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Abstract

Consider a seller who can make an observable but non-contractible investment to improve an

intermediate good that is specialized to a particular buyer’s needs. The buyer then makes a take-

it-or-leave-it offer to the seller. The seller has private information about the fraction of the ex

post surplus that he can realize on his own. Compared to a situation with complete information,

additional investment incentives are generated by the seller’s desire to pretend a strong outside

option. On the other hand, ex post efficiency is not attained since asymmetric information at the

bargaining stage sometimes leads to inefficient separations.
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I Introduction

This paper offers a new perspective on the hold-up problem, which is a central ingredient of the

modern property rights approach to the theory of the firm based on incomplete contracting. In the

seminal contributions of Grossman and Hart (1986) and Hart and Moore (1990), an agent can make an

observable but non-contractible investment that increases the surplus that can be generated within a

given relationship more than it increases the agent’s default payoff (i.e., the payoff that he can realize

outside of the relationship).1 When the investing party does not have all the bargaining power ex post,

it does not get the full returns of its investment, so that in general there is an underinvestment problem.

The fact that investments are partly (but not fully) relationship-specific is crucial in this literature,

because all that governance structures (e.g., ownership arrangements) affect is what a party can get

outside of the relationship. It is a standard assumption that there is symmetric information between

the parties, so that they always agree on the ex post efficient decision to collaborate, but ex ante

investment incentives depend on the payoffs that the parties could achieve outside of the relationship,

so that institutions matter.

More recently, several authors have argued that the incomplete contracting literature may have

overemphasized the relevance of encouraging ex ante investments while it has almost completely ne-

glected the possibility of ex post inefficiencies. In particular, Williamson (2000, p. 605) emphasizes

that this is the “most consequential difference” between transaction cost economics and the property

rights theory.2 In this paper, we take up this line of criticism, by assuming that a party may have

better information than its trading partner about the fraction of the surplus that the party can realize

1For a recent survey of the literature, see Segal and Whinston (2013), who point out that “hold-up models, whose

use for examining the optimal allocation of property rights began with the seminal contribution of Grossman and Hart

(1986), have been a workhorse of much of organizational economics over the last 20 years” (p. 103). See also Hart (1995)

for a comprehensive exposition.
2Williamson (2002, p. 188) argues it is “deeply problematic” that the incomplete contracting models assume ex post

efficient bargaining under symmetric information. Holmström and Roberts (1998) and Whinston (2003) also point out

that the standard property rights models might be too narrowly focused on the underinvestment problem.
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on its own.3 Under this plausible assumption, underinvestment problems are ameliorated and ex post

inefficiencies become relevant; i.e., the incomplete contracting approach moves closer to transaction

cost economics in the sense of Williamson (1975, 1985).

Specifically, consider a seller who can invest in order to increase the value of an intermediate good.

The good is specialized to the needs of a particular buyer. The parties cannot write a contract ex

ante. If the parties do not reach an agreement ex post, the seller can realize only a fraction θ ≤ 1

of the ex post surplus on his own. Hence, it is always ex post efficient for the two parties to trade

the intermediate good. For simplicity, we assume that the buyer can make a take-it-or-leave-it offer

ex post, so that the hold-up problem is most severe. Under complete information, ex post efficiency

would always be achieved, but the seller would underinvest, since the buyer would hold up the seller;

i.e., she would offer only a fraction θ of the gains from trade.

Our key innovation is to assume that from the outset the seller has private information about the

fraction θ of the ex post surplus that he can realize on his own.4 It turns out that the seller’s private

information may stimulate larger investment levels compared to the case of complete information,

because there is a signaling motive in the seller’s investment choice. The buyer will try to deduce the

seller’s outside option from the chosen level of investment. If the seller chooses a small investment

level, it seems likely that he has a weak outside option, so that the buyer will then indeed make a low

offer. If instead the seller chooses a large investment level, the buyer may believe that the seller has a

strong outside option, in which case she would have to make a high offer. Hence, a seller with a weak

outside option may have an incentive to mimic a seller with a strong outside option. It turns out that

3Our contribution is thus in line with Holmström (1999), who points out that the assumption in the incomplete

contracting literature according to which both parties observe the default payoffs deserves more scrutiny. Similarly,

Malcomson (1997) has argued that an employer may not know an employee’s outside option and he remarks that little

is known about hold-up under such circumstances. That asymmetric information plays a role for welfare in a hold-up

model is also recognized by Gul (2001), Lau (2008), and Sloof (2008), who also provides experimental evidence.
4For instance, the seller may be privately informed about the probability of finding an alternative trading partner, or

about the difficulty to adapt the intermediate good to another buyer’s needs, or about his ability to use the intermediate

good himself to produce a final good. See also Schmitz (2006) for a related model in which the seller learns the fraction

of the surplus the he can realize on his own after the investment is sunk, so that no signaling can occur.
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this effect indeed can mitigate the hold-up problem. We find that the outside option signaling game

has an essentially unique equilibrium outcome. All perfect Bayesian equilibria of the game with an

arbitrarily fine grid of possible types lead to the same payoffs and distribution of investments.

If the seller’s maximum possible outside option is known to be relatively low compared to the value

of the investment within the relationship, all types of sellers invest the same amount. Specifically,

they choose the investment level that the type with the maximum outside option would choose under

symmetric information. Clearly, in such a pooling equilibrium ex post efficiency is achieved and

investments and joint surplus are higher than in the case with complete information.

In general, however, the equilibrium is a hybrid (semi-pooling) equilibrium. There is a cut-off

type such that all sellers with a lower outside option pool on this type’s strategy. This cut-off type,

and all higher ones, mix between their own and all higher types’ complete information investments.5

While the information asymmetry leads to higher investments, this comes at the expense of the ex

post inefficiencies which occur when the buyer, who mixes between different offers, mistakenly tries to

call the seller’s bluff by making an offer that is smaller than the seller’s outside option. How the joint

surplus compares to the case with complete information therefore depends on the parameters of the

model.

The outside option signaling game that we introduce in this paper is quite distinct from standard

signaling games, because the cost of the signal is constant across types, and the benefit depends only

indirectly on types. Specifically, types only matter if the uninformed buyer makes a sufficiently low

offer, so that ex post inefficient separation occurs.6 Moreover, different types of sellers would choose

5A characteristic of our signaling model is hence a “bluffing” element that leads to an equilibrium in mixed strategies.

The fact that the equilibrium is in mixed strategies due to a commitment problem is somewhat reminiscent of equilibria

in hold-up problems with unobservable investments as studied in Gul (2001) and Gonzales (2004). Yet, note that in

contrast to these papers we follow the incomplete contracting literature in assuming that investments are observable.
6Spence (2002) contains an example with similar features, in which firms can learn a worker’s productivity at a cost.

In this case, high productivity types separate by moving to firms that learn the type, and low types pool in a firm that

does not learn. Other papers that consider productive signaling include Hermalin (1998), in which a leader may signal

a worthwhile project by exerting high effort, and Daughety and Reinganum (2009), in which a signaling motive helps a

team to overcome a free-riding problem.
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different levels of investment if information was symmetric. Finally, while signaling games are typically

plagued by a multiplicity of equilibria, refinements to pin down beliefs following zero probability events

are not needed in our model.

While for the main part of the paper we follow the incomplete contracting literature in assuming

that no contracts are written before the investment is made, we also explore the consequences of ex

ante contracting when investments are verifiable. In this case, the buyer can offer a menu of contracts

that require a certain level of investment. The main result is that the investment is always set at the

first-best level and the optimal contract uses different separation probabilities as the unique screening

device. Whenever the optimal contract specifies a positive probability of separation for some types,

then these types overinvest given how the investment is later used, because conditional on taking the

outside option with a positive probability, efficiency implies an investment level lower than the first-

best one. The result thus adds a new twist to the literature on screening models with type-dependent

outside options (Moore 1985, Lewis and Sappington 1989, Maggi and Rodriguez-Clare 1995, Jullien

2000, Rasul and Sonderegger 2010).

The remainder of the paper is organized as follows. In Section II, the outside option signaling

game is introduced. In Section III, we first go through the special case of two possible types in order

to illustrate the kind of equilibria that we find also in the general cases of a finite type space and a

continuum of types. While it is very natural to think about the problem using a model with a finite

type space, the analysis is quite technical and therefore postponed to Section VI. The results are used

to find the limit equilibrium in the case of an atomless distribution, which is introduced in Section IV.

The screening version of the model, in which the buyer can offer a menu of contracts with contractible

investment levels, is analyzed in Section V. Proofs are relegated to an appendix.

