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1 Introduction

The theory of in�nitely repeated games is used to address a wide range of topics in

economics and social sciences, including long-term (�nancial) contracting, inter-

national agreements, employment relations, and cartels. Results that help to �nd

equilibria in these games and numerical procedures to quickly calculate the payo�

set in examples are therefore of great importance. In this paper, we study general

in�nitely repeated games with arbitrary discount factors, imperfect public moni-

toring, and observable monetary transfers. We �rst show that all public perfect

equilibrium (PPE) payo�s can be implemented with a simple class of stationary

equilibria that use stick-and-carrot punishments, in which a deviation from a re-

quired monetary transfer is punished by playing a punishment action pro�le for

exactly one period. Based on this result, we develop an algorithm that allows

quick computation of optimal stationary equilibria and the set of pure strategy

equilibrium payo�s for all discount factors.1 A variation of the algorithm computes

inner approximations of the set of mixed strategy PPE payo�s.

Our results contribute to two streams of literature. First, they contribute to the

existing literature that studies repeated games with monetary transfers. Examples

include Levin [16, 17] and Malcomson and MacLeod [20] on principal agent games

and employment relations, Doornik [6] and Rayo [21] on partnerships and team

production, Atkeson [4] and Kletzer and Wright [12] on sovereign lending, Kli-

menko, Ramey and Watson [13] on international trade agreements, or Harrington

and Skrzypacz [10] on cartels that use monetary transfers. The literature typi-

cally restricts attention to stationary equilibria in which a single action pro�le is

repeated in every period and deviations from a required payment are punished by

reverting to a Nash equilibrium of the stage game. Levin [17] shows that such equi-

libria can indeed implement every Pareto e�cient payo� in principal agent games,

and Rayo [21] extends the result to a class of team production problems with

multiple agents that commonly observe signals that are independently distributed

when conditioning on the played action pro�le. Our paper provides a character-

ization for general games. This includes cases in which in�nite Nash reversion

is not an optimal punishment and cases with signals that are not conditionally

1A software package, programmed in R, that implements the algorithm is available on the

second author's website http://www.wiwi.uni-bonn.de/kranz/software.htm

For a description of the software and several examples, see Kranz [14].
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independently distributed.

Second, our paper contributes to the literature that develops general methods

to compute the set of pure strategy equilibrium payo�s for repeated games with

arbitrary discount factors. Abreu, Pearce and Stacchetti ([3], henceforth APS),

develop a conceptual algorithm to compute the payo� sets for repeated games

with imperfect public monitoring and arbitrary discount factors. It is based on the

repeated application of a contraction operator on a set of candidate payo�s. Yet,

one cannot directly implement this algorithm on a computer because the structure

of equilibrium payo� sets can become extremely complicated as is nicely illustrated

for a prisoners' dilemma game by Mailath, Obara, and Sekiguchi [18]. Judd,

Yeltekin and Conklin [11] analyze games of perfect monitoring and assume a public

randomization device, which guarantees that payo� sets are convex polyhedrons.

They develop a method to compute upper and lower approximations for the set

of pure strategy subgame perfect equilibrium payo�s and to construct strategy

pro�les that can support payo�s from the lower approximation. Their method is

still limited in so far that �nding �ne approximations for the equilibrium payo� sets

for several discount factors remains computationally expensive and it is restricted

to games with perfect monitoring.

Allowing for monetary transfers, we develop a much quicker algorithm that can

also be applied to games with imperfect public monitoring. We show that a single

number can describe all the information contained in a candidate set of equilib-

rium payo�s and the discount factor that is relevant to determine which action

pro�les and payo�s can be implemented. This number has a natural interpretation

as the totally available liquidity in a static game with enforceable payments and

exogenous liquidity constraints. Re-optimization techniques for linear program-

ming allow to quickly determine the implementable payo�s for all possible levels

of liquidity. One implication is that our algorithm directly computes the payo�

sets for the whole interval [0, 1) of possible discount factors.

The algorithm is particularly powerful in settings in which closed form solutions for

the static problems with exogenous liquidity constraints exist. One such case are

games with perfect monitoring, as long as attention is restricted to pure strategy

equilibria. To compute the sets of pure strategy SPE payo�s for all discount factors

under perfect monitoring, it essentially su�ces to calculate stage-game best-reply

payo�s and sort the stage game action pro�les.2 For the characterization, one

2See also Kranz and Ohlendorf [15], where we derive a related result for two player games with
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can restrict attention to stationary equilibria whose continuation equilibria before

every payment stage, except possibly the very �rst payment stage, are all Pareto

e�cient. We exemplify in Appendix A that this result does not extend to mixed

strategy equilibria in games with perfect monitoring. A positive probability of

ine�cient continuation play, e.g. in the form of money burning, before payment

stages on the equilibrium path can be required for optimal mixed strategy station-

ary equilibria.

For games with imperfect public monitoring, there also sometimes exist analytical

closed-form solutions for the static problems with exogenous liquidity constraints.

We exemplify how one can obtain closed form solutions for the equilibrium payo�

sets of the repeated game using a noisy prisoners' dilemma game without condi-

tional independent signal distribution. If no closed-form solutions can be obtained,

one can compute the sets of equilibrium payo�s by solving a series of linear opti-

mization problems.

For the largest part of the paper, we assume that players can burn money, i.e.

make transfers to a non-involved third party. Money burning is a very explicit

way of generating ine�cient continuation play, which can be necessary in optimal

equilibria after certain signals. Other forms of ine�cient continuation play can, of

course, serve a similar function. To better understand the role of money burning,

we also characterize the payo� set in repeated games in which players do not burn

money but have access to a public correlation device. In this framework, every

equilibrium payo� can be implemented by a modi�cation of stationary equilibria:

with some probability, which can depend on the realized signal, there will be a

transition to a collective punishment state. We show how the equilibrium payo�

set for the case without money burning can be computed by considering stationary

equilibria that allow for money burning but satisfy an additional constraint on the

maximal amount of money burning. In general, the set of equilibrium payo�s can

shrink if money burning is not possible. If, however, the stage game has a Nash

equilibrium that gives each player her min-max payo�, the possibility of money

burning does not enlarge the equilibrium payo� set of the repeated game. For pure

perfect monitoring in order to study renegotiation-proofness. It is also interesting to compare

our results to Cronshaw and Luenberger [5], who provide a characterization of the set of strongly

symmetric pure strategy subgame perfect equilibria for repeated symmetric games with perfect

monitoring and a public randomization device. While in their set-up strong symmetry allows a

simple characterization of the payo� set, in our set-up monetary tranfers allow a characterization

that is almost as simple.
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strategy equilibria in games with perfect monitoring, money burning can only be

necessary to implement a Pareto dominated equilibrium payo�

The remainder of the paper is organized as follows: Section 2 describes the model

and stationary strategy pro�les. Section 3 derives the main results. In Section

4, we show how the results simplify for games with perfect monitoring and illus-

trate the resulting algorithm with a simple Cournot game. Section 5 illustrates

for a noisy prisoners' dilemma game how closed-form analytical solutions can be

obtained for games with imperfect public monitoring. In Section 6, we explore the

case without money burning. Section 7 brie�y concludes. Proofs are relegated to

the Appendix.

2 Model and Stationary Strategy Pro�les

2.1 The game

We consider an in�nitely repeated n-player game with imperfect public monitoring

and common discount factor δ ∈ [0, 1). The timing in each period is as follows:

at the beginning of a period, there is a payment stage in which the players have

the opportunity to make non-negative monetary transfers to each other or to burn

money. In a subsequent action stage, the players play a simultaneous move stage

game, and then there is again a payment stage in which they can make monetary

transfers.3

The stage game played in the action stage has the following structure. Each

player i has a �nite pure action space Ai.
4 The set of stage game action pro�les

is given by A = A1 × ...× An. We denote by a ∈ A a pure action pro�le and by

α ∈ 4A1 × ... × 4An a mixed action pro�le of the stage game. The support of

a mixed action αi of player i, i.e., the set of pure actions that player i plays with

positive probability, is denoted by supp(αi).

After an action pro�le a ∈ A is chosen, nature draws a commonly observed signal

y from a �nite signal space Y. The probability distribution of signals depends on

3That we allow two payment stages emphasizes that players can make transfers at any point

in the game, and it simpli�es some formulae. However, the set of equilibrium payo�s stays the

same if payments can be made only at the beginning of a period.
4Many results for pure strategy equilibria extend to action spaces that are compact subsets

of Rm.
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the selected action pro�le a, and is given by a function φ(y|a) with

φ(y|a) ≥ 0 for all y ∈ Y, a ∈ A,∑
y∈Y

φ(y|a) = 1 for all a ∈ A.

Player i's stage game payo� depends only on the signal y and on her action ai and

is given by a function ĝi : Y × Ai → R. We denote by gi(α) player i's expected

payo� given a mixed action pro�le α. The joint payo� from an action pro�le α is

denoted by

G(α) =
n∑
i=1

gi(α).

In contrast to the action choices, we assume that all transfers are commonly ob-

servable. All players choose their monetary transfers simultaneously. We also

allow the players to burn money (one can think of the possibility to give money to

charity or any other non-interested third party). To have a bounded action space,

we assume for convenience that there exists an upper bound on a player's trans-

fers. However, this upper bound shall be su�ciently large, so that we essentially

consider a situation of unlimited liability. Players are risk-neutral and utility is

linear in money and stage game payo�s. Thus, a player's payo� in a period in

which action pro�le a has been played and signal y has been realized is given by

ĝi(y, ai) minus the sum of the net payments that player i has made in the two

payment stages.

