed point theorem, there must exist an r ∈ R with r ∈ φ(r),

i.e., negotiation payo�s r(x) =
∑n

i=1 βir
x,i with rx,i ∈ Ud(x, r) and rx,ii ≥ ui for all stable

u ∈ Ud(x, r). There hence exists a tuple (σx)x∈X of PPE in the truncated games Γ(x, r) with

u(σ, x, r) = r(x). Then the corresponding PPE σ ∈ Σ∗ (see Lemma 1) is a weak repeated

negotiation equilibrium. �
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Proof of Proposition 7 (Brinkmanship)

A threat to punish player 2 (for not making a speci�ed payment) with the brinkmanship action

is easiest to implement if on the equilibrium path the evidence will never be revealed. This

means the negotiation payo�s satisfy r1(x0) + r2(x0) = 1. A simple RNE can then have the

brinkmanship action as punishment for player 2 if

(1− φ) ≥ v1(x0, r) + v2(x0, r), (38)

with the punishment payo� of the target being

v2(x0, r) =
(1− φ)(1− δ + δρr2(x0))

1− (1− φ)δ(1− ρ)

and the punishment payo� of the blackmailer

v1(x0, r) =
δρr1(x0)

1− δ(1− ρ)
.

Condition (38) can thus be reformulated as

(1− ρ)(1− δ(1− ρ))(1− φ) ≥ ρr1(x0). (39)

There exists an RNE if (39) is satis�ed for the negotiation payo� given by r1(x0) = v1(x0, r)+

β1(1− v1(x0, r)− v2(x0, r)), i.e. for the payo�

r1(x0) = rRNE1 (x0) ≡
β1(1− δ(1− ρ))φ

(1− δ)(1− (1− φ)δ(1− ρ)) + β1δρφ
. (40)

This is the case whenever

(1− δ)(1− ρ)(1− φ) ≥ ρβ1φ, (41)

which is equivalent to φ ≤ φ∗. In this case, the blackmailer's payo� rRNE1 (x0) is increas-

ing in his bargaining weight β1 and the revelation probability φ. Intuitively, larger revelation

probabilities φ allow the blackmailer to extract larger payments in a subgame perfect equilib-

rium, and larger values of β1 makes new negotiations more valuable for the blackmailer. If

condition (41) does not hold for r1(x0) = rRNE1 (x0), no RNE exist. Instead, there is a weak

RNE in which the blackmailer gets the highest negotiation payo� for which the joint incentive

constraint (39) is binding:

r1(x0) = rWRNE
1 (x0) ≡

(1− ρ)

ρ
(1− δ(1− ρ))(1− φ).
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Note that the truncated game in state x0 has SPE in which the blackmailer gets a higher payo�

than rWRNE
1 (x0) by extracting even more money from player 2. These payo�s are not stable,

because if the blackmailer would receive a future negotiation payo� slightly above rWRNE
1 (x0),

the brinkmanship action could not be implemented anymore. �
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