5



II The model

The model describes an interaction between a buyer and a seller.7 We first describe and solve the game

with complete information and then introduce asymmetric information.

In the game with complete information, the seller chooses an investment i ∈ I, at cost c(i), to

improve the value of an intermediate good or a service to be traded. If seller and buyer agree on trade,

they can together generate a value of v(i), while the value that the seller can realize without the buyer

is only the fraction θv(i), where θ ∈ Θ ⊂ [0, 1].8 The buyer observes the investment and thus the value

of the good and makes an offer about how to share the surplus with the seller. If the seller rejects

the offer, he gets θv(i) from taking his outside option, while the buyer makes zero profit. If the seller

accepts, they split the generated surplus as proposed by the buyer.

Throughout, we make the following assumptions:

Assumption 1. Let I = R+, and let the functions v and c be differentiable, increasing, and concave

resp. strictly convex. Furthermore v(0) ≥ 0, c(0) = 0, c′(0) = 0, and limi→∞ c
′(i) =∞.

It is assumed that the parties cannot write a contract ex ante. After having observed the chosen

investment level, the buyer can make a take-it-or-leave-it offer to the seller. If θ is the type of the

buyer, i the seller’s investment, o ∈ [0, 1] the buyer’s offer, expressed as a share of the surplus, and

a ∈ {0, 1} the acceptance decision of the seller, then the seller’s payoff is given by

(
ao+ (1− a)θ

)
v(i)− c(i) (1)

and the buyer’s payoff by

a(1− o)v(i). (2)

The complete information game can easily be solved by backward induction. The seller will accept all

offers o > θ, and since the buyer could always increase her offer by an arbitrarily small amount, we

7The model is sufficiently abstract to also fit other settings such as an employer-employee relationship.
8There does not need to be a deterministic relationship between the investment and the resulting value. As long as

the principal can observe the investment and the value, with some notational changes the analysis would extend to the

case that v(i) represents the expected value generated by investment i.
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1 2 3 4

Seller learns
outside option

θ ∼ F

Seller chooses
investment i ∈ I

Buyer observes i
and the value v(i),
and makes an offer o

Seller accepts (a = 1)
or rejects (a = 0)

Figure 1: Timeline of the outside option signaling game.

assume that the seller accepts all offers o ≥ θ.9 The buyer will offer a share θ of the realized surplus,

which the seller will accept, leaving him a profit of θv(i) − c(i) from investment i. In anticipation of

this return to his investment the seller invests

ic(θ) = arg max
i
θv(i)− c(i), (3)

which given Assumption 1 always exists and is unique. Moreover, ic is a strictly increasing function,

which implies that its inverse exists, which we denote by θc : ic(Θ)→ Θ. Hence, there is underinvest-

ment compared to the first best investment level ic(1), which maximizes the net surplus

S(i) = v(i)− c(i). (4)

The seller’s payoff under complete information, in dependence on the outside option θ, is denoted by

uc(θ) = max
i
θv(i)− c(i). (5)

Note that uc is increasing and strictly convex.10 If the type space Θ is an interval, then the derivative

of uc is equal to v ◦ ic.

Next, consider the game with incomplete information, where θ is private information of the seller.

The sequence of events is illustrated in Figure 1. We assume that first the seller learns his type θ,

9This holds for all types except θ = 1. Since the buyer makes no profit on this type, it does not matter whether we

assume that this type rejects or accepts an offer of 1.
10We could alternatively make this assumption directly or replace the conditions in Assumption 1 by other conditions

from which it follows. That is, investment decisions can be allowed to be multi-dimensional or discrete as long as the

optimal investment levels lead to an increasing and strictly convex function uc.
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which is drawn from the type space Θ ⊂ [0, 1] according to a distribution function F . Throughout the

paper, we make the following assumption.

Assumption 2. F is log-concave.11

The buyer only knows the distribution of the outside option, but not the realized value. She

observes the seller’s investment, forms beliefs about the outside option and then makes a take-it-or-

leave-it offer that is optimal for her given her updated beliefs about the acceptance threshold of the

seller. We are interested in perfect Bayesian equilibria of this game. In any such equilibrium a seller

of type θ will accept an offer if and only if it is greater than the outside option. We therefore fix this

acceptance decision (which is the same as in the game with complete information), as the outcome

following the buyer’s offer. In the remainder of the paper, we then deal with the following reduced-form

payoff functions: If the seller is of type θ and invests i, and the buyer makes an offer o, then the seller

gets max(θ, o)v(i)− c(i) and the buyer gets (1− o)v(i) if θ ≤ o, and 0 otherwise.

A strategy of the seller specifies an investment for each type, possibly using a randomization device

to mix over a set of investments. A strategy of the seller thus is a function Q : Θ× I→ [0, 1] such that

Q(θ, .), or Q(.|θ), is the distribution of investments that a type θ chooses. A strategy of the buyer maps

investments into a share of the surplus that she offers to the seller, where she as well may randomize

over a set of offers. While a pure strategy is given by a function from the set of investments I to the

set of offers [0, 1], we write a mixed strategy as a function P : I× [0, 1]→ [0, 1], where P (i, o), or Pi(o),

is the probability that the buyer’s offer, when observing investment i, is less than or equal to o.

If the buyer’s strategy is given by P , a seller of type θ who chooses investment i gets the expected

profit

U(P, i, θ) = v(i)

ˆ
max(θ, o)dPi(o)− c(i). (6)

Given a strategy Q of the seller, the buyer’s expected payoff from the pure strategy o : I→ [0, 1] is

V (Q, o) =

ˆ ˆ
[θ≤o(i)]

(1− o(i))v(i)dQ(i|θ)dF (θ). (7)

11This assumption means here that Fλ(θ)F 1−λ(θ′) ≤ F (λθ+(1−λ)θ′) for all θ, θ′ ∈ Θ and λ ∈ [0, 1] with λθ+(1−λ)θ′ ∈

Θ.
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III The two-type case

In this section, we illustrate the effects that are at work in the model by first looking at the case in

which there are only two possible types, 0 < θL < θH < 1. Let fL denote the probability that the

outside option is low, and fH = 1− fL the probability that it is high. The analysis of a more general

model with more than two types (in Section V I) involves some technicalities that are absent in this

special case, which nevertheless conveys much of the intuition.

We start with the buyer’s offer decision. It is clear that offering any share greater than θH ensures

acceptance, and among those offers θH is the most profitable one for the buyer. Similarly, any offer

strictly lower than θL is sure to be rejected, and is thus weakly dominated by offering θL. Offers

between θL and θH are accepted by the low type only, and θL is the cheapest one with this outcome.

Therefore, the buyer essentially chooses between offers θL and θH according to her beliefs. Specifically,

she will offer θH if she believes that the probability of a low outside option is smaller than 1−θH
1−θL .

Next, consider a high-type seller. This seller type knows that for any investment i he will get

θHv(i) ex post, given that it is never optimal for the buyer to offer more than θH . Therefore, he

invests iH = arg max θHv(i)− c(i). His payoff is his complete information payoff uc(θH), which reflects

that there is no incentive to mimic lower types in this game. Given this strategy of the high type

in any possible equilibrium, it is clear that a seller with a low outside option would reveal his type

if he invests any amount different from iH . A separating equilibrium, in which the low type invests

iL = arg max θLv(i) − c(i) and is offered θL, cannot exist, since the low type would then have an

incentive to mimic the high type and get the payoff uc(θH), which is larger than uc(θL). The best

the low type can hope for is to pool with the high type and get uc(θH). Pooling on iH is indeed an

equilibrium if the buyer makes the high offer in case both types invest iH , i.e., if fL ≤ 1−θH
1−θL .

If the pooling equilibrium does not exist, the only possibility left is a hybrid, or semi-pooling,

equilibrium, in which the low type mixes between high and low investment. The low type is indifferent

between high and low investment if the probability of offer θL following investment iH is such that the
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low type’s payoff from choosing iH is equal to uc(θL). The probability that has this property is

pHL =
uc(θH)− uc(θL)

(θH − θL)v(iH)
. (8)

Following a low investment, the buyer offers θL. To make the buyer indifferent between the high and

the low offer following investment iH , the low type seller has to choose high investment with probability

qLH =
fH(1− θH)

(θH − θL)fL
. (9)

This value is smaller than one if and only if the pooling equilibrium does not exist. This insight,

that depending on the distribution there is either a pooling equilibrium or an equilibrium with mixed

strategies and partial pooling, remains valid in the general case.

Observation 1. In the two-type model, the pooling equilibrium becomes more likely the larger the

probability of the high type is, and the closer together the two types are. Moreover, increasing the high

type’s value, or even increasing the high and the low value by an equal amount, can turn a pooling

equilibrium into a semi-pooling equilibrium and thereby decrease the ex ante expected payoff of the

seller.