Unless stated otherwise, our results apply for the case that attention is restricted

to pure strategy equilibria and also for the case that players can mix over actions.

The variable A shall denote the set of pure action pro�les A in the former case

and the set of mixed action pro�les 4A1 × ... × 4An in the latter. We assume

that the stage game has a Nash equilibrium in A.
A public history h of the repeated game is a list of all monetary transfers and

public signals that have occurred before a given point in time. A public strategy

σi of player i in the repeated game maps every public history that ends before the

action stage into an action αi ∈ Ai, and every public history that ends before a

payment stage into a vector of monetary transfers. A public perfect equilibrium is

a pro�le of public strategies that constitutes mutual best replies after every public

history. We will restrict attention to public perfect equilibria.5

5If attention is restricted to pure strategy equilibria, the restriction to public perfect equilibria
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Payo�s and continuation payo�s of the repeated game are de�ned as average dis-

counted expected payo�s, i.e. as the expected discounted sum of future payo�s

multiplied by (1 − δ). We denote by u0(σ) the vector of payo�s in the repeated

game given a strategy pro�le σ.

2.2 Stationary strategy pro�les

In this section, we introduce a class of stationary strategy pro�les that allow a

simple characterization of PPE payo�s for every discount factor. These stationary

strategy pro�les have the feature that the same action pro�le is played in every

period on the equilibrium path and punishments have a simple stick-and-carrot

structure.

A repeated game strategy speci�es gross amounts p̃ij ≥ 0 that player i transfers

to player j and an amount p̃i0 that player i burns. For convenience, however,

we will describe all monetary transfers in stationary strategy pro�les by the net

payments players make. It is straightforward that for any vector of net payments

p = (p1, ..., pn) ∈ Rn with
∑n

i=1 pi ≥ 0, one can �nd corresponding gross transfers

p̃ij generating these net payments, i.e.

pi = p̃i0 +
n∑
j 6=i

(p̃ij − p̃ji) , (1)

while there is no player who simultaneously makes and receives gross transfers.6

A stationary strategy pro�le is characterized by n + 2 states. Play starts in the

up-front payment state, in which players are required to make up-front payments

is without loss of generality. The set of pure strategy PPE payo�s is the same as the set of pure

strategy sequential equilibrium payo�s (see APS). This equivalence does not hold for mixed

strategies, however.
6Concretely, we can specify gross transfers as follows. We denote by IP = {i|pi > 0} the set

of net payers and by IR = {i|pi ≤ 0} ∪ {0} the set of net receivers including the sink for burned

money. For any receiver j ∈ IR, we denote by

sj =
|pj |∑
j∈IR |pj |

the share she receives from the total amount that is transferred or burned and assume that each

net payer distributes her gross transfers according to these proportions

p̃ij =

{
sjpi if i ∈ IP and j ∈ IR
0 otherwise.
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p0. Afterward, play can be in one of n + 1 states, which we index by k ∈ K =

{e, 1, 2, ..., n}. We call the state k = e the equilibrium state and k = i ∈ {1, ..., n}
the punishment state of player i. A stationary strategy pro�le speci�es for each

state k ∈ K an action pro�le αk ∈ A that will be played in the action stage.

Furthermore, it speci�es for each state k ∈ K a payment function pk : Y → Rn

that maps the signal y from the preceding action stage into a required vector of

payments. Payments in the beginning of the period only occur in the up-front

payment state in the �rst period.

The state transitions are as follows: If no player unilaterally deviates from a re-

quired payment, the new state becomes the equilibrium state: k = e. If player i

unilaterally deviates from a required payment, the new state becomes the pun-

ishment state of player i, i.e. k = i. In all other situations the state does not

change.

A stationary strategy pro�le σ is completely characterized by a vector of up-front

payments p0, its action plan (αk)k∈K that speci�es one action pro�le for every

state k and its payment plan (pk)k∈K that speci�es a payment function for every

state k. For a given discount factor δ, we call a stationary strategy pro�le σ a

stationary equilibrium if σ constitutes a public perfect equilibrium of the repeated

game. We denote by (αk, pk)k∈K a stationary strategy-pro�le without up-front

payments and by Σ0 the set of stationary equilibria without up-front payments.

The following de�nitions are useful for the characterization of stationary equilibria.

For any payment function p, we let E[pi|α] denote the expected payments of

player i given action pro�le α; expectations are taken over the signal distribution

and mixing probabilities. For any stationary strategy pro�le player i's expected

repeated game payo� at the beginning of a period in the equilibrium state is

ui(σ) = gi(α
e)− E[pei |αe].

Whenever the equilibrium in question is clear from the context, we will suppress

the dependence on σ. Similarly, the joint equilibrium state payo� is given by

U(σ) = G(αe)−
n∑
i=1

E[pei |αe],

where the sum on the right hand side denotes the expected amount of money that

is burned on the equilibrium path. Player i's continuation payo� at the beginning

of his punishment state is denoted by

vi(σ) = (1− δ)(gi(αi)− E[pii|αi]) + δui.
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We call vi player i's punishment payo�. We denote the sum of punishment payo�s

by

V (σ) =
n∑
i=1

vi.

3 Main Results

3.1 Characterization with Optimal Stationary Equilibria

Using the one shot deviation principle, we now establish the constraints that a

stationary strategy pro�le without up-front payments σ = (αk, pk)k has to satisfy

to be a stationary equilibrium. There are three types of constraints, which we call

payment constraints, budget constraints, and action constraints.

Payment constraints Given that player i has an equilibrium payo� of ui and

a punishment payo� of vi, he is never willing to make a higher payment than

pmax
i ≡ δ

1− δ
(ui − vi).

A stationary equilibrium thus must satisfy the following payment constraints for

all states k ∈ K:

pki (y) ≤ pmax
i for all i, y. (PC-k)

Budget constraints Even though players can burn money, they cannot get any

outside funding. In every state k, the following budget constraints must therefore

be satis�ed:
n∑
i=1

pki (y) ≥ 0 for all y. (BC-k)

Action constraints There are no incentives to deviate from any pure action in

the support of the mixed action pro�les for state k ∈ K if and only if

gi(ai, α
k
−i)− E[pki |ai, αk−i] ≥ gi(âi, α

k
−i)− E[pki |âi, αk−i], (AC-k)

for all i, ai ∈ supp(αki ) and âi ∈ Ai.

These action constraints imply that player i must have the same expected payo�

for all pure actions in the support of αki .

Up-front payments Next, we describe how the possibility of up-front payments

transforms the set of feasible payo�s. Up-front payments are incentive compatible
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if they do not exceed pmax
i = δ

1−δ (ui − vi) for any player. Incentive compati-

ble up-front payments allow any distribution of the joint equilibrium payo� that

guarantees every player at least his punishment payo�. This leads to the following

straightforward result:

Proposition 1 If there exists a stationary equilibrium σ with joint equilibrium

payo�s U and punishment payo�s v = (v1, ..., vn) then every payo� in the simplex

{u0 ∈ Rn |
n∑
i=1

u0i ≤ U and u0i ≥ vi for all i} (2)

can be achieved by some stationary equilibrium that di�ers from σ only in the

up-front payments.

Optimal stationary equilibria We will show that every public perfect equi-

librium can be implemented by a set of optimal stationary equilibria, which are

de�ned as follows:

De�nition 1 We say a stationary equilibrium σ is optimal if there does not exist

another stationary equilibrium that implements a higher di�erence U(σ)−V (σ) of

joint equilibrium state payo�s and joint punishment payo�s. An action plan and

payment plan are optimal if they are the action plan and payment plans of an

optimal stationary equilibrium.

By maximizing the di�erence U −V , optimal stationary equilibria simultaneously

achieve the highest possible joint payo�s U and the lowest punishment payo�s vi

for every player i that can be achieved with any stationary equilibrium. Formally

this result will be an implication of Theorem 1, but we want to provide an intuition

here. Looking at the constraints for a stationary equilibrium, one �nds that across

states the constraints are solely linked by the right hand sides of the payment

constraints δ
1−δ (ui− vi), which depend on both equilibrium state and punishment

payo�s. This means that if one can implement a lower punishment payo� vi for

some player i, the only e�ect on the constraints for the other states k 6= i is

that the payment constraints of player i are relaxed. This means that similar to

Abreu's [1] simple strategy pro�les for games with perfect monitoring, a harsher

punishment of player i facilitates the implementation of harsher punishments for

other players and the implementation of more e�cient equilibrium play.
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As will be seen more clearly in Section 3.2, a related logic applies for the equilib-

rium state: if a change in αe allows to implement a higher joint equilibrium state

payo� U , it is always possible to implement harsher punishments. A rough intu-

ition for why only the joint equilibrium payo�s matter, is that payments functions

can always be structured such that the payment constraints between players are

smoothed.

We can now state our main result.

Theorem 1 All public perfect equilibrium payo�s can be implemented by optimal

stationary equilibria that only di�er in their up-front payments.

In the proof of Theorem 1, the optimal stationary equilibrium is derived from

PPE equilibria that implement the highest joint PPE payo� and the lowest PPE

payo�s for each player, respectively. An optimal action plan is formed from the

�rst period action pro�les of these equilibria. A payment plan is chosen such that

continuation payo�s in the stationary equilibrium match the continuation payo�s

of these equilibria. Because the proof is done without knowledge of the structure of

these PPE equilibria, it is not constructive and does not show how optimal action

and payment plans can be found. The next subsection addresses this problem.

