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Abstract

This paper studies discounted stochastic games with perfect or imper-
fect public monitoring and the opportunity to conduct voluntary monetary
transfers and possibly burn money. This generalization of repeated games
with transfers is ideally suited to study relational contracting in applica-
tions with long-term investments, and also allows to study collusive industry
dynamics. We show that for all discount factors every perfect public equilib-
rium payoff can be implemented with a class of simple equilibria that have a
stationary structure on the equilibrium path and optimal penal codes with
a stick and carrot structure. We develop algorithms that exactly compute
or approximate the set of equilibrium payoffs and find simple equilibria that
implement these payoffs.
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1 Introduction

Discounted stochastic games are a natural generalization of infinitely repeated
games that provide a very flexible framework to study relationships in a wide
variety of applications. Players interact in infinitely many periods and discount
future payoffs with a common discount factor. Payoffs and available actions in a
period depend on a state that can change between periods in a deterministic or
stochastic manner. The probability distribution of the next period’s state only
depends on the state and chosen actions in the current period. For example,
in a long-term principal-agent relationship, a state may describe the amount of
relationship-specific capital or the current outside options of each party. In a
dynamic oligopoly model, a state may describe the number of active firms, the
production capacity of each firm, or demand and cost shocks that can be persistent
over time.
In many relationships of economic interest, parties cannot only perform actions
but also have the option to transfer money to each other or to a third party
(“money burning”). Repeated games with monetary transfers and risk-neutral
players have been widely studied, in particular in the relational contracting lit-
erature. Examples include studies of employment relations by Malcomson and
MacLeod (1989) and Levin (2002, 2003), partnerships and team production by
Doornik (2006) and Rayo (2007), prisoner dilemma games by Fong and Surti
(2009), international trade agreements by Klimenko, Ramey and Watson (2008)
and cartels by Harrington and Skrzypacz (2007, 2011).1 Levin (2003) shows for
repeated principal-agent games with transfers that one can restrict attention to
stationary equilibria in order to implement every perfect public equilibrium payoff.
Goldlücke and Kranz (2012) derive a similar characterization for general repeated
games with transfers.
This paper extends these results to stochastic games with imperfect monitoring of
actions and voluntary transfers, where the transfers can also go to an uninterested
third party. This extension allows a wider range of applications compared to the
case of repeated games, which cannot account for actions that have technological
long run effects, like e.g. investment decisions. We find that for any given discount
factor, all perfect public equilibrium (PPE) payoffs can be implemented with a
class of simple equilibria. Based on that result, algorithms are developed that
allow to approximate or to exactly compute the set of PPE payoffs.
A simple equilibrium is described by an equilibrium regime and for each player a
punishment regime. The action profile that is played in the equilibrium regime
only depends on the current state, as in a stationary Markov perfect equilibrium.
Transfers depend on the current state and signal and also on the previous state.
Play moves to a punishment regime whenever a player refuses to make a required

1Baliga and Evans (2000), Fong and Surti (2009), Gjertsen et. al (2010), Miller and Watson
(2011), and Goldlücke and Kranz (2013) study renegotiation-proof equilibria in repeated games
with transfers.
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transfer. Punishments have a simple stick-and-carrot structure: One punishment
action profile per player and state is defined. After the punishment profile has
been played and subsequently required transfers are conducted, play moves back to
the equilibrium regime. We show that there exists an optimal simple equilibrium,
with largest joint equilibrium payoff and harshest punishments, such that all PPE
payoffs can be implemented by varying the up-front payments of this equilibrium.
Repeated games have a special structure, in which the current action profile does
not affect the set of continuation payoffs. This means that the harshest punish-
ment that can be imposed on a deviating player is independent of the form of a
deviation. For repeated games with transfers, this fact allows to compress all rel-
evant information of the continuation payoff set into a single number (Goldlücke
and Kranz, 2012). In stochastic games, complications arise because different de-
viations can cause different state transitions. An optimal deviation is a dynamic
problem, and optimal punishment schemes must account for this. As a conse-
quence, key results of the analysis of repeated games with transfers no longer
apply and different algorithms are needed.
For stochastic games with perfect monitoring and finite action spaces, we describe
an algorithm to exactly compute the set of pure strategy subgame perfect equilib-
rium payoffs. To find the action profiles and transfers of the equilibrium regime
we iteratively solve a single agent Markov decision problem. In each iteration the
set of possible action profiles that can be played in equilibrium can be reduced.
A key element is a fast method to find in each iteration the optimal punishment
policies: it quickly solves the nested dynamic optimization problem of finding
for a given punishment policy the optimal deviations in an inner loop and the
corresponding optimal punishment policy in an outer loop.
Judd, Yeltekin and Conklin (2003) and Abreu and Sannikov (2014) have devel-
oped algorithms to numerically approximate the set of pure strategy perfect public
equilibrium payoffs for repeated games with perfect monitoring and a public cor-
relation device but without transfers. They are based on the recursive techniques
developed by Abreu, Pearce and Stacchetti (1990, henceforth APS) for repeated
games. Recently, Yeltekin, Cai and Judd (2015) and Abreu, Brooks and San-
nikov (2016) have extended these algorithms to stochastic games with perfect
monitoring.2 Compared to the Abreu, Brooks and Sannikov (2016) algorithm,
our algorithm solves stochastic games with transfers substantially faster, but of
course it finds a different payoff set, which contains the payoff set of the game
without transfers.
To solve stochastic games with imperfect public monitoring, we develop methods
that are more closely related to the methods by Judd, Yeltekin and Conklin (2003),
even though those methods were developed for games with perfect monitoring.3