It is straightforward to embed the outside option signaling game into a full-fledged property rights

model, where the parties are symmetrically informed before date 1, when they can agree on a simple

ownership structure only. Giving the seller more property rights may then mean that θH and θL are

increased. Hence, Observation 1 implies that giving the seller more property rights can be detrimental

to his investment incentives, his expected payoff, and the expected total surplus, which is in stark

contrast to the standard property rights model under complete information.

IV Continuum of types

In this section, we let the type space Θ be an interval, Θ = [θL, θH ]. The seller’s type is drawn from

the distribution F with density f > 0, for which the derivative f ′ exists.

As in the case with only two types, a fully revealing equilibrium does not exist. The reason is that

in such an equilibrium, a type θ would be offered the share θ and accept. This type would invest ic(θ)
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and get the payoff uc(θ) without taking his outside option. Since any other type that deviates to ic(θ)

would get the same payoff, and uc is increasing, lower types would have an incentive to deviate. A

separating equilibrium hence does not exist, but what about a pooling equilibrium? Again as in the

two-type case, the buyer will never offer a share greater than θH . If the seller has the highest possible

outside option θH , he chooses ic(θH) with probability one. In a pooling equilibrium all other types

would have to do the same. However, types close to θH will invest ic(θH) only if the buyer offers the

share θH of the surplus. Whether a pooling equilibrium exists thus depends on the buyer’s expected

revenue from offering θH compared to making any other offer θ. With the definition

R(θ) = (1− θ)F (θ), (10)

the expected revenue from offering θ is R(θ)v(ic(θH)), so that there is a pooling equilibrium if and only

if R(θH) = maxθ R(θ). This already hints at the fact that the maximizer of the function R plays an

important role for the characterization of the equilibrium. Before we state the main result, we prove

that this maximizer is uniquely defined.

Lemma 1. The function R has a unique maximizer, which is denoted by θ̄, i.e,

θ̄ = arg max
θ∈[θL,θH ]

R(θ). (11)

Moreover, R is weakly increasing on [θL, θ̄], and decreasing and strictly concave on [θ̄, θH ].

The function R captures the tradeoff that the buyer faces, which is the tradeoff between a higher

acceptance probability and a larger share of the surplus in case of acceptance. That R is increasing

up to θ̄ implies that if in an equilibrium all types θ ≤ θ̄ choose the same strategy, they will be offered

a share of at least θ̄ (which they accept). This is the case in the equilibrium of the outside option

signaling game that we state in the following proposition.

Proposition 1. An equilibrium of the outside option signaling game is given by

Pi(θ) =


0 θ < θ̄

v(ic(θ))
v(i) θ̄ ≤ θ < θc(i)

1 θc(i) ≤ θ

(12)
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and

Q(i|θ) =


0 i < ic(θ)

1− (1−θc(i))2f(θc(i))
(1−θ)2f(θ)

ic(θ) ≤ i < ic(θH)

1 ic(θH) ≤ i

(13)

for all θ ≥ θ̄, and Q(i|θ) = Q(i|θ̄) for all θ < θ̄.

We see that as in the two type case, the seller tries to mimic higher types, never lower ones. The

highest seller type chooses his complete information investment with probability 1. Any type θ between

θ̄ and θH mixes between all investments in the interval [ic(θ), ic(θH)], and chooses ic(θH) with positive

probability if θH < 1. A type θ < θ̄ invests in the same way as the type θ̄, so that investments lower

than ic(θ̄) never occur in equilibrium. Following this lowest investment ic(θ̄), the buyer makes the

offer θ̄ that is always accepted. For larger investments i, the buyer mixes between offers in the interval

[θ̄, θc(i)] with an atom at θ̄, and thereby sometimes makes an offer that the seller does not accept.

While this result does not say that the described equilibrium is the unique outcome of the game,

we show uniqueness for a finite type space in Section VI. More precisely, we show there that with a

finite type space, all equilibria must lead to the same payoffs and distribution of investment. If the

finite type space is understood as a partition of the interval [θL, θH ] and all functions of the finite type

space are interpreted as step functions on this interval, then the functions defined in Proposition 1 are

limits of sequences of such equilibrium step functions as the partition becomes arbitrarily fine.

With the explicit solution of the signaling game described in Proposition 1, we can write down

the parties’ payoffs and compare them to the complete information case, in which the outside option

is common knowledge from the start. This case was solved as a preliminary in Section II. First,

note that in the outside option signaling equilibrium, each type of seller chooses a weakly higher

investment level than under complete information. The unconditional cumulative distribution function

of investments is equal to max(0,−R′ ◦ θc) for i < ic(θH), and equal to 1 at i = ic(θH). Since

−R′(θ) = F (θ) − (1 − θ)f(θ), this function first order stochastically dominates the distribution of

investments under complete information. However, unless the equilibrium is a pooling equilibrium

(θ̄ = θH), there is also a positive probability of inefficient separation in the signaling equilibrium, and
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therefore we cannot conclude that the asymmetry of information in the signaling game in general leads

to a higher joint surplus. Similarly, it is not possible to say anything general about the buyer’s surplus

in the outside option signaling game, which is equal to

V ∗ =

ˆ θH

θ̄
−R′′(θ)(1− θ)v(ic(θ))dθ + (1− θH)2f(θH)v(ic(θH)), (14)

compared to the buyer’s surplus under complete information, which is equal to V c = E[(1−θ)v(ic(θ))].

We can, however, say something about the seller’s payoff. In the outside option signaling game, a

seller with outside option θ gets uc(max(θ, θ̄)), i.e., the seller’s ex ante expected profit is

U∗ = F (θ̄)uc(θ̄) +

ˆ θH

θ̄
uc(θ)dF (θ). (15)

This is larger than the seller’s expected payoff under complete information, which is U c = E[uc(θ)].

To illustrate that the buyer’s payoff and the joint payoff in the signaling equilibrium can be larger

or smaller than the corresponding payoffs under complete information, Table 1 shows these values in

four examples that differ with respect to the distribution of types. With a uniform distribution, the

buyer’s payoff happens to be equalized in the two regimes. A pdf f(θ) = 6θ(1 − θ) puts more weight

on intermediate types, which is beneficial for the buyer, who has to give up a large share of the surplus

to a high type seller and suffers from the low investment of low type sellers. This advantage bears

out to a larger extent under complete information than under signaling. A pdf f(θ) = 3(1 − θ)/4
√
θ

puts more weight on lower types. Since lower types invest very little under complete information, here

the signaling equilibrium, in which low types are encouraged to invest, implies a larger payoff for the

buyer.

We can also compare the seller’s payoff in the signaling game to other scenarios regarding the

distribution of information and timing. Consider first a scenario in which the outside option becomes

common knowledge after the investment is sunk, and is not known before to any party. In this case,

there are no ex post information rents since the buyer’s offer equals the true value of the outside option,

and at the same time the seller cannot tailor his investment decision to the outside option. Instead,

he maximizes his expected payoff E[θ]v(i)− c(i) over i. With the resulting payoff uc(E[θ]), the seller

is worse off than he would be even in the complete information case.
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f(θ) V ∗ V ∗ + U∗ V c V c + U c

3(1−θ)
4
√
θ

0.22 0.29 0.11 0.16

1 0.17 0.38 0.17 0.33

6θ(1− θ) 0.18 0.39 0.2 0.35

30θ4(1− θ) 0.11 0.44 0.18 0.45

Table 1: This table shows the (rounded) buyer’s payoff and the joint surplus in the signaling equilibrium

(V ∗ and V ∗ + U∗) as well as the same quantities for complete information (V c and V c + U c) for the

specification v(i) = i, c(i) = 1
2 i

2, Θ = [0, 1] and f(θ) as indicated in the first column. To apply our

results for the different distributions, we can either show that Assumption 2 (log-concavity) holds, or

show directly that the conditions in Lemma 1 hold.

We can also compare our results to a timing as in Schmitz (2006), in which the seller (and only the

seller) learns the outside option once the investment is sunk. In this case, there is no signaling motive,

and the seller’s choice of investment is independent of his type. Consequently, the buyer makes an offer

of θ̄ and the seller invests ic(E[max(θ, θ̄)]). While the investment is higher than in the scenario above,

it is not always put to its best use, as all types above θ̄ reject the offer. The seller gets uc(E[max(θ̄, θ)])

which is more than in the previous case, as he enjoys some information rents. Nevertheless, the seller

is still better off in the signaling equilibrium, which allows him to both tailor the investment to the

outside option and earn some information rents. Since of all the possible scenarios, the seller’s payoff

is highest in the signaling equilibrium, he would influence the timing or information distribution in the

direction of the signaling structure whenever possible. This is summarized in the following observation.