3.2 Finding Optimal Stationary Equilibria

A brute force method

Optimal action and payment plans solve the following optimization problem:

max
(αk)k∈K ,(pk)k∈K

U − V

s.t. (PC-k), (BC-k), (AC-k), for all states k ∈ K.

If one �xes an action plan (αk)k, one can �nd a corresponding payment plan that

maximizes U − V by solving the linear program

max
{pk}k∈K

U − V (LP-PP)

s.t. (PC-k), (BC-k), (AC-k), for all states k ∈ K.

If we restrict attention to pure strategy equilibria, a brute force method to �nd

optimal stationary equilibria is to solve this optimization problem for all possible

(pure) action plans (ak)k ∈ An+1. Unfortunately, the number of action plans can
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quickly grow very large, which makes this method ill suited for larger stage games.7

Another drawback is that one has to repeat the computation for every discount

factor of interest.

Basic idea of a faster algorithm We will now develop results that yield an

algorithm, which can handle quite large stage games and will directly compute

the pure strategy equilibrium payo� sets for all discount factors δ ∈ [0, 1). For

mixed strategy equilibria the results do not yield an exact algorithm but suggest

approximation methods. The basic idea is that one �rst solves a series of static

problems with enforceable payments for each state and afterwards combines these

solutions to determine optimal stationary equilibria for all discount factors.

The static problem Consider the following static problem. The stage game

is played once and there exist enforceable contracts that specify for each player

i = 1, .., .n and every signal y ∈ Y a vector of gross monetary transfers to other

players and an amount of money burning. From an incentive perspective, only

net payments are relevant. We therefore describe an enforceable contract by a

payment function p(.) that speci�es the net payments pi(y) of player i if signal y

realizes.

The possible payments that player i can make shall be bounded by an exogenously

given liquidity constraint λiL ≥ 0, with L ≥ 0, λi ≥ 0 and
∑n

i=1 λi = 1. This

means the totally available liquidity across all players is given by L and λ denotes

the liquidity distribution.

We say that an action pro�le α ∈ A can be implemented with a payment function

p(.) in the static problem given liquidity allocation λL, if the following payment,

budget and action constraints hold:

pi(y) ≤ λiL for all i, y, (PC)

n∑
i=1

pi(y) ≥ 0 for all y, (BC)

gi(ai, α−i)− E[pi|ai, α−i] ≥ gi(âi, α−i)− E[pi|âi, α−i], (AC)

for all i, ai ∈ supp(αi) and âi ∈ Ai.

7For example, in a discretized Cournot duopoly in which each output pro�les are chosen

from a 100 x 100 grid, there are ten thousand action pro�les but one trillion di�erent action

plans.
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Whether an action pro�le α can be implemented with some payment function and

how much money needs to be burned, does not depend on the liquidity distribu-

tion λ, but only on the total liquidity L. More precisely, we have the following

straightforward result:

Lemma 1 If the payment function p can implement an action pro�le α for the

liquidity allocation λL then the payment function p̃ with

p̃i(y) = pi(y) +
(
λ̃i − λi

)
L (3)

can implement α for the liquidity allocation λ̃L.

Liquidity Requirement We de�ne the liquidity requirement L(α) of an action

pro�le α as the minimum total liquidity L that is necessary to implement α in the

static problem.8 Because of Lemma 1, the liquidity requirement is independent

of the actual liquidity distribution λ. It is given as the solution to the following

linear program:

L(α) = min
p,L≥0

L s.t. (PC), (BC), (AC). (LP-L)

To �nd closed-form solutions for L(α) in speci�c examples, it will often be conve-

nient to solve (LP-L) with a liquidity distribution that gives all liquidity to a single

player or distributes liquidity equally across players. The liquidity requirement of

an action pro�le α is 0 if and only if α is a Nash equilibrium of the stage game.

Equilibrium state For a given value of total liquidity L ≥ L(α), we denote by

U e(L, α) the maximum expected joint payo� that can be implemented with action

pro�le α:

U e(L, α) = max
p

(
G(α)−

n∑
i=1

E[pi|α]

)
s.t. (PC),(BC), (AC). (LP-e)

Lemma 1 implies that the solution to the linear program (LP-e) is independent

of the chosen liquidity distribution λ. Observe that U e(L, α) is bounded, weakly

increasing and concave in L, and also piece-wise linear with a �nite number of

kinks.9 Appendix B explains a method that exploits these attributes in order to

quickly compute U e(L, α) for all values of L.

8Note that it depends on the signal structure whether an action pro�le can be implemented

at all. For an action pro�le that cannot be implemented, the required liquidity would be in�nite.
9That Ue(L,α) is weakly increasing and bounded is obvious. Concavity and piece-wise

linearity follows from standard results on linear optimization.
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Punishment states We now de�ne a punishment payo� for player i in the static

problem. For any given action pro�le α, liquidity L ≥ L(α) and some arbitrary

liquidity distribution λ, we de�ne

vi(L, α) = min
p

(gi(α) + λiL− E[pi|α]) s.t. (PC),(BC), (AC). (LP-i)

Again, because of Lemma 1, vi(L, α) is independent of the liquidity distribution

λ. Note that vi(L, α) is the lowest expected payo� that can be imposed on player

i in the static problem if no liquidity is given to player i.

We denote the stage game best reply payo� or cheating payo� of player i by

ci(α) = max
âi∈Ai

gi(âi, α−i).

Lemma 2 It holds that vi(L, α) ≥ ci(α). Furthermore, vi(L, α) = ci(α) if gi(α) =

ci(α).

This lemma is easiest understood for the case λi = 0. That no punishment payo�

below ci(α) can be implemented is obvious. If all pure actions ai in the support

of αi are stage game best replies to α−i, then one can always implement player's

i stage game payo� ci(α) by never making any transfer to player i. If some pure

action ai in the support is not a best reply to α−i, then gi(α) < ci(α) and player

i must receive positive transfers after some signals. These transfers can have the

e�ect that player i's punishment payo� cannot be pushed down to his cheating

payo� ci(α). This can be most clearly seen for a signal distribution with full

support, i.e. φ(y|a) > 0 for all a ∈ A and all y ∈ Y : player i would then receive

positive expected payments under every deviation.

Similar to U e(L, α), the function vi(L, α) is bounded, weakly decreasing, convex

and piece-wise linear in L (with a �nite number of kinks); e�cient computation

techniques are also described in Appendix B.

Relation between static problems and stationary equilibria For a station-

ary equilibrium σ of the repeated game, it is helpful to think of the sum of the

right-hand side of payment constraints,

L(σ) ≡ δ

1− δ
(U(σ)− V (σ)) ,

as the total liquidity that is endogenously generated by the threat to punish players

who fail to make a payment. Similarly, one can think of

λi(σ) ≡ ui(σ)− vi(σ)

U(σ)− V (σ)
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as the fraction of total liquidity given to player i.

Assume σ is a stationary equilibrium with an action plan (αk)k. One can then

obviously implement a payo� of at least U(σ) in the static problem (LP-e) given

total liquidity L(σ) and action pro�le αe. A similar result holds for the punishment

payo�s. This means we have U(σ) ≤ U e(L(σ), αe) and vi(σ) ≥ vi(L(σ), αi). An

implication of Proposition 2 below will be that if σ is an optimal stationary equilib-

rium, it must be the case that U(σ) = U e(L(σ), αe) and vi(σ) = vi(L(σ), αi). This

result is not obvious for the following reason. If we solve the static problem (LP-e)

with total liquidity L(σ) and liquidity distribution λi(σ), there is no requirement

that the resulting payment function pe has to satisfy g(αe) − pe = u(σ). This

means a payment plan derived from solving the separate static problems does not

necessary lead to the liquidity distribution λi(σ) and there is no guarantee that

such a payment plan is consistent with the payment constraints of any stationary

equilibrium.

Yet, we will show in Proposition 2 that no matter for which liquidity distributions

the static problems have been solved, one can transform the resulting payment

plan such that it will be consistent with all constraints of a stationary equilibrium

and implement the same joint equilibrium and punishment payo�s as in the static

problems.

Optimal action plans Before stating the result, we require a few more de�nitions

in order to link the solutions of the static problems to optimal stationary equilibria.

We denote by

αe(L) ∈ arg max
α∈A|L≥L(α)

U e(L, α)

an action pro�le for which the highest joint payo� can be implemented in a static

problem with total liquidity L. The corresponding highest joint payo� is denoted

by

Ū e(L) = U e(L, αe(L)).

Similarly, we de�ne for the static problem of player i's punishment state

αi(L) = arg min
α∈A|L≥L(α)

vi(L, α)

and

v̄i(L) = vi(L, αi(L)).

From the functions Ū e(L) and v̄i(L) we can derive an upper bound on the total

liquidity that can be endogenously generated by any stationary equilibrium given
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discount factor δ. It is implicitly de�ned by the �xed point condition:

L̄(δ) ≡ max

{
L|L =

δ

1− δ

(
Ū e(L)−

n∑
i=1

v̄i(L)

)}
. (4)

To see that a non-negative L̄(δ) does always exist, consider the right-hand side,

δ
1−δ (Ū

e(L)−
n∑
i=1

v̄i(L)), as a function of L. This function is bounded from below by

0, weakly increasing, and it stays constant at an upper bound once L is su�ciently

large. Thus the set of �xed points, in which L equals the right hand side, is

nonempty and an application of Tarski's �xed point theorem shows that it has a

maximum.