2The algorithms by Abreu and Sannikov (2014) and Abreu, Brooks and Sannikov (2016) run
faster, but are developed for two player games only.

3We are not aware of implemented algorithms to solve for the set of public perfect equilibrium
payoffs general repeated or stochastic games with imperfect monitoring and no transfers.
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Our methods allow to compute arbitrary fine approximations of the PPE payoff
set, and it may even become tractable to then apply a brute force method to
exactly characterize optimal equilibria and the PPE payoff set.
Our characterization with simple equilibria not only allows numerical solution
methods, but also helps to find closed form solutions in stochastic games, as we
demonstrate with two relational contracting examples. In the first example, an
agent can exert effort to produce a durable good for a principal. It is illustrated
how under unobservable effort levels, grim-trigger punishments completely fail to
induce positive effort for any discount factor while optimal punishments that use
a costly punishment technology can sustain positive effort levels. In the second
example, an agent can invest to increase the value of his outside option. It illus-
trates how the set of equilibrium payoffs can be non-monotonic in the discount
factor.
While the relational contracting literature on repeated games usually focuses on ef-
ficient SPE or PPE, applied industrial organization literature that studies stochas-
tic games often restricts attention to Markov perfect equilibria (MPE) in which
actions only condition on the current state.4 Focusing on MPE has advantages,
since strategies have a simple structure and there exist quick algorithms to find an
MPE. Finding optimal collusive SPE or PPE payoffs is usually a much more com-
plex task.5 However, there are also drawbacks of restricting attention to MPE. For
example, in the special case of a repeated game, only stage game Nash equilibria
can be played in an MPE. Moreover, there are no effective algorithms to compute
all MPE payoffs of stochastic game, even if one just considers pure strategies.6
Existing algorithms, e.g. Pakes & McGuire (1994, 2001), are very effective in
finding an MPE, but except for special games there is no guarantee that it is
unique. Besanko et. al. (2010) illustrate the multiplicity problem and show how
the homotopy method can be used to find multiple MPE. There is, however, still
no guarantee that all (pure) MPE are found. For those reasons, effective methods
to compute the set of all PPE payoffs and an implementation with a simple class
of strategy profiles seem quite useful in order to complement the analysis of MPE.
While monetary transfers may not be feasible in all social interactions, the possi-
bility of transfers is plausible in many problems of economic interest. Monetary

4Examples include studies of learning-by-doing by Benkard (2004) and Besanko et. al.
(2010), advertisement dynamics by Doraszelski and Markovich (2007), consumer learning by
Ching (2010), capacity expansion by Besanko and Doraszelski (2004), or network externalities
by Markovich and Moenius (2009).

5Characterizing the SPE or PPE payoff set can be challenging even in the limit case of the
discount factor converging towards 1. While by Dutta (1995) established a folk theorem for
perfect monitoring, folk theorems for imperfect public monitoring have been derived much more
recently by Fudenberg and Yamamoto (2010) and Hörner et. al. (2011) and with restriction to
irreducible stochastic games.

6For a game with finite action spaces, one could always use a brute-force method that checks
for every pure strategy Markov strategy profile whether it constitutes an MPE. Yet, the number
of Markov strategy profiles increases very fast: is given by