Observation 2. The seller has an incentive to learn the outside option early and let it be known

that he knows about his outside option.

Finally, we can now revisit the question of the effect of giving the seller more property rights, which

we think of as a first order stochastic dominance shift in the distribution of outside options. First, we

consider only the change in the cut-off value that results from a change in the distribution function.

If θ̄ increases, then all types with an outside option smaller than the cut-off value, who get uc(θ̄), are
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strictly better off. Types larger than the new cut-off value get the same payoff uc(θ) as before.

Observation 3. If the cut-off value θ̄ increases, each seller type is weakly better off. If a first

order stochastic dominance shift of the distribution of outside options increases the cut-off value, then

it also increases the seller’s ex ante payoff.

This observation tells us that if sellers come from two different populations with distribution of

types F and F̃ , respectively, where F̃ first order stochastically dominates F , then if the cut-off value is

higher under F̃ than under F , the seller’s ex ante payoff must be higher under F̃ than under F . This

means that if there is some observable characteristic that implies a higher outside option on average,

then low types can benefit from belonging to this group as they can hide behind the better average

bargaining position in their group and get a good offer.

Recall how in the case with only two types in Section III a decrease in θ̄, which meant a change

from a pooling to a semi-pooling equilibrium, could easily happen with first order stochastic dominance

shifts in the distribution. While this same effect can still be constructed here, by removing some mass

at types slightly lower than θ̄ and adding it to types slightly larger than θ̄, it now seems more likely that

more property rights would increase θ̄ and make the seller better off. For example, if F is a uniform

distribution on an interval [a, b], then θ̄ = min(b, a+1
2 ). If we increase a or b, then θ̄ also increases.

V Contractible investments

In the game that is studied in the main part of this paper, all the buyer can do is to make a take-

it-or-leave-it offer based on her updated beliefs. This is optimal for her from an ex post perspective,

but not necessarily from an ex ante perspective. In this section, we explore the consequences of full

commitment and ask what would happen if the buyer could offer a binding contract conditional on

investment before the seller moves. We maintain the assumption that the seller’s type is not observable,

and characterize the optimal screening contract.

We use the revelation principle and let a general contract be a map from types into outcomes that

satisfies the incentive compatibility constraints of each type of seller telling the truth. In addition, the
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buyer has to take into account that the seller can take his outside option. All that matters for truth

telling and participation of the seller is his expected payoff following his announcement. Therefore, it is

sufficient to focus on contracts of the form (t(θ), i(θ), x(θ)), where t(θ) is an unconditional payment from

the seller to the buyer that an announced type θ is required to make, i(θ) is the required investment, and

x(θ) the probability of separation. We first allow for two different points in time when separation can

occur and let x(θ) = (x1(θ), x2(θ)), where x1(θ) is the probability of separation before the investment

is made, and x2(θ) is the probability of separation after the investment is made. Hence, first the seller

makes the payment t(θ), then with probability x1(θ), the relationship ends directly after the seller has

made his payment, leaving the seller with payoff uc(θ) − t(θ). While we allow the possibility of such

an early break-up of the relationship, in an optimal contract it will be true that x1(θ) = 0. With

probability 1− x1(θ), the seller makes the investment i(θ), and then with probability 1− x2(θ), buyer

and seller collaborate and the seller gets the whole ex post surplus v(i(θ)). There is no loss of generality

in assuming this form of contracts, since all payoff transfers from the seller to the buyer can be handled

by the payment t(θ). Given such a contract, the expected payoff of a seller of type θ who pretends to

be of type θ̃ is

(1− x1(θ̃))

(
S(i(θ̃))− x2(θ̃)(1− θ)v(i(θ̃))

)
+x1(θ̃)uc(θ)− t(θ̃), (16)

where the definition S(i) = v(i)− c(i) was used. A truth-telling seller gets the payoff

uS(θ) = (1− x1(θ))

(
S(i(θ))− x2(θ)(1− θ)v(i(θ))

)
+x1(θ)uc(θ)− t(θ). (17)

The buyer’s optimization problem is the following:

max

ˆ θH

θL

t(y)dF (y) (18)

subject to the incentive compatibility constraint

uS(θ) ≥ uS(θ̃) + (1− x1(θ̃))(θ − θ̃)x2(θ̃)v(i(θ̃)) + x1(θ̃)(uc(θ)− uc(θ̃)) (IC)

and the individual rationality constraint

uS(θ) ≥ uc(θ), (IR)

16



which have to hold for all θ, θ̃ ∈ [θL, θH ].

We will show next that an optimal contract will specify the first best investment level ic(1)

and x1(θ) = 0. To see this, consider any contract (t(θ), i(θ), x(θ)). We then define the contract

(t̃(θ), ĩ(θ), x̃(θ)) as

t̃(θ) = t(θ) + S(ic(1))− (1− x1(θ))S(i(θ))− x1(θ)S(ic(θ)), (19)

ĩ(θ) = ic(1), (20)

x̃1(θ) = 0, and (21)

x̃2(θ) = x1(θ)
v(ic(θ))

v(ic(1))
+ (1− x1(θ))x2(θ)

v(i(θ))

v(ic(1))
∈ [0, 1]. (22)

With this new contract, a truth telling seller’s payoff is S(ic(1)) − x̃2(θ)(1 − θ)v(ic(1)) − t̃(θ), which

is equal to uS(θ) under the old contract. Hence, the individual rationality constraint (IR) is satisfied

also for the new contract. The incentive constraint (IC) now reads

uS(θ) ≥ uS(θ̃) + (θ − θ̃)x̃2(θ̃)v(ic(1)) (23)

= uS(θ̃) + (1− x1(θ̃))(θ − θ̃)x2(θ̃)v(i(θ̃)) + x1(θ̃)(θ − θ̃)v(ic(θ̃)).

Because uc(θ) is a convex function with derivative v(ic(θ)), it follows from the old contract’s incentive

constraint that this constraint is satisfied as well. Moreover, this new contract generates higher ex-

pected profit for the buyer because t̃(θ) ≥ t(θ). Thus, we have shown that i(θ) = ic(1) and x1(θ) = 0.

In order to find the buyer’s optimal separation probabilities x2(θ) and corresponding payments t(θ),

where a higher separation probability corresponds to a lower up-front payment, we use standard tools

from mechanism design and the literature on type-dependent outside option.12 In this literature, the

difficulty mostly lies in finding out for which types the individual rationality constraint binds. Here,

the proof of the following proposition shows that the IR constraint is binding for the whole interval of

types that are larger than the cut-off value θ̄.

12See e.g. Jullien (2000) for a very general treatment, which nevertheless does not encompass our model as a special

case.
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Proposition 2. An optimal screening contract specifies the investment level ic(1). Sellers of type θ ≤ θ̄

choose to collaborate ex post with probability 1 and pay t(θ) = S(ic(1)) − uc(θ̄) up-front, which leaves

them with a payoff of uc(θ̄). Types θ > θ̄ separate with probability x2(θ) = v(ic(θ))
v(ic(1)) and pay up-front

t(θ) = S(ic(1))− S(ic(θ)). These seller types get the payoff uc(θ).

While every seller type receives the same payoff as in the signaling equilibrium, the buyer’s expected

payoff and the joint surplus are obviously higher than in the case without commitment. Since now i is

verifiable and a hold-up problem does not exist, it may seem intuitive that an optimal contract specifies

the investment ic(1) for all types: Since seller types differ only with respect to the outside option, the

screening device is the probability of separation, not the investment. But if the asset is used outside

the relationship with positive probability, then the value ic(1) is not the optimal investment. Instead,

the optimal investment for type θ is ic(1− x2(θ) + x2(θ)θ).

Observation 4. Any type θ in the open interval (θ̄, 1) overinvests: given that the separation

probability x2(θ) is positive for these types, the efficient investment ic(1 − (1 − θ)x2(θ)) is strictly

smaller than ic(1).

Note that an overinvestment effect is also present in the signaling model, where it counteracts the

hold-up effect on investment. With contractible investments, the hold-up problem is absent and only

the overinvestment effect is present.