Proposition 2 Given discount factor δ, there exists an optimal stationary equi-

librium σ with action plan (αk(L̄(δ)))k joint equilibrium payo�s U(σ) = Ū e(L̄(δ))

and punishment payo�s vi = v̄i(L̄(δ)) for every player i = 1, ..., n.

Together with our previous results, Proposition 2 implies:

Corollary 1 The set of public perfect payo�s for discount factor δ is given by the

following simplex

{u0 ∈ Rn |
n∑
i=1

u0i ≤ Ū e(L̄(δ)) and u0i ≥ v̄i(L̄(δ))}. (5)

Structure of the algorithm The algorithm to compute the sets of pure strategy

PPE payo�s for all discount factors has the following structure.

First, we compute Ū e(L) for all levels of L. To determine this upper envelope,

it is typically not necessary to compute the function U e(L, a) for all pure action

pro�les a ∈ A. For example, if the joint equilibrium payo� G(a) of an action

pro�le a is lower than the joint payo� of a stage game Nash equilibrium, a is

clearly not an optimal equilibrium state pro�le and we can dismiss it without any

further calculation. In Appendix B, we discuss several heuristics that speed up

the calculation of Ū e(L).

The second step is to compute in a similar fashion the lower envelopes of punish-

ment payo�s v̄i(L). If the stage game is symmetric, v̄i(L) will be the same for all

players and it su�ces to compute it for one player.
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The third step is to compute L̄(δ) for all discount factors. For this step, it is

helpful to work with discount rates r = 1−δ
δ

and to de�ne the function

r∗(L) =

Ū e(L)−
n∑
i=1

v̄i(L)

L
, (6)

which describes the discount rate for which a stationary equilibrium with action

plan (āk(L))k generates liquidity L.10 The numerator on the right hand side of

(6) is a bounded, piece-wise linear function in L. One can obtain L̄(δ) for all

discount factors δ ∈ (0, 1), by piece-wise inverting the function r∗(L). We then

know optimal action plans (αk(L̄(δ)))k, and the variables determining the payo�

sets Ū e(L̄(δ)) and v̄i(L̄(δ)), i.e. we basically have solved the game for all discount

factors. We illustrate this procedure in Sections 4 and 5.

Approximating the mixed strategy PPE payo� set

From any �nite grid of possible mixed action pro�les, we can derive an inner

approximation for the set of mixed strategy PPE payo�s. For every mixed action

α in the grid, we can exactly evaluate U e(L, α) and vi(L, α). These values are

independent of the other mixed action pro�les included in the grid, because it

su�ces to check deviations to a pure actions. The evaluated values from the grid

generate a lower bound for the envelope Ū e(L) over all mixed action pro�les, and

similarly an upper bound for v̄i(L).11 These bounds can be used to derive an inner

approximation of the mixed strategy PPE payo� sets in a similar way as we derive

the exact pure strategy PPE payo� set.

4 Perfect monitoring

With perfect monitoring, the played action pro�le is perfectly observable by all

players. This means that we have a game with perfect monitoring if the signal

10If the stage game has a Nash equilibrium in pure strategy, we set r∗(0) = ∞, otherwise

r∗(L) is not de�ned for su�ciently low L.
11Parametric linear programming methods can be helpful for approximating Ūe(L) and

vi(L,α). For any �xed support of mixing probabilities, a continuous change in the mixing prob-

abilities changes the coe�cients of the corresponding linear programs continously. Yet, a change

in the support also changes the set of action constraints.
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space is equal to the pure action space, i.e. Y = A and the signal distribution is

φ(y|a) =

{
1 if y = a

0 if y 6= a
.

This section provides a simple algorithm to compute the payo� sets of all pure

strategy SPE for games of perfect monitoring. To implement an action pro�le a in

the static problem, one can use a payment function p̂ that requires each player i

to pay ci(a)− gi(a) following any signal (a′i, a−i) with a
′
i 6= ai, and to pay nothing

otherwise. The liquidity requirement is given by

L(a) =
n∑
i=1

(ci(a)− gi(a)) . (7)

That this liquidity su�ces to implement a can be seen by considering the liquidity

distribution λi = ci(a)−gi(a)
L(a)

. That this liquidity is necessary follows from summing

up the action and payment constraints over all players.

With the payment function p̂, no money will be burned on the equilibrium path.

Thus, for all L ≥ L(a) we �nd that the maximal implementable joint payo�s are

equal to the joint stage game payo�s:

U e(L, a) = G(a).

To calculate the minimal punishment payo�s vi(L, a) for player i and an action

pro�le a, consider a liquidity distribution λ that gives no liquidity to player i,

i.e. λi = 0. It follows from Lemma 1 that a can then be implemented with the

payment function p+ λL(a)− (c(a)− g(a)). We thus �nd that

vi(L, a) = ci(a),

i.e., player i's minimal punishment payo� is always equal to his stage game cheating

payo� under his punishment pro�le ai. These closed form solutions simplify the

computation of optimal equilibria for all discount factors considerably.

Note that these results do not extend to the case of mixed strategies. In particu-

lar, money burning can occur under perfect monitoring once mixed strategies are

allowed, as we show with an example in Appendix A. We also show there that

money burning cannot be optimal as soon as there is one player who plays a pure

strategy.

Illustrating the algorithm for perfect monitoring We now exemplify the

perfect monitoring version of the algorithm for a simpli�ed Cournot game taken
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from [1]. Two �rms simultaneously choose either low (L), medium (M), or high

(H) output and stage game payo�s are given by the following matrix:

L M H

L 10,10 3,15 3,15

M 15,3 7,7 7,7

H 7,0 5,-4 5,-4

Step 1: The �rst step is to create a list of candidates for optimal equilibrium

action pro�les. We order all action pro�les a ∈ A decreasingly in their joint payo�

G(a) and break ties by putting action pro�les with a lower liquidity requirement

L(a) �rst. Then we remove all action pro�les from the list that do not have a

strictly lower liquidity requirement than all earlier action pro�les in the list. In

the example, we get the following list:12

No. ae G(ae) L(ae)

1. (L,L) 20 10

2. (L,M) 18 4

3. (M,M) 14 0

Note that if the stage game has at least one Nash equilibrium then the last pro�le

of the list is always the Nash equilibrium with the highest joint payo�s. The

table describes the highest implementable joint payo�s U(L), which is a step-wise

function given by

U(L) =


20 if 10 ≤ L

18 if 4 ≤ L < 10

14 if L < 4

.

Step 2: In a similar way, we create for each punishment state i = 1, ..., n a list of

action pro�les. We order action pro�les increasingly in player i's cheating payo�

ci(a). We break ties by putting those pro�les with a lower liquidity requirement

L(a) �rst. We remove action pro�les that do not have a strictly lower liquidity

requirement than all earlier action pro�les. In the example, we get the following

list for the punishment state of player 1:

No. a1 c1(a
1) L(a1)

1. (M,H) 0 6

2. (M,M) 7 0

12Instead of (L,M) as second element of the list, we could alternatively pick the pro�le (M,L).
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which describes v1(L) and a1(L). As the stage game is symmetric, the lists of

punishment pro�les for the other players simply consists of the correspondingly

permuted action pro�les.

Step 3: The �rst action pro�les in each list form our initial action plan. In

the example, we have (ae = (L,L), a1 = (M,H), a2 = (H,M)). By construction

this is an optimal action plan whenever it can be implemented in a stationary

equilibrium. Adapting equation (6), we �nd that the maximal discount rate for

which a stationary equilibrium with this action plan exists, is given by

r∗(max
k
L(ak)) =

G(ae)−
∑n

i=1 ci(a
i)

maxk L(ak)
. (8)

In the current example, we �nd

r∗ =
20

max{10, 6}
= 200%.

This corresponds to a critical discount factor of δ∗ = 1
1+r∗

= 1
3
.13 Thus, by varying

the up-front payments, we can implement for every discount factor δ ∈ (1
3
; 1) every

(weakly) individually rational distribution of the maximum joint stage game payo�

of 20 as subgame perfect equilibrium payo� of the repeated game.

It is straightforward that for any �nite stage game, the minimal discount factor δ∗

for which every individually rational distribution of the maximum joint stage game

payo� can be implemented is always strictly below 1. This result is a folk theorem

for games with side payments. For games without side payments, it generally

only holds true that every feasible and strictly individually rational payo� can be

implemented for su�ciently large discount factors. Moreover, in games with more

than 2 players, the folk theorem without side payments only holds under certain

regularity conditions, e.g. if the NEU condition [2] holds. In our setting, we have

a folk theorem even for stage games that violate the NEU condition; the reason

being that once transfers are allowed the condition is always satis�ed.

Step 4: In the next step, we replace the action pro�le ak that has the highest

liquidity requirement L(ak) by the next action pro�le in the list for state k. If

13If no transfers are allowed then clearly (L,L) can also not be sustained on the equilibrium

path if δ < 1
3 . Using grim-trigger strategies, one can sustain it whenever δ ≥ 5

8 and [1] shows

that (L,L) can be sustained for all δ ≥ 4
7 . A stick-and-carrot strategy pro�le with the action

plan above but no transfers constitutes a subgame perfect equilibrium even for all δ ≥ 5
14 . This

means the critical discount factor to sustain (L,L) in every period without transfers lies in the

interval [ 13 ,
5
14 ].
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several action pro�les of the action plan have the highest liquidity requirement, we

replace all those action pro�les. In our example, we replace the equilibrium action

pro�le ae, so that the new action plan becomes ae = (L,M), a1 = (M,H), a2 =

(H,M). Using again formula (8), we �nd that this action plan can be implemented

whenever

r ≤ 18

max{4, 6}
= 300%.