VI Finite type space

In this section, we analyze the outside option signaling game with Θ = {θ1, ..., θH} where 0 ≤ θ1 <

θ2 < ... < θH < 1.13 We use the shortcut ik = ic(θk). Let (P,Q) be a perfect Bayesian equilibrium

of the outside option signaling game. In the following, we will derive properties of (P,Q), in order to

eventually arrive at a characterization of all equilibrium outcomes. Let I∗ be the set of investments that

13The assumption θH < 1 is made for simplicity. We could easily add types θ ≥ 1 who would always invest ic(θ) and

get no acceptable offer from the buyer. That is, a type θ ≥ 1 seller would neither mimic other types nor be mimicked

himself.
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are chosen with positive probability in the equilibrium (P,Q), and let Θ∗(i) denote the set of all types

that choose i ∈ I∗ with positive probability. We denote by u∗(θ) the equilibrium payoff received by a

seller of type θ, so that with this notation we have for all i ∈ I∗ and θ ∈ Θ∗(i) that u∗(θ) = U(P, i, θ).

Note first that u∗(θ) ≥ uc(θ), because a type θ can always guarantee himself the payoff uc(θ)

independent of the buyer’s behavior, by investing ic(θ) and taking his outside option. Similarly,

because the seller’s payoff is weakly increasing in θ for all offers and investments, U(P, i, θ) and u∗(θ)

are weakly increasing in θ. A higher type could always play a lower type’s strategy and get at least

the same payoff as that type.

In the following, we will first show (Lemma 2) that if an investment i occurs at all in equilibrium,

then it is chosen with positive probability by the type θc(i) that chooses i under symmetric information,

and by none of the higher types. Then, in Lemma 3, we show that investing i is optimal for all lower

types, i.e. those between θ1 and θc(i). Finally, in Proposition 3 we will answer the question which

investments will be chosen in equilibrium. The reader who is not interested in the proofs may skip the

lemmas leading to Proposition 3, which contains the main result of this section.

Lemma 2. For all i ∈ I∗ it holds that θc(i) = max Θ∗(i).

In particular, only investments in the set {i1, ..., iH} are chosen at all. We can use the one-to-one

relationship between θk and ik and express everything in types. This highlights that in this model

types are distinguishable by their investment in the complete information case. We can also identify

the buyer’s offer with the type that just accepts it, and then write the equilibrium strategies as matrices

P and Q. An entry pkl in the matrix P stands for the probability of offer θl when investment ik is

observed, and an entry qkl in Q is the probability of type k investing il, or “mimicking” type l. Since

we have shown that in any equilibrium the mixed strategy of type θk has support in {ik, ..., iH} and

the buyer’s random offer following investment ik takes on values in {θ1, ..., θk}, equilibrium strategies

P and Q are triangular matrices. Equilibrium conditions for strategies (P,Q) in matrix form then look

as follows:

19



uc(θk) maxi v(i)θk − c(i)

ik = ic(θk) arg maxi v(i)θk − c(i)

θc inverse of ic

qkl probability that type θk chooses investment il

plk probability that offer is θk when investment is il

Pil(θk) probability that offer is ≤ θk when investment is il

Q(il|θk) probability that type θk’s investment is ≤ il

u∗(θk) type θk’s payoff in the equilibrium (P,Q)

Θ∗(il) set of all types θk with qkl > 0

I∗ set of all investments il with qkl > 0 for some k

Table 2: Some notation for the finite type case.

• qkl > 0 implies that

l ∈ arg max
m

v(im)

m∑
j=1

pmj max(θj , θk)− c(im), (24)

• for each l with il ∈ I∗, plj > 0 implies that

j ∈ arg max
m

(1− θm)
m∑
k=1

fkqkl. (25)

This notation is summarized in Table 2. We will show next that a given type θk’s set of best responses

to the buyer’s strategy P includes all investments that are greater than or equal to ik and are chosen

at all in the equilibrium. In other words, if an investment ik is chosen at all, then it is the optimal

choice for every type not greater than the corresponding type θk.

Lemma 3. For all ik ∈ I∗ it holds that U(P, ik, θ) = u∗(θ) for all θ = θ1, ..., θk.

We have shown so far that, while there may be investments that do not occur at all in equilibrium,

every investment that does occur is chosen by the type that would invest the same amount with

symmetric information. Furthermore, all lower types’ payoff from choosing this investment equals

their equilibrium payoff. In order to be consistent with this structure, the buyer’s strategy must

induce all these indifferences. This observation gives rise to the following lemma.
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Lemma 4. For all k and im ∈ I∗ with m > k it holds that

Pim(θk)v(im) =
u∗(θk+1)− u∗(θk)

θk+1 − θk
. (26)

Moreover, for all im, ik ∈ I∗ with m ≥ k it holds that pmk > 0.

Now that we have some idea about the offers that the buyer must be willing to make, we turn to

a description of the buyer’s behavior, in order to pin down the seller’s equilibrium strategy. As in the

continuous case, the function R(θ) = (1 − θ)F (θ) plays a role here. Similar to Lemma 1 it can be

shown here that if we define

k̄ = max{k ∈ {1, ...,H} : R(θk) ≥ R(θk−1)}, (27)

the function R is weakly increasing on {θ1, ..., θk̄}, strictly decreasing on {θk̄, ..., θH}, and the linear

interpolation of the points (θk̄, R(θk̄)), ...., (θH , R(θH)) is concave.

To understand the role of R, assume for a moment that all types choose the same investment. Then

R(θ) describes the buyer’s expected share of the surplus if she makes a take it or leave it offer of θ.

The maximum θk̄ of this function is the offer that she would make in a pooling equilibrium. Can a

pooling equilibrium exist? Since the highest type θH chooses iH in any equilibrium, if all types pool on

the same investment, it must be on iH . It follows that there is such a pooling equilibrium if and only

if θk̄ = θH . Moreover, this suggests that in any equilibrium, pooling is only possible for types lower

than θk̄. Since a separating type could easily be mimicked by a lower type, equilibria must typically

be in mixed strategies.

Proposition 3. Any perfect Bayesian equilibrium of the outside option signaling game must have the

following form: No investment below ik̄ is chosen. A type θk with k ≥ k̄ mixes between all investments

in {ik, ..., iH}, with expected payoff equal to uc(θk). All types θk with k < k̄ mix over {ik̄, ..., iH} with

payoff uc(θk̄). When observing investment ik, the buyer mixes between offers in {θk̄, ..., θk}, and her

expected payoff from any such offer is (1− θk)v(ik).

This result is a uniqueness result in the sense that in any perfect Bayesian equilibrium of the game,

payoffs of the buyer and the seller are uniquely determined. Refinements to pin down beliefs following
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zero probability events are not needed for this result. This is unusual for a signaling game and is due

to the special structure of this game, in which the buyer’s offers only matter to a limited extent for the

seller’s payoff. Equilibrium investment in fact turns out to be a poor signal for a high outside option.

The types that pool never reveal their outside options, and the others do not improve their payoff in

the signaling game compared to what they could get independent of the buyer. These higher types

separate in the sense that they choose different strategies. Because of the randomization, however,

a chosen investment does not give away the type ex post. An observed investment could have been

chosen by any type who would invest weakly less under complete information.

From all the indifference conditions that have to be met in an equilibrium we are able to obtain an

equilibrium candidate. Combining Proposition 3 and Lemma 4 yields for all k ≥ k̄ and m > k

Pim(θk) =
uc(θk+1)− uc(θk)
(θk+1 − θk)v(im)

and Pik(θk) = 1, (28)

as well as for k < k̄

Pim(θk) = 0. (29)

For the definition of the seller’s strategy, we assume that all types j < k̄ pool on type k̄’s strategy:

qjk = qk̄k for all j < k̄. (30)

Let us further define λk =
fk(1−θk)(1−θk−1)

θk−θk−1
and λH+1 = 0 and

qk̄k =
λk − λk+1

R(θk̄)
for all k > k̄ (31)

qk̄k̄ = 1−
λk̄+1

R(θk̄)
(32)

qjk =
λk − λk+1

λj
k ≥ j > k̄ (33)

Proposition 4. The strategies described in equations (28), (29), (30), (31), (32) and (33) form an

equilibrium of the outside option signaling game.
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VII Conclusion

In this paper, we have introduced ex ante private information about an agent’s reservation value in the

kind of hold-up problem that is at the center of the literature started by Grossman and Hart’s (1986)

seminal work on the pros and cons of vertical integration. The resulting outside option signaling game

has interesting features which make it quite distinct from other signaling models. The simplicity of the

model allows us to fully characterize the resulting equilibrium payoffs, which are uniquely determined.

The equilibrium involves pooling up to a certain type of outside option, such that all lower types get

the same payoff and because they accept all offers in equilibrium, these types are not distinguishable,

even ex post. Higher types follow a mixed strategy and on average obtain the same payoff as with

complete information. The fact that the seller randomizes between investment levels reflects that there

is a strong force against a separating equilibrium in this model: If an investment is only chosen by

high types and triggers high offers, this investment becomes attractive for lower types as well.