Correspondingly, for every discount rate δ ∈ (1
4
, 1
3
) the actual action plan is optimal

and the set of subgame perfect equilibrium payo�s is given by all (u01, u
0
2) with

u01 + u02 ≤ 18 and u01, u
0
2 ≥ 0.

We repeat step 4 until we reach the end of the list of action pro�les in every state

k. The �nal action plan only consists of Nash equilibria of the stage game. In the

example, we �nd the following critical discount factors, payo�s and action plans:

Step δ∗ U e v1 v2 ae, a1, a2

1 1/3 20 0 0 (L,L),(M,H),(H,M)

2 1/4 18 0 0 (L,M),(M,H),(H,M)

*3 1/2 18 7 7 (L,M),(M,M),(M,M)

4 0 14 7 7 (M,M),(M,M),(M,M)

Note that the critical discount factor δ∗ does not necessarily decrease in every step.

If δ∗ it is not lower than in all previous steps, we simply ignore the corresponding

action plan. This is the case in step 3 of our example.

The algorithm always delivers a list of all critical discount factors, corresponding

payo� sets and optimal action plans. When using a heap sort algorithm to create

the n + 1 ordered lists, which each have a maximal length of |A| action pro�les,

the computational complexity of our algorithm in terms of elementary calculations

and comparisons is of just log-linear order O(n|A| log |A|). Even large stage games

with more than a 100000 action pro�les can be solved in less than a second.

Kranz (2010) explains how to use the software implementation of our algorithm

and gives several examples. It is also illustrated how methods of adaptive grid

re�nement and random sampling of action pro�les allow to e�ectively compute

inner approximations to the sets of SPE payo�s for continuous stage games with

high dimensional action spaces (like oligopolies with 10 or more �rms).14

14Consider stage games with compact action spaces and continous payo� functions. If one

can provide closed-form solutions of the cheating payo�s of the continuous stage game, one can
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In comparison, we can note that allowing for monetary transfers allows much faster

computation of the set of pure strategy equilibrium payo�s than in the framework

studied by Judd, Yeltekin and Conklin (2003) with public randomization. That is

because without monetary transfers no general closed-form solutions for the static

problems could be obtained, and in each iteration the algorithm of Judd et. al.

has to solve several linear programs.15

5 A Noisy Prisoners' Dilemma game

In this example we derive closed form solutions for the set of pure strategy PPE

payo�s in a repeated noisy prisoners' dilemma game with imperfect public mon-

itoring. There are two players. In the stage game, a player can either cooperate

(C) or defect (D). Expected payo�s g(a) are given by the following normalized

payo� matrix:

C D

C 1, 1 −s,1 + d

D 1 + d,−s 0,0

with d, s > 0 and d − s < 1. Players do not publicly observe the played action

pro�le, but only a realized signal y that can take four di�erent values: yC , yD, y1

and y2. The signal distribution is as follows:

calculate the liquidity requirement L(a) for any action pro�le a ∈ A.
To compute inner approximations of the sets of SPE payo�s, we can draw a �nite random

sample of action pro�les in order to calculate lower bounds of the function Ūe(L) and upper

bounds on v̄i(L) in a similar way we calculated the step functions above. As the sample size

grows large, these lower bounds converge in probability to the true functions.

The practical issue is to sample action pro�les in a way that achieves relatively quick conver-

gence for most stage games. Di�erent methods are implemented in the software package and

work well in examples.
15JYC report a computation time of almost 45 minutes (on a Pentium 500Mhz, PC) for the

�nest considered approximation for the payo� set of a discretized repeated Cournot duopoly

with 15 x 15 action pro�les and a given discount factor of δ = 0.8
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φ(y|a) CC CD DC DD

yC 1− αA − 2αP 1− αA − βA − 2αP − βP 1− αA − βA − 2αP − βA 0

yD αA αA + βA αA + βA 1

y1 αP αP αP + βP 0

y2 αP αP + βP αP 0

with 0 < αA ≤ αA + βA and 0 < αP ≤ αP + βP and 1− αA − βA − 2αP − βP ≥ 0.

To interpret the signal structure, assume that mutual cooperation CC shall be

implemented.16 The signal yD is an anonymous indicator for defection: yD becomes

more likely if some player unilaterally defects but its probability distribution does

not depend on the identity of the deviator. The parameter αA can be interpreted as

the probability of a type-one error, i.e. the probability that yD is observed although

no player defected. The parameter βA measures by how much the likelihood of yD

increases if some player unilaterally deviates.

The signal yi is an indicator for unilateral defection by player i. Like αA, the

parameter αP can be interpreted as the probability of a type-one error, i.e. the

probability to wrongly get a signal for unilateral defection of player i. Similar to

βA, the parameter βP measures by how much the likelihood of yi increases if player

i unilaterally deviates from mutual cooperation.

To calculate the required liquidity to implement mutual cooperation in the static

problem, consider an equal liquidity distribution λ1 = λ2 = 1
2
. Clearly, incentives

to deviate for each player i are minimized if he is required to make the maximum

payments 1
2
L after signals yD and yi. Since the problem is symmetric, it is disad-

vantageous to impose on some player a payment after signal yC . Whether player

i has to make a payment or receives a payment after signal y−i has no e�ect on

his incentives to deviate in the static problem. Mutual cooperation can thus be

implemented with total liquidity L if and only if

0 ≥ d− (βA + βP )
1

2
L,

which yields a liquidity requirement of

L(CC) =
2d

βA + βP
.

16For notational convenience, we abbreviate action pro�les (a1, a2) by a1a2.

23



This formula is quite intuitive. If actions could be perfectly monitored, the liquid-

ity requirement would be 2d. This value is divided by the increase in the likelihood

to get a signal yi or yD if player i defects.

To minimize the amount of money burning, it is optimal that after signal y1 player

1 transfers all of his liquidity to player 2, and vice versa. Money burning can only

be optimal after signal yD. We �nd that for L ≥ 2d
βP
, mutual cooperation can be

implemented without any money burning and that for L ∈ [L(CC), 2d
βP

), a total

amount of 2d−βPL
βA

must be burned after signal yD. The maximum implementable

joint payo�s are thus given by

U e(L,CC) =

{
2 if L ≥ 2d

βP

2(1− αA

βA
d) + αA

βA
βPL if 2d

βA+βP
≤ L ≤ 2d

βP

. (9)

Let us now consider the asymmetric action pro�le CD. Its liquidity requirement

can be most easily calculated by assuming that the whole liquidity is allocated

to player 1. The minimum required payment p1(yD) after signal yD that removes

player 1's incentives to defect satis�es

s+ (αA + βA)p1(yD) = p1(yD).

If after signal yD player 1 makes this payment p1(yD) to player 2 and no other

payments are made, then no player has an incentive to deviate and no money is

burned. We thus �nd

L(CD) =
s

1− αA − βA
and

U e(L,CD) = G(CD) = 1 + d− s.

For the action pro�le DC the same results hold and for the stage game Nash

equilibrium it holds that L(DD) = 0 and U e(L,DD) = 0.

For every level of total liquidity L, the pro�le DD is an optimal punishment pro�le

for both players, since the Nash equilibrium payo�s are min-max payo�s for both

players. Hence, we �nd vi(L) = 0 for all L ≥ 0.

Recall that in games with perfect monitoring, U
e
(L) − V (L) is always a step

function. The algorithm for perfect monitoring calculates the critical discount

rate r∗(L) at every jump point. With imperfect monitoring, U
e
(L) − V (L) is in

general an increasing piece-wise linear function with jumps. Figure 1 illustrates

the function U
e
(L)−V (L) for the noisy prisoners' dilemma game for a parameter

constellation that satis�es βP > 0 and 0 < G(CD) < U e(L(CC), CC).
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Ū e(L)− V̄ (L)

L

2

2βA+βB−dαA

βA+βB

1 + d− s

2d
βP

2d
βA+βP

s
1−βA+αA

P1

P2

P3

ae = CC

ae = CD

Figure 1: Optimal action pro�les and payo�s of the noisy prisoners' dilemma game

The graph has a kink P1 and two jump points P2 and P3. We can calculate the

critical discount rate at every jump point, kink and increasing linear segment of

U
e
(L)− V (L) by using the formula

r∗(L) =
U
e
(L)− V e

(L)

L
. (10)

For the points P1 and P2, we �nd

r∗
(

2d

βP

)
=
βP
d

and

r∗
(

2d

βA + βP

)
=
βP + βA − dαA

d
.

On the line segment between the two points, i.e. for L ∈ ( 2d
βA+βP

; 2d
βP

], the maximum

discount rate is given by

r∗(L) =
2(1− αA

βA
d)

L
+
αA
βA
βP .

Money burning facilitates the implementation of CC if the maximum discount

rate increases when moving from P1 to P2. This is the case if and only if d ≤ βA
αA
.
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Given a plot of U
e
(L) − V (L), as in Figure 1, there is a simple graphical rule to

�nd out whether the maximal discount rate increases or decreases along a line

segment. Consider the intercept at L = 0 of the line going through P1 and P2.

The critical discount rate increases from P1 to P2 if and only if this intercept is

positive. With a sharp glance, one can establish that this is indeed the case in

Figure 1.