In the outside option signaling game, there is a gap between the chosen investment and the invest-

ment that would result if the seller would get the full return to his investment. We have shown that

this gap vanishes if investment is verifiable. This gap would also shrink if the seller had greater bar-

gaining power than in the game that was analyzed. For example, if the bargaining game was modeled

as the seller making a take-it-or-leave-it offer with probability α and the buyer only with probability

1 − α, then a higher α would increase the surplus and the seller’s payoff. Although it is standard in

principal-agent models to assume take-it-or-leave-it offers by the principal, it would be interesting to

allow for more complex bargaining games at the ex post stage. While the results should be the same if

the buyer was able to make repeated offers, results are likely to change and become difficult to obtain

if both players made offers.

Our model of a one-shot buyer-seller interaction makes the prediction of higher rates of separation

when relationship-specific investment is higher. Two kinds of relationships can arise: Stable relation-

ships that are characterized by low investments and low profits (θ ≤ θ̄), and unstable relationships that

are characterized by high investment and high separation rates (θ > θ̄). However, there are ways in

which the parties might try to mitigate the hold-up problem, say by establishing repeated interactions,
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and these factors could lead to a positive instead of a negative correlation between the stability of the

relationship and the level of investment. It might therefore be interesting to extend the analysis to

take into account dynamic considerations and/or competition between buyers.

There are a couple of other extensions of the model that are promising. One interesting task for

future research is to allow the payoff that the buyer gets when the seller takes the outside option

to depend on the seller’s type. This might admit an even greater set of applications, for instance the

interpretation of the outside option as suing for payment, with private information about the probability

of winning.14 Another possible avenue for future research is to focus on the case of pure rent-seeking, in

which the investment increases the outside value but is of little use inside the relationship. Investment

can then still be used as a signal for profitable outside opportunities, but higher investment is no longer

more efficient.
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A Proofs

Proof of Lemma 1. To show that this property of R follows from log-concavity of F , we show first

that wherever R is convex, it must be strictly increasing:

R′′(θ) ≥ 0⇒ R′(θ) > 0. (34)

The first derivative of R is

R′(θ) = (1− θ)f(θ)− F (θ), (35)

and the second derivative is

R′′(θ) = (1− θ)f ′(θ)− 2f(θ). (36)

Assume now that R′′(θ) ≥ 0. This implies that f ′(θ) > 0 and (1 − θ) ≥ 2f(θ)
f ′(θ) . Because log-concavity

means F (θ)f ′(θ) ≤ f(θ)2 we also have

R′(θ) ≥ 2f(θ)2 − F (θ)f ′(θ)

f ′(θ)
≥ f(θ)2

f ′(θ)
> 0. (37)

Hence, we have shown that property (34) holds. This property implies that the function R can have no

interior minimum (i.e., no point with R′(θ) = 0 and R′′(θ) ≥ 0). We also know that R is nonnegative

with R(θL) = 0. Therefore, the global maximum at θ̄ is also the unique local maximimum. The

function R is weakly increasing up to the point θ̄ and weakly decreasing for all θ ≥ θ̄. Because

R′(θ) ≤ 0 for all θ ≥ θ̄, it follows again from property (34) that the function R is strictly concave on

that range. �

Proof of Proposition 1. In a first step, we show that the functions Pi and Q(.|θ) are indeed

distribution functions. The function Pi has Pi(θ) = 0 for all θL ≤ θ < θ̄ and Pi(θ) = 1 for all θ ≥ θc(i).

It is nondecreasing inbetween because v ◦ ic is increasing. Similarly, the function Q(.|θ) has Q(i|θ) = 0

for all i < ic(θ̄) and Q(ic(θH)|θ) = 1. It is nondecreasing because θc is increasing in i and the derivative

∂

∂y

(
1− (1− y)2f(y)

(1− θ)2f(θ)

)
= −(1− y)R′′(y)

(1− θ)2f(θ)
(38)
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is positive on the relevant range, since R is concave on the interval [θ̄, θH ].

As a second step, we show that Pi(θ) = 1 for all θ ≥ θc(i) is part of the buyer’s best response to

a seller strategy with Q(i|θ) = 0 for all i < ic(θ), and vice versa: If an investment i is never chosen

by a seller of type higher than θc(i), the buyer optimally never offers more than θc(i) when observing

i. Conversely, because the buyer, when observing an investment i, never offers more than θc(i), types

θ > θc(i) would get only θv(i)− c(i) by choosing i and therefore prefer the investment ic(θ) over i.

In the third step we show that all investments in the support of Q(.|θ) are best replies to the buyer’s

strategy. First we look at a seller of type θ ≥ θ̄. Such a seller’s expected payoff from choosing an

investment ic(θH) ≥ i ≥ ic(θ) is

v(i)

ˆ
max(θ, y)dPi(y)− c(i), (39)

which is the same as

v(i)

(
θPi(θ) +

ˆ
(θ,θc(i)]

ydPi(y)

)
− c(i). (40)

Because Pi is continuous on the interval [θ, θc(i)] we can use integration by parts to evaluate this

integral as

v(i)

(
θPi(θ) + θc(i)Pi(θ

c(i))− θPi(θ)−
ˆ θc(i)

θ
Pi(y)dy

)
− c(i), (41)

which is equal to

v(i)θc(i)−
ˆ θc(i)

θ
v(ic(y))dy − c(i). (42)

Since v(i)θc(i)−c(i) = uc(θc(i)) and since the derivative of uc is v◦ ic, this is the same as uc(θ). Hence,

a seller of type θ ≥ θ̄ in expectation gets his complete information payoff following any investment

i ∈ [ic(θ), ic(θH)].

Next, we consider seller types in the interval [θL, θ̄]. Since Pi(θ) = 0 for all θ < θ̄, i.e., the buyer

never makes an offer that is smaller than θ̄, all types in this interval accept all offers and therefore they

all have the same expected payoff following any investment they choose. Like the type θ̄, seller types

in this interval are indifferent between investments in [ic(θ̄), ic(θH)].

As the last step, it remains to show that all offers in the support of Pi are best responses to

the mixed strategy of the seller. Using Bayes’ Law, this means that we have to show that for all
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θ̄ ≤ θ ≤ θc(i) it holds that

(1− θ)
´ θ
θL
q(i|y)f(y)dy´ θc(i)

θL
q(i|y)f(y)dy

= 1− θc(i), (43)

where q(i|θ) denotes the probability of investment i given type θ (or the density at that point). Since

q(i|θ) = q(i|θ̄) for all θ ≤ θ̄ the claim in (43) is equivalent to

(1− θ)
(
F (θ̄)q(i|θ̄) +

ˆ θ

θ̄
q(i|y)f(y)dy

)
= (1− θc(i))

(
F (θ̄)q(i|θ̄) +

ˆ θc(i)

θ̄
q(i|y)f(y)dy

)
. (44)

For i = ic(θH), we have that q(i|θ) = (1−θH)2f(θH)
(1−θ)2f(θ)

and for all other investments i, it is equal to

a fraction with the same denominator and a numerator that only depends on i but not on θ. The

numerator thus cancels out and the claim in (43) is equivalent to

(1− θ)
(

F (θ̄)

(1− θ̄)2f(θ̄)
+

ˆ θ

θ̄

1

(1− y)2
dy

)
= (1− θc(i))

(
F (θ̄)

(1− θ̄)2f(θ̄)
+

ˆ θc(i)

θ̄

1

(1− y)2
dy

)
. (45)

Since θ̄ maximizes R it holds that (1 − θ̄)f(θ̄) = F (θ̄) (see equation 35). Consequently, the claim in

(43) is equivalent to

(1− θ)
(

1

1− θ̄
+

1

1− θ
− 1

1− θ̄

)
= (1− θc(i))

(
1

1− θ̄
+

1

1− θc(i)
− 1

1− θ̄

)
, (46)

which is true.

�

Proof of Proposition 2.

For any x2 : [θL, θH ] → [0, 1] that is part of an incentive compatible contract, let θ0 ∈ Θ be the

supremum of all types with x2(θ) = 0. The IC constraints then imply that uS(θ) = uS(θ0) for all types

θ ≤ θ0. In the buyer’s optimal contract it will then hold that x2(θ) = 0 and t(θ) = S(ic(1)) − uc(θ0)

for all θ ≤ θ0. We therefore now take such a threshold θ0 as given. Following standard methods

of finding an optimal screening contract we replace the IC constraints by the requirement that x2 is

non-decreasing and

uS(θ) = v(ic(1))

ˆ θ

θ0
x2(y)dy + uc(θ0). (47)

We then define a set of candidate functions as X0 := {x2 : [θ0, θH ]→ [0, 1], nondecreasing} and write
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the problem as

max
x∈X0

S(ic(1))− uc(θ0)−
ˆ θH

θ0
(R′(θ) + 1)x2(θ)v(ic(1))dθ (48)

s.t.