Similarly, one can check graphically whether the maximal discount rate is higher in

point P3 than in point P2. In Figure 1, the intercept of the line through P2 and P3

is negative. This means that in the depicted case there is no discount rate for which

CD or DC are optimal equilibrium state pro�les: playing CC with appropriate

amounts of money burning yields higher payo�s and can be implemented for a

larger range of discount factors.

By solving equation (10) for L and plugging into the formula for U
e
(L), one can

�nd the maximal joint equilibrium payo� U e(r) as a function of the discount rate

r. For the case depicted in Figure 1, we �nd:

U e(r) =


2 if r ≤ d

βP

2(1− αA

βA
d)
[
1 + αA

rβP βA−αA

]
if d

βP
≤ r ≤ βP+βA−dαA

d

0 otherwise

. (11)

Together with the fact that one can always implement punishment payo�s of

zero, condition (11) characterizes the set of pure strategy sequential equilibrium

payo�s for the considered case. Alternative cases, e.g. parameter constellations in

which CD is an optimal equilibrium state pro�le for some discount rates, can be

characterized in a similar fashion.

6 Repeated games without money burning

In this section we explore what can be achieved in a repeated game with transfer-

able utility if money burning is not allowed. In particular, we investigate to which

extent money burning can be replaced by the use of a public correlation device.

We consider a variant of the previous set-up in which payments are required to

add up to zero, and in which players observe the outcome of a public correlation

device at the beginning of each period.

To characterize the set of PPE payo�s in this class of games, we extend action

and payment plans by a collective punishment state, indexed with k = b. The
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public correlation device allows strategies to specify transition probabilities to

this collective punishment state. The proof of Theorem 2 below shows that all

PPE payo�s can be implemented by a class of stationary equilibria that move with

positive probability to the collective punishment state instead of the equilibrium

state if all payments are conducted.

We develop a more convenient characterization of equilibrium payo�s by consid-

ering stationary equilibria that have an endogenous restriction on the amount of

money burning. Consider a stationary strategy pro�le σ of the game with money

burning and add a collective punishment state k = b with action pro�le αb and

payment function pb. We de�ne an additional constraint on the amount of money

burning
n∑
i=0

pki (y) ≤ δ

(1− δ)
(
U(σ)− U b

)
for all y (MBC-k)

with U b =
n∑
i=1

ubi and

ubi = (1− δ)(gi(αb)− E[pbi |αb]) + δui(σ).

Then we consider the following maximization problem over action plans and pay-

ment plans that are extended in this way

max
(αk,pk)k=e,b,1,...,n

U − V − U b (LP-MB)

s.t. (PC-k),(AC-k),(BC-k) and (MBC-k) for all k = e, b, 1, ..., n.

Theorem 2 If the linear program LP-MB is solved by a stationary equilibrium σ

of the game with money burning and collective punishment state action pro�le αb

and payment function pb, it holds that the set of PPE payo�s in the game without

money burning is given by{
u0 ∈ Rn|U b ≤

n∑
i=1

u0i ≤ U(σ), u0i ≥ vi(σ)

}
. (12)

For an algorithm that allows a faster computation of the payo� set, we can derive

similar links to static problems as in games with unlimited money burning. Con-

sider the static problem of Section 3.2, with the additional restriction that there

is an upper bound B ≥ 0 on the amount of money that is allowed to be burned
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after any signal y. We denote by L(α,B) the liquidity requirement of an action

pro�le with that upper bound on money burning:

L(α,B) = min
p(.)

L s.t. (PC), (AC), (BC) and (LP-BL)

n∑
i=0

pi(y) ≤ B for all y ∈ Y. (MBC)

Similarly, we de�ne for all L ≥ L(α,B) and 0 ≤ B ≤ L the highest joint equilib-

rium payo� in the static problem by

U e(L,B, α) = max
p(.)

(
G(α)−

n∑
i=1

E[pi|α]

)
(LP-Be)

s.t.(PC),(BC), (AC), (MBC),

the lowest collective punishment payo� by

U b(L,B, α) = min
p(.)

(
G(α)−

n∑
i=1

E[pi|α]

)
(LP-Bb)

s.t.(PC),(BC), (AC), (MBC),

and player i's punishment payo� by

vi(L,B, α) = min
p(.)

(
gi(α) + λiL−

n∑
i=1

E[pi|α]

)
(LP-Bi)

s.t.(PC),(BC), (AC) and (MBC).

The corresponding upper and lower envelopes over all action pro�les are denoted

by

Ū e(L,B) = max
α∈A

U e(L,B, α),

Ū b(L,B) = min
α∈A

U b(L,B, α),

vi(L,B) = min
α∈A

vi(L,B, α).

The pro�les at which these values are attained are denoted by αk(L,B). We

say a pair (L,B) of liquidity and bound on money burning can be generated by

stationary equilibria for a discount factor δ if

L ≤ δ

1− δ
(
Ū e(L,B)− V̄ (L,B)

)
,

B ≤ δ

1− δ
(
Ū e(L,B)− Ū b(L,B)

)
.
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Let (L̄(δ), B̄(δ)) denote the pair of largest liquidity and bound on money burning

that can be generated for a discount factor δ. Whenever some pair (L,B) can

be generated, the pair (L̄(δ), B̄(δ)) also can be generated, since larger levels of B

allow to generate larger levels of L and vice versa.

Proposition 3 In the case without money burning, the set of PPE payo�s under

discount factor δ is given by

{u0 ∈ Rn | Ū b(L̄(δ), B̄(δ)) ≤
n∑
i=1

u0i ≤ Ū e(L̄(δ), B̄(δ)) (13)

and u0i ≥ vi(L̄(δ), B̄(δ)) for all i}.

To compute the functions U e(L,B, α), U b(L,B, α) and vi(L,B, α) for all L ≥
L(α,B) and B ≤ L one can exploit the fact that their surface is described by

a �nite number of planar segments, which can be characterized by methods of

parametric linear programming and sensitivity analysis (see, e.g., Gal and Nedoma

[9]). The computations can take considerably longer than computing the one-

dimensional functions for the case of unlimited money burning. Still, one may be

able to obtain closed-form solutions for simple signal structures.17 Once Ū e(L,B)

and v̄i(L,B) are fully characterized, optimal action structures for all discount

factors can be very quickly obtained.

A su�cient condition for the equilibrium payo� set not to be a�ected by the

possibility to burn money is that a single stage game Nash equilibrium αb is an

optimal punishment pro�le for all players. Both the collective punishment payo�

U b and the sum of individual punishment payo�s V are then equal to G(αb)

and the payment constraints imply the money burning constraints. Hence, our

characterization of the payo� sets in the noisy prisoners' dilemma game remains

valid even if no money burning is allowed. In addition, we have already found that

the restriction not to burn money does not shift the Pareto frontier of the set of

equilibrium payo�s in games with perfect monitoring.

7 Conclusion

In this paper, we presented a characterization of PPE payo� sets for in�nitely re-

peated games with public monitoring and monetary transfers. Monetary transfers

17For example, in the noisy prisoner's dilemma game and the action pro�le a = CC, we �nd

L(a,B) = 1
βP

(2d−BβA) and Ue(L,B, a) is given as in equation (9).
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are a realistic assumption and at the same time greatly simplify the analysis. Our

results can be used to numerically compute the pure strategy equilibrium payo�

sets for any �nite stage game and they also facilitate development of closed-form

analytical solutions.

One interesting direction for future work is to study to which extent monetary

transfers, in conjunction with communication, allow a tractable characterization

of payo� sets for games with private monitoring or for the set of mixed strategy

equilibrium payo�s in games with public monitoring. The problem becomes con-

siderably more complicated, since it is not necessarily optimal to use a payment

plan that induces full information revelation in every period (see, e.g. Fuchs [7]

for an analysis in a principal agent framework).

Another direction for future research is to study optimal renegotiation-proof equi-

libria in a framework with monetary transfers and imperfect public monitoring.

If we considered only stationary equilibria, a natural, minimal renegotiation-

proofness requirement is that after no history there shall be money burning. An

interesting question is whether there is a concept of renegotiation-proofness for

which every renegotiation-proof payo� can be implemented with a stationary equi-

librium without money burning.

Appendix A: Perfect monitoring, Mixed Strategies

and Money burning

This appendix exempli�es that under perfect monitoring, optimal stationary equi-

libria with mixed strategies may require ine�cient continuation play before pay-

ment stages, which can be achieved with money burning. Consider the following

stage game

C D E F

C 1, 1 −d, 1 + d −x, x −x,−x
D 1 + d,−d 0, 0 −x,−x −x, x
E x,−x −x,−x 0, 0 0, 0

F −x,−x x,−x 0, 0 0, 0

Positive joint payo�s can only be achieved if at least some player chooses C with

positive probability and the other player chooses C or D with positive probability.

We denote with αi(ai) the probability with which player i plays the pure action
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ai. A necessary condition that a player i 6= j who is asked to play C or D in the

static problem will not deviate to E is

1 + d ≥ x(αj(C)− αj(D))− L

which is equivalent to

L ≥ x(αj(C)− αj(D))− 1− d (14)

Similarly, a necessary condition that player i will not deviate to F is given by

L ≥ x(αj(D)− αj(C))− 1− d (15)

For ease of exposition, we will consider in the following analysis the limit case

x→∞. The main result that money burning on the equilibrium may be necessary

in optimal stationary equilibria will hold via continuity for any su�ciently large

�nite x.