ˆ θ

θ0
x2(y)− v(ic(y))

v(ic(1))
dy ≥ 0. (49)

Because R′(θ) = (1 − θ)f(θ) − F (θ) ≥ −1, the probability x2(θ) must be as small as possible. This

suggests that IR should bind everywhere, which would imply that the optimal x2 is

x2(θ) =
v(ic(θ))

v(ic(1))
, (50)

which is indeed increasing. Therefore, once we have shown that the IR constraint is binding everywhere,

we have found the solution to the optimization problem. To do this, note first that because the objective

function in (48) can also be written as

S(ic(1))− uS(θH)−
ˆ θH

θ0
R′(θ)x2(θ)v(ic(1))dθ (51)

and because R′(θ) > 0 for all θ < θ̄ it follows that θ0 ≥ θ̄. Furthermore, for the part that depends on

x we can use integration by parts to get

uS(θH) +

ˆ θH

θ0
R′(θ)x2(θ)v(ic(1))dθ (52)

= (1− θH)f(θH)uS(θH)−R′(θ0)uc(θ0)−
ˆ θH

θ0
R′′(θ)uS(θ)dθ

≥ (1− θH)f(θH)uc(θH)−R′(θ0)uc(θ0)−
ˆ θH

θ0
R′′(θ)uc(θ)dθ

= uc(θH) +

ˆ θH

θ0
R′(θ)v(ic(θ))dθ

This shows that the objective function is maximized at the function x defined in equation (50).

Finally, we find the optimal θ0: Solving

max
θ0

S(ic(1))− uc(θ0)−
ˆ θH

θ0
(R′(θ) + 1)v(ic(θ))dθ (53)

yields θ̄ as the optimal cut-off value.
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Proof of Lemma 2. When the buyer observes an investment i ∈ I∗, she updates that the seller

must have an outside option in Θ∗(i). The share she offers will therefore also lie in Θ∗(i) ⊂ {θ1, ..., θH},

and it will never be more than the highest possible type would accept, i.e., the offer is not higher than

θm = max Θ∗(i). The profit received by type θm from choosing i is therefore equal to θmv(i) − c(i),

which would be strictly smaller than uc(θm) if i 6= im. Therefore i = im, which is the same as

θc(i) = θm. �

Proof of Lemma 3. Let ik ∈ I∗. From Lemma 2 we know already that U(P, ik, θk) = u∗(θk).

First, we show that the equality also holds for the lowest type, i.e. that U(P, ik, θ1) = u∗(θ1). To

this end, let θl be the lowest type with this property, i.e., U(P, ik, θl) = u∗(θl) and U(P, ik, θ) < u∗(θ)

for all θ < θl. Since no type below θl chooses ik, the offer following it cannot be lower than θl. This

implies that every lower type would get the same payoff as type θl when investing ik :

U(P, ik, θl) = v(ik)

ˆ
odPik(o)− c(ik) = U(P, ik, θ) for all θ ≤ θl. (54)

Payoff monotonicity then implies that U(P, ik, θ) = u∗(θ) for any type θ ≤ θl, hence l = 1.

Second, we show that for a seller of type θl+1, l ≥ 1, the investments that are best responses to P

can be found by maximizing Pi(θl)v(i) over all i ∈ I∗. More precisely, we claim that for all l ≥ 1

arg max
i∈I∗

U(P, i, θl+1) = arg max
i∈I∗

Pi(θl)v(i) ⊂ arg max
i∈I∗

U(P, i, θl). (55)

If this claim is true it verifies the lemma, since it implies that

ik ∈ arg max
i∈I∗

U(P, i, θk) ⊂ ... ⊂ arg max
i∈I∗

U(P, i, θ1). (56)

It remains to prove the claim, which we will do by induction. For l = 1 we have that

arg max
i∈I∗

U(P, i, θ1) = I∗ (57)

and for all i ∈ I∗

U(P, i, θ2) = u∗(θ1) + (θ2 − θ1)Pi(θ1)v(i). (58)

This expression is maximized over i whenever Pi(θ1)v(i) is maximized.
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Assume now that the claim is true for l ≥1. We will show that it also holds for l+ 1. Consider first

investments in the set I′ = arg maxi∈I∗ U(P, i, θl+1). For all i ∈ I′ it holds that type θl+2’s payoff is

U(P, i, θl+2) = u∗(θl+1) + (θl+2 − θl+1)Pi(θl+1)v(i), (59)

and hence

arg max
i∈I′

U(P, i, θl+2) = arg max
i∈I′

Pi(θl+1)v(i). (60)

In case that I′ = I∗, we are done, so assume now that the set I∗ \ I′ is nonempty. Investments

i ∈ I∗ \ I′ are not chosen by type θl+1, which means that the buyer will not make the offer θl+1 and

thus Pi(θl+1)v(i) = Pi(θl)v(i). Using the induction hypothesis, we have that for any i ∈ I∗ \ I′ and

i′ ∈ I′

Pi(θl+1)v(i) = Pi(θl)v(i) < Pi′(θl)v(i′) ≤ Pi′(θl+1)v(i′). (61)

This means that investment levels in I∗ \ I′ do not maximize Pi(θl+1)v(i) and therefore

arg max
i∈I∗

Pi(θl+1)v(i) = arg max
i∈I′

Pi(θl+1)v(i). (62)

For all i ∈ I∗ \ I′ it holds for type θl+2’s payoff that

U(P, i, θl+2) < u∗(θl+1) + (θl+2 − θl+1)Pi(θl+1)v(i). (63)

Comparing this payoff to the payoff from investing i′ ∈ I′ (equation 59), we can conclude that

arg max
i∈I∗

U(P, i, θl+2) = arg max
i∈I′

U(P, i, θl+2) ⊂ I′. (64)

The claim now follows from (60), (64) and (62).

�

Proof of Lemma 4. The first claim follows from Lemma 3, which says that for all im ∈ I∗ it holds

that U(P, im, θ) = u∗(θ) for all θ ≤ θm, and hence for all k < m

u∗(θk+1) = u∗(θk) + (θk+1 − θk)Pim(θk)v(im). (65)

To show the second claim of the lemma, note first that for any type θk with ik ∈ I∗ it must be true

that pkk > 0, because else U(P, ik, θk−1) would be too low: if pkk = 0, this payoff would be equal to

U(P, ik, θk−1) =
(
(1− pkk)θk−1 + pkkθk

)
v(ik)− c(ik) = θk−1v(ik)− c(ik) < uc(θk−1). (66)
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Next, assume that for m > k as in the lemma we have pmk = 0. Then

0 = Pim(θk)v(im)− Pim(θk−1)v(im) =
u∗(θk+1)− uc(θk)

θk+1 − θk
− uc(θk)− u∗(θk−1)

θk − θk−1
, (67)

and hence

uc(θk) = u∗(θk+1)
θk − θk−1

θk+1 − θk−1
+ u∗(θk−1)

θk+1 − θk
θk+1 − θk−1

. (68)

Since the function uc is strictly convex and

θk = θk+1
θk − θk−1

θk+1 − θk−1
+ θk−1

θk+1 − θk
θk+1 − θk−1

, (69)

it must on the other hand be true that

uc(θk) < uc(θk+1)
θk − θk−1

θk+1 − θk−1
+ uc(θk−1)

θk+1 − θk
θk+1 − θk−1

. (70)

Hence, we have found a contradiction to pmk = 0 and can conclude that pmk > 0. �

Proof of Proposition 3. Let ik ∈ I∗.When observing ik, the buyer’s expected profit from offering

θj is

(1− θj)
∑j

l=1 flqlk∑k
l=1 flqlk

. (71)

We know from Lemma 4 that to be consistent with the seller’s behavior, the buyer has to offer all θj

with ij ∈ I∗, j ≤ k with positive probability. Offering θk is consistent with profit maximization if

k∑
l=1

flqlk(1− θk) ≥
j∑
l=1

flqlk(1− θj) for all j, (72)

and offering θj with positive probability is possible if this condition holds with equality. As a first step,

we collect all inequalities that define the buyer’s behavior in an equilibrium (P,Q). We let

K := {k : ik ∈ I∗\{iH}} (73)

index all chosen investments that are strictly smaller than iH . We treat H separately because we have

to account for the fact that Q is a stochastic matrix, i.e., that the row entries add up to one. From

(72) we get that the following condition must hold for all j, k with j ≤ k and k ∈ K:

j∑
l=1

flqlk(θk − θj) +
k∑

l=j+1

flqlk(θk − 1) ≤ 0, (74)
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with equality if j ∈ K. Moreover, we have for all j ≤ k ∈ K

qjk ≥ 0. (75)

In addition, we have the same condition for the highest investment iH :

j∑
l=1

flqlH(θH − θj) +

H∑
l=1

flqlH(θH − 1) ≤ 0 (76)

for all j < H, with equality if j ∈ K. We also again have qjH ≥ 0 for all j ≤ H. Plugging in

qlH = 1−
∑

l≤k∈K qlk we get that for all j < H

j∑
l=1

∑
l≤k∈K

qlkfl(θj − θH) +
H−1∑
l=j+1

∑
l≤k∈K

qlkfl(1− θH) ≤ R(θH)−R(θj), (77)

with equality if j ∈ K, as well as ∑
j≤k∈K

qjk ≤ 1 (78)

We are going to treat the variables qjk as one big vector, denoted by q. The entries in q are indexed

by jk, k ∈ K, 1 ≤ j ≤ k, hence q ∈ Rn with n =
∑

k∈K k. Similarly, we define a vector µjk ∈ Rn by

µjklk = fl(θk − θj) for all l ≤ j and µjklk = fl(θk − 1) for all l > j and zero else. Furthermore, we define

a vector µj by µjlk = fl(θj − θH) for all l ≤ j and µjlk = fl(1 − θH) for all l > j. Last, let 1j denote a

vector with 1jjk = 1 for j ≤ k ∈ K and 0 else; and let ejk be a vector with ejkjk = 1 and 0 else.

With these definitions, our inequalities (75), (78), (74), (77) read

−ejkq ≤ 0 1 ≤ j ≤ k, k ∈ K (79)

1jq ≤ 1 j = 1, ...,H − 1 (80)

µjkq ≤ 0 for all k ∈ K, j < k and also ≥ 0 for j ∈ K (81)

µjq ≤ R(θH)−R(θj) j < H and also ≥ 0 for j ∈ K. (82)

If the entries qjk of the vector q are part of an equilibrium, then q constitutes a solution of this system

of inequalities. As the next step in the proof, we find a system of inequalities that is an alternative of

this system, i.e, we find a system that has no solution if and only if this one has a solution. We use

Theorem 22.1 in Rockafellar (1970) to get the following alternative system:
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H−1∑
j=1

βj +

H−1∑
l=1

δl(R(θH)−R(θl)) < 0 (83)

H−1∑
j=1

1jβj +
∑
jk

µjkγjk +
H−1∑
l=1

µlδl ≥ 0, (84)

where we are looking for coefficients βj ≥ 0, j = 1, ..H − 1, γjk (≥ 0 if j /∈ K), and δl (≥ 0 if l /∈ K).

That is, if there exists an equilibrium of the signaling game, then there are no such β, γ, δ that satsify

inequalities (83) and (84). Note that (84) concerns the components of a vector of dimension n. For

the subsequent analysis, it is convenient to write this inequality as an inequality in each coefficient jk

with k ∈ K and j ≤ k

βj +

j−1∑
i=1

γikfj(θk − 1) +

k−1∑
i=j

γikfj(θk − θi) +

j−1∑
l=1

δlfj(1− θH) +

H−1∑
l=j

δlfj(θl − θH) ≥ 0 (85)

Let k̂ = minK. We claim that k̄ = k̂ and first show that R(θl) ≤ R(θk̂) for all l < k̂. Assume not.

Then we can construct a solution by setting δl = γlk = 1 and δk̂ = γk̂k = −1 for all k ∈ K and all other

coefficients equal to zero. Plugging in these values, the first inequality (83) reads (R(θH) − R(θl)) −

(R(θH)−R(θk̂)) < 0 and is satisfied because we assumed that R(θl) > R(θk̂). The value of the second

inequality (85) depends on how k̂ and l compare to j and k, where due to the definition of k̂ it holds

that k ≥ k̂ > l. This second inequality is equal to θk− 1− θk + 1 + 1− θH − 1 + θH ≥ 0 if j > k̂ , equal

to θk − 1− θk + θk̂ + 1− θH + θH − θk̂ ≥ 0 if l < j ≤ k̂, and θk − θl − θk + θk̂ − θH + θl + θH − θk̂ ≥ 0

if j ≤ l. All of these simplify to 0 ≥ 0.

Similarly, one can show that R(θk̂+1) ≤ R(θk̂) is also necessarily true, because else there would be

a solution with δk̂+1 = γk̂+1k = 1 and δk̂ = γk̂k = −1. With these values, the first inequality would

read (R(θH)−R(θk̂+1))− (R(θH)−R(θk̂)) < 0, which holds if R(θk̂+1) > R(θk̂). As above, the second

inequality would be true with equality in all three cases (j > k̂+ 1, k̂ < j ≤ k̂+ 1, and j ≤ k̂). Hence,

we have shown that k̂ = k̄. 15

15Note that we could have shown more generally that K ⊂ {k with R(θk) ≥ R(θk+1)}.
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Next we show that K is an interval of consecutive numbers. Assume to the contrary that there is

a gap in K, i.e, that there exist l < m < h with m /∈ K, l = max {k ∈ K, k ≤ m} and h = min{k ∈

K, k ≥ m}. There is a λ ∈ (0, 1) with (1 − λ)θh + λθl = θm. Define δl = γlk = −λ, δm = γmk =

1, δh = γhk = −(1− λ) for all relevant k ∈ K. Then the first condition holds because R is concave on

K: λR(θl) + (1− λ)R(θh)−R(θm) < 0. That the second condition always holds with equality is seen

immediately if k ≤ l, for which this condition takes the form θm−θH−λ(θh−θH)−(1−λ)(θl−θH) = 0.

For the remaining case k ≥ h there has to be again a case distinction regarding j, each case leading

to the same result 0 ≥ 0. Thus concavity of R implies that there are no gaps in chosen investment,

K = {k̄, ..., H − 1} .

�

Proof of Proposition 4.

The buyer’s strategy was constructed to make the seller indifferent between the investments in the

support of his strategy. In this proof, we are therefore concerned with the seller’s strategy making the

buyer indifferent between the offers in the support of her strategy. Following investment ik, the buyer

is indifferent between all offers in {θk̄, ..., θk} if

(1− θl)
l∑

j=1

fjqjk = (1− θk̄)
k̄∑
j=1

fjqjk for all k ≥ l > k̄. (86)

With our definition of the seller’s strategies, we have for the right-hand side

(1− θk̄)
k̄∑
j=1

fjqjk = λk − λk+1 (87)

and for the left-hand side

(1− θl)
l∑

j=1

fjqjk = (1− θl)

 k̄∑
j=1

fj
λk − λk+1

R(θk̄)
+

l∑
j=k̄+1

fj
λk − λk+1

λj

 (88)

= (1− θl)(λk − λk+1)

 1

1− θk̄
+

l∑
j=k̄+1

(
1

1− θj
− 1

1− θj−1

)
= λk − λk+1.
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The buyer prefers θk̄ to θl < θk̄ if

(1− θl)
l∑

j=1

fjqjk ≤ (1− θk̄)
k̄∑
j=1

fjqjk. (89)

With qjk = qk̄k this condition reads

(1− θl)F (θl) ≤ (1− θk̄)F (θk̄) for all l < k̄ (90)

and hence is satisfied.

In the remainder of this proof we show that all qjk ≥ 0 and that they add up to one.

First, note that

R(θk)−R(θk−1)

θk − θk−1
=
fk(1− θk−1)

(θk − θk−1)
− F (θk) =

fk(1− θk)
(θk − θk−1)

− F (θk−1) (91)

and therefore

λk − λk+1 = (1− θk)
(
R(θk)−R(θk−1)

θk − θk−1
− R(θk+1)−R(θk)

θk+1 − θk

)
≥ 0, (92)

where the latter holds because R is concave on {θk̄, ..., θH}. Note further that for k = k̄

R(θk̄) ≥ λk̄+1 ⇔ (θk̄+1 − θk̄)F (θk̄) ≥ fk̄+1(1− θk̄+1)⇔ R(θk̄) ≥ R(θk̄+1). (93)

Last,

H∑
k=j

qjk =

H∑
k=j

λk − λk+1

λj
= 1 for all j > k̄ (94)

H∑
k=k̄

qjk̄ = 1−
λk̄+1

R(θk̄)
+

H∑
k=k̄+1

λk − λk+1

R(θk̄)
= 1 for all j ≤ k̄. (95)

�
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