In that limit case, conditions (14) and (15) can be jointly satis�ed only if player

j mixes with equal and positive probability between C and D. This means any

equilibrium in which C or D is played with positive probability by one player

requires

α1(C) = α1(D) and α2(C) = α2(D)

Critical discount factor without money burning We now derive a lower

bound on the minimal discount factor for every stationary equilibrium with pos-

itive expected payo�s in which no money is burned. Assume liquidity is equally

distributed across players and every player is required to transfer all his liquidity

to the other player in case he plays D and the other player plays C. Player i is

then indi�erent between playing C and D if and only if

αj(C)+αj(D)(
L

2
−d)−x(αj(E)+αj(F )) = αj(C)(1+d− L

2
)−x(αj(E)+αj(F ))

Solving this condition for L with the constraint αj(C) = αj(D), yields a minimal

liquidity requirement of

L = 2d

The endogenously generated liquidity (using optimal penal codes) is given by

L =
δ

1− δ
G(α)
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The joint payo� G(α) is maximized if no player chooses E or F with positive

probability, i.e. every player chooses C and D with probability 1
2
. We then have

G(α) = 1. Equalizing L and L, yields a minimal discount factor of

δ̄0 =
2d

1 + 2d

A discount factor of at least δ̄0 is necessary for there to be a stationary equilibrium

without money burning that has a positive joint payo�.

Allowing for money burning We now show that by using money burning on

the equilibrium path, positive equilibrium payo�s can also be implemented for

discount factors below δ̄0.

We consider equilibria with the structure that each player plays C and D with

probability 1
2
, transfers L

2
units of money to the other player if he chooses D and

the other player C, and burns b ≤ L
2
units of money under the outcome DD.

Player i is then indi�erent between playing C or D if and only if

1

2
(1 +

L

2
− d) =

1

2
(1 + d− b)

which corresponds to a liquidity requirement of

L(b) = 2d− 2b

The endogenously generated liquidity is given by

L(b) =
δ

1− δ

[
1− b

2

]
Money burning under DD reduces the liquidity requirement, since players have

smaller incentives to deviate from C to D. On the other hand, money burning

happens with positive probability on the equilibrium path and therefore also re-

duces the endogenously generated liquidity. Setting L(b) equal to L(b) yields a

minimal discount factor of

δ̄(b) =
4d− 4b

2 + 4d− 5b

For b = 0, the discount factor δ̄(b) coincides with the minimal discount factor

δ̄0 required to have positive payo�s without money burning. Its derivative with

respect to b is given by

δ̄′(b) = − 4(2− d)

(4d− 5b+ 2)2

Thus, as long as d < 2, small amounts of money burning under outcome DD

allow to implement positive expected payo�s for some discount factors below the

minimal discount factor for stationary equilibria without money burning.
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A su�cient condition for not requiring money burning In the presented

example, both players mix in the optimal stationary equilibrium. This turns out

to be a necessary condition for money burning to be part of an optimal stationary

equilibrium. It can be shown that money burning is never necessary as soon as one

player plays a pure strategy, even if the perfect monitoring assumption only holds

for that player.18 The argument goes a follows: Let us assume that the actions of

player 1 are perfectly observable to the other players, such that the signal space

has the form Y = A1 × Y−1 with

φ((a1, y−1)|a) = φ−1(y−1|a−1)

and

φ((â1, y−1)|a) = 0 if â1 6= a1.

Now consider an action pro�le α in which α1 = a1 is a pure action. We claim

that for any liquidity with which α can be implemented, it can also be imple-

mented without money burning. In order to see this, take a payment plan p that

implements α for liquidity L, and then de�ne the payments p̃ as

p̃1(a1, y−1) = p1(a1, y−1)−B(a1, y−1),

where B(a1, y−1) denotes the total amount of money burned after signal (a1, y−1).

That is, we simply give player 1 all the money that was supposed to be burned.

Furthermore, de�ne

p̃2(â1, y−1) = p2(â1, y−1)−B(â1, y−1) if â1 6= a1.

All other payments stay the same. Then the payment constraints still hold, be-

cause payments have become weakly lower, and the budget constraint is satis�ed

with equality. If an action constraint for player 1 changes at all, then it is relaxed,

and the other players' action constraints are not a�ected. Hence, it is always

weakly better to use payments that are budget-balanced after every signal.

Appendix B: Computing U e(L, a) and U
e
(L)

This appendix illustrates for the case of pure strategy equilibria, how U e(L, a) and

U
e
(L) can be exactly computed and describes heuristics to reduce computation

time. Similar methods can be applied to the computation of vi(L, a) and vi(L).
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U e(L, a)

L

P0

Pc P1

(Lc, U(Lc, a))

L0 Lc L1

Figure 2: Constructing U e(L, a)

Calculating Ue(L, a) Assume that we have calculated U e(L, a) at two di�erent

levels L0 < L1 illustrated by the points P0 and P1 in Figure 2. We describe a

procedure that fully computes U e(L, a) on the interval [L0, L1]. From the dual

values of the solution of the problem (LP-e) we can get the slope of U e(L, a) at L0

and L1.
19 Figure 2 illustrates the corresponding tangents. The two tangents either

coincide or have a cut point Pc = (Lc, Uc) with L0 < Lc < L1 and U0 < Uc < U2.

In the �rst case, U e(L, a) is given on the interval [L0, L1] by the line P0P1. In

the second case the line P0PcP1 constitutes an upper bound on U e(L, a). We

calculate U e(Lc, a). If U e(Lc, a) = Uc then U e(L, a) coincides with this upper

bound P0PcP1. Otherwise, we proceed recursively by calculating U e(L, a) on the

two intervals [L0, Lc] and [Lc, L1]. If there are nk ≥ 2 kinks between L0 and L1,

this procedure fully characterizes the function U e(L, a) on the interval by solving

at most 2 (nk − 1)+1 times the linear program (LB-e). To quickly solve (LP-e) at

di�erent levels of L, one can use standard re-optimization techniques, e.g. based

on the dual simplex algorithm.20

18We thank Jon Levin for this suggestion.
19If Ue(L|a) has a kink at L, it depends on the way the linear program is set up, whether the

dual values delivers the right hand or left hand slope. It is no problem to calculate, the correct

slope, however.

20Moreover, using a simplex algorithm, the case Ue(Lc, a) = Uc can sometimes be veri-

�ed without the need of solving the linear program (LP-e) at Lc. A su�cient condition for
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The lowest possible level of L is given by the liquidity requirement L(a). The

right hand starting point of our procedure is given by the minimal liquidity L
e
(a)

above which U e(L, a) does not anymore increase in L. We can calculate L
e
(a) by

adding a restriction on the maximal allowed expected amount of money burning

in the problem (LP-L).21

Calculating the upper envelope U
e
(L) For the calculation of the upper enve-

lope U
e
(L), let us de�ne by

U e(L, Ã) = max
a∈Ã

U e(L, a)

the upper envelope with respect to a subset of action pro�les Ã ⊆ A. Hence, we

have

U e(L, Ã ∪ {a}) = max{U e(L, Ã), U e(L, a)}.

We can calculate U
e
(L) by subsequently adding all action pro�les to the set Ã. To

calculate the new envelope U e(L, Ã∪{a}), it is often not necessary to compute the

whole function U e(L, a). Recall, that the method to calculate U e(L, a) delivers in

each step an upper bound on U e(L, a). It su�ces to proceed the calculation of

U e(L, a) only for those values of L for which the upper bound exceeds U e(L, Ã).

If an upper bound of U e(L, a) lies everywhere below U e(L, Ã), we can immedi-

ately dismiss the action pro�le a. Since U e(L, a) is bounded by G(a), a su�cient

condition to dismiss a is that G(a) ≤ U e(L(a), Ã). A weaker su�cient condition

is G(a) ≤ U e(L̃(a), Ã), where L̃(a) ≡
∑n

i=1 (ci(a)− gi(a)) is the liquidity require-

ment under perfect monitoring, which always satis�es L̃(a) ≤ L(a). The last

condition can be checked very quickly since no linear program has to be solved for

a.

The order in which action pro�les are added to Ã can in�uence the total compu-

tation time, because action pro�les can be more quickly dismissed if U e(L, Ã) is

already large. One should �rst add all Nash equilibria of the stage game, which

Ue(Lc, a) = Uc is that the the optimal (dual) basis of the solved problem at L0 (or L1) remains

an optimal basis at Lc. This condition can be checked with standard formulas used to calculate

sensitivity bounds. However, it can happen that the optimal basis changes between L0 and Lc

even though the function Ue(L|a) has no kink between L0 and Lc.
21If the full-dimensionality condition of the folk theorem by Fudenberg, Levine and Maskin [8]

holds we must impose zero money burning to calculate L. Otherwise, we �rst have to solve the

problem (LB-e) with unlimited liquidity to calculate the minimally required amount of money

burning.
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satisfy U e(L, a) = G(a) for all L ≥ 0. An educated guess about which action

pro�les are likely to be optimal, e.g. symmetric ones, can be furthermore helpful.

Punishment states Similar methods can be used to calculate vi(L, a) and vi(L).

For the computation of vi(L), it is helpful to �rst add to Ã all those action pro�les a

in which ai is a best-reply to a−i, since these action pro�les satisfy vi(L, a) = gi(a)

for all L ≥ L(a).

Appendix C: Proofs

Proposition 1 and Lemma 1 are straightforward and proofs are omitted.

Proof of Theorem 1: We rely on the recursive structure of public perfect equilibria

and compactness of the equilibrium value set (see e.g. the result in APS, which

straightforwardly extend to our setting, and the corresponding results for PPE

with mixed strategies in the book by Mailath and Samuelson [19]). Let Ū denote

the highest joint payo� that can be implemented with some PPE and v̄i the lowest

payo� for player i that can be implemented with some PPE. There must exist a

PPE σe without payments in the �rst payment stage whose joint payo�s are given

by
n∑
i=1

u0i (σ
e) = Ū.

Furthermore, for every player i = 1, ..., n, there exists a PPE σi without payments

in the �rst payment stage that gives player i a payo� of

u0i (σ
i) = v̄i.

For all k ∈ K let αk be the �rst action pro�le played on the equilibrium path of

σk. Let wk(y) be the vector of continuation payo�s of σk in the �rst period after

signal y has been realized (but before the second payment stage), i.e. we have

u0i (σ
k) = (1− δ)gi(αk) + E[wki |αk].

We de�ne

pki (y) =
δu0i (σ

e)− wki (y)

1− δ
,

and will show that the stationary strategy pro�le σ de�ned by action plan (αk)k

and payment plan (pk)k is a stationary equilibrium. The budget constraints of σ

are equivalent to

δŪ ≥
n∑
i=1

wki (y),
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which holds due to the de�nition of Ū as the highest possible sum of payo�s and

the fact that the sum of payments cannot be negative. Second, for the action

constraints, we have to show that

gi(ai, α
k
−i)− E[pki |ai, αk−i] ≥ gi(âi, α

k
−i)− E[pki |âi, αk−i],

holds for all i ∈ {1, ..., n}, ai ∈ supp(αi) and âi ∈ Ai. This condition is equivalent

to

(1− δ)gi(ai, αk−i) + E[wki |ai, αk−i] ≥ (1− δ)gi(âi, αk−i) + E[wki |âi, αk−i],

which describes the incentive constraints for playing αk in the �rst period of σk.

Third, for the payment constraints we have to show that

pki (y) ≤ δ(gi(α
e)− E[pei |αe]− gi(αi) + E[pii|αi]).

With our de�nition of payments pki (y) this reads

δu0i (σ
e)− wki (y) ≤ δ((1− δ)gi(αe) + E[wei |αe]− (1− δ)gi(αi)− E[wii|αi]),

which is equivalent to

wki (y) ≥ δv̄i.

Because v̄i is the lowest player i payo� in the action stage, this condition obvi-

ously holds if player i receives a net payment after signal y in the corresponding

continuation equilibrium of σi. It also holds for signals which require player i to

make a net transfer, because otherwise player i would have an incentive not to

make the payment and σi would not be a PPE. Player i's expected payo� in the

stationary equilibrium σ is

gi(α
e)− 1

1− δ
E[δūei − wki (y)|αe] = ui(σ

e),

and his punishment payo� is

(1− δ)gi(αi)− E[δūei − wki (y)|αi] + δūei = v̄i.

It then follows from Proposition 1 that we can de�ne incentive compatible up-front

payments for σ to implement any PPE equilibrium payo�.�

Proof of Lemma 2: Since pi(y) ≤ λiL, the action constraints (AC) for player i

imply

gi(ai, α−i) + λiL− E[pi|ai, α−i] ≥ gi(âi, α−i) ∀ai ∈ supp(αi), âi ∈ Ai,
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which implies vi(L, α) ≥ ci(α). In the case that gi(α) = ci(α), it follows that

gi(ai, α−i) = ci(αi) for all ai ∈ supp(αi). One can then take λi = 0 and pi(y) = 0

for all y to implement α.�

Proof of Proposition 2: Let λ be an arbitrary liquidity distribution and for every

state k = e, 1, ..., n, let p̃k be a payment function that solves the static problems

(LP-k) given liquidity allocation λL̄(δ) and action pro�le αk(L̄(δ)). We now con-

struct a liquidity distribution λ∗ and a stationary equilibrium σ with action plan

(αk(L̄(δ)))k such that the payment constraints of the stationary contract will coin-

cide with the payment constraints of the static problems (LP-k) given a liquidity

allocation λ∗L̄(δ).

We de�ne λ∗ by

λ∗i = δ

(
λi +

gi(α
e)− E[p̃ei |αe]− v̄i(L̄(δ))

L̄(δ)

)
.

λ∗ is a liquidity distribution, since i) by the de�nition of p̃ei and v̄i, we have

gi(α
e)− E[p̃ei |αe] ≥ v̄i(L̄(δ)), i.e. λ∗i ≥ 0, and ii)

n∑
i=1

λ∗i = δ

1 +

Ū e(L̄(δ))−
n∑
i=1

v̄i(L̄(δ))

L̄(δ)

 = 1.

It follows from Lemma 1 that the payment function

pk = p̃k + (λ∗ − λ) L̄(δ)

solves the static problem (LP-k) with liquidity distribution λ∗.

For a stationary strategy pro�le σ with action plan (αk(L̄(δ)))k and payment plan

(pk)k, we have U(σ) = Ū e(L̄(δ)), vi(σ) = v̄i(L̄(δ)) and

λ∗i L̄(δ) = δ

(
λi +

gi(α
e)− E[pe|αe] + (λ∗i − λi)L̄(δ)− v̄i(L̄(δ))

L̄(δ)

)
= δλ∗i L̄(δ) + δ

ui(σ)− vi(σ)

L̄(δ)
.

This is equivalent to

λ∗i L̄(δ) =
δ

1− δ

(
ui(σ)− vi(σ)

L̄(δ)

)
.
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All payments constraints of σ coincide with the payment constraints in the static

problems given liquidity allocation λ∗i L̄(δ). So by construction the payment, bud-

get and action constraints of σ are satis�ed.�

Proof of Theorem 2: First we show that the set described in (12) is a subset of the

set of PPE payo�s without money burning.

Let (αk, pk)k=e,b,1,...,n be a solution of LP-MB. The pro�le σ = (αk, pk)k∈K is a

stationary equilibrium in the game with money burning with joint equilibrium

payo� U and punishment payo�s vi. It is augmented by a collective punishment

state with joint payo� U b. We now connect σ to the collective punishment state

to get a PPE σ̃ without money burning but with the same payo�s as σ. This

is done by replacing the money burning by an appropriate choice of transition

probabilities between the equilibrium state and the collective punishment state.

That is, the structure of the strategy σ̃ di�ers from the one of σ only in so far as

that if in state k = e, b, 1, ...n signal y has been realized and no player deviated

from the required payments pk(y), the state changes with a probability βkP (y) to

the collective punishment state and with probability 1− βkP (y) to the equilibrium

state. We de�ne this probability as

βkP (y) =
1− δ
δ

∑n
i=1 p

k
i (y)

U − U b
. (16)

Constraints (BC-k) and (MBC-k) tell us that βkP (y) indeed is a probability. Note

that on the equilibrium path of σ̃ there can be repeated stochastic transitions

between the equilibrium state and the collective punishment state.

We de�ne the payment function of the strategy σ̃ in state k = e, b, 1, ..., n by

p̃ki (y) = pki (y)− δ

1− δ
βkP (y)(ui − ubi).

Up-front transfers are set to zero. The probabilities βkP (y) have been chosen such

that the payments p̃ki (y), i = 1, ..., n add up to zero. With this de�nition of

payments we have that

ui(σ̃) = (1− δ)(gi(αe)− E[p̃e(y)|α]) + δui(σ̃) + δE[βeP |αe](ubi(σ̃)− ui(σ̃))

ubi(σ̃) = (1− δ)(gi(αb)− E[p̃b(y)|α]) + δui(σ̃) + δE[βbP |αb](ubi(σ̃)− ui(σ̃))

reduces to

ui(σ̃) = ui and u
b
i(σ̃) = ubi .
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After signal y in state k, continuation payo�s in σ̃ are equal to

−(1− δ)pki (y) + δui(σ).

Hence, actions in σ̃ are incentive compatible and the individual punishment payo�s

of σ̃ are equal to vi(σ). It is also straightforward to show that payments are

incentive compatible. By varying the up-front payments in σ̃ all divisions of the

surplus U(σ̃) in which each player gets at least vi can be achieved. Moreover, the

correlation device can be used in the up-front payment state to achieve all joint

payo�s between U and U b.

Second, we show that the set of PPE payo�s without money burning is a subset

of the set de�ned in (12).

Let Ū and Ū b denote the highest and lowest joint payo� that can be implemented

with some PPE in the repeated game without money burning. Similarly, let v̄i

denote the lowest payo� for player i that can be implemented with some PPE. Let

σe be a PPE with U(σe) = Ū, σb a PPE with U(σb) = Ū b and for every player i,

let σi denote a PPE with ui(σ
i) = v̄i. For all k = e, b, 1, ..., n let αk be the �rst

(mixed) action pro�le played on the equilibrium path of σk. Note that it always

holds true that

G(αb) ≤ Ū b and Ū ≤ G(αe).

Let wk(y) denote the vector of continuation payo�s after signal y has been realized

in the �rst period according to σ̃k and de�ne

pki (y) =
δui(σ

e)− wki (y)

1− δ
.

That the action, payment and budget constraints are satis�ed follows as in the

proof of Theorem 1. To see that money burning constraints (MBC-k) are satis�ed

note that
n∑
i=1

pki (y) =
δŪ −

∑n
i=1w

k
i (y)

1− δ
≤ δ

1− δ
(
U − U b

)
.

Hence, (αk, pk)k=e,b,1,...,n solves LP-MB with value Ū − Σn
i=1v̄i − Ū b.�

Proof of Proposition 3: The proof proceeds similarly as the proof of Proposition 2

and is therefore omitted.
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