∏
x∈X |A(x)|, where |A(x)| is the

number of strategy profiles in state x. This renders a brute-force method practically infeasible
except for very small stochastic games.
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transfers are a standard assumption in the already mentioned literature on rela-
tional contracting, even though attention has been usually restricted to repeated
games. But even for illegal collusion, transfer schemes are in line with the ev-
idence from several actual cartel agreements. For example, the citric acid and
lysine cartels required members that exceeded their sales quota in some period to
purchase the product from their competitors in the next period; transfers were
implemented via sales between firms. Harrington and Skrzypacz (2011) describe
transfer schemes used by cartels in more detail and provide further examples.
Even in contexts in which transfers may be considered strong assumptions, our
results can be useful since the set of implementable PPE payoffs with transfers
provides an upper bound on payoffs that can be implemented by equilibria without
transfers.
The structure of this paper is as follows. Section 2 describes the model. In Sec-
tion 3, simple equilibria are defined and it is shown that every PPE payoff can
be implemented with an optimal simple equilibrium. Section 4 develops an exact
policy elimination algorithm for games with perfect monitoring. We illustrate the
algorithm by numerically characterizing optimal collusive equilibria in a Cournot
model with renewable, storable resources. We have implemented the policy elimi-
nation algorithm for stochastic games with perfect monitoring in the open source
R package dyngame. Installation instructions are available on its Github page:
https://github.com/skranz/dyngame. In Section 5, we describe decomposition
methods for our setting that allow to approximate the PPE payoff set for games
with imperfect public monitoring, and we study relational contracting examples
in Section 6. Appendix A compares numerically examples our algorithm with
the algorithm by Abreu, Brooks and Sannikov (2016) for stochastic games with-
out transfers. It also illustrates how the equilibrium payoff sets can differ with
and without the possibility of voluntary transfer. Appendix B contains remaining
proofs.

2 The game

We consider an n player stochastic game of the following form. There are infinitely
many periods, and future payoffs are discounted with a common discount factor
0 < δ < 1. There is a finite set of states X, with x0 ∈ X denoting the initial
state. A period is comprised of two stages: a transfer stage and an action stage
without discounting between stages.
In the transfer stage, every player simultaneously chooses a non-negative vector
of transfers to all other players.7 Players also have the option to transfer money
to a non-involved third party, which has the same effect as burning money. All

7To have a compact strategy space, we assume that a player’s transfers cannot exceed an
upper bound of 1

1−δ
∑n
i=1
[
maxx∈X,a∈A(x) πi(a, x)−minx∈X,a∈A(x) πi(a, x)

]
where πi(a, x) are

expected stage game payoffs defined below. This bound is large enough to be never binding
given the incentive constraints of voluntary transfers.
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transfers are perfectly monitored, there is no limited liability, and transfers do not
affect the state transitions.
In the action stage, players simultaneously choose actions. In state x ∈ X, player
i can choose an action ai from a finite set Ai(x).8 The set of possible action
profiles is denoted by A(x) = A1(x)× ...× An(x).
After actions have been taken, a signal y from a finite signal space Y and a
new state x′ ∈ X are drawn by nature and commonly observed by all players.
We denote by q(y, x′|x, a) the probability that signal y and state x′ are drawn,
depending on the current state x and the chosen action profile a.9 Player i’s stage
game payoff is denoted by π̂i(x, ai, y) and depends only on what is observable to
this player: the signal y, the player’s own action ai, and the current state x. We
denote by πi(x, a) player i’s expected stage game payoff in state x if action profile
a is played.
We assume that players are risk-neutral and that payoffs are additively separable
in the stage game payoff and money. This means that the expected payoff of
player i in a period in which the state is x, action profile a is played, and i′s net
transfer is given by pi, is equal to πi(x, a)− pi.
A vector α that assigns an action profile α(x) ∈ A(x) to every state x ∈ X
is also called a policy, and A = ∏

x∈X A(x) denotes the set of all policies. For
briefness sake, we often suppress the dependence on x and write π(x, α) instead
of π(x, α(x)). Moreover, we often use capital letters to denote the joint payoff of
all players, e.g.

Π(x, a) =
n∑
i=1

πi(x, a). (1)

When referring to payoffs of the stochastic game, we mean expected average dis-
counted payoffs, i.e., the discounted sum of expected payoffs multiplied by (1−δ).
A public history of the stochastic game is a sequence of all states, monetary
transfers and public signals that have occurred before a given point in time. A
public strategy σi of player i in the stochastic game maps every public history that
ends before the action stage in period t in a state xt into an action in Ai(xt), and
every public history that ends before a payment stage into a vector of monetary
transfers. A profile of public strategies for each player determines a probability
distribution over the outcomes of the game. Expected payoffs from a strategy
profile σ are denoted by

ui(x0, σ) = (1− δ)
∞∑
t=0

δtEx0,σ[πi(xt, at)− pt,i]. (2)

8Most of our results (Propositions 1 and 2, Theorems 1 and 2) also hold for the case that
A(x) is a compact set in Rm, for some m, always with the restriction to pure strategies. If
the action space in state x is not finite, we assume in addition that stage game payoffs and the
probability distribution of signals and new states are continuous functions of the action profile.

9 We assume that the game is described in a parsimonious way such that there is no state
that cannot be reached at all from the initial state by some sequence of actions.
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A perfect public equilibrium (PPE) is a profile of public strategies that constitute
mutual best replies after every public history. We restrict attention to perfect
public equilibria in pure strategies.10

We denote by U(x0) the set of PPE payoffs with initial state x0. Moreover, we also
consider payoffs that are attainable if players can make no transfers in the first
period, and denote by U0(x0) the set of payoffs of PPE without such “up-front
transfers”.11

3 Characterization with simple equilibria

This section first defines simple strategy profiles and characterizes PPE in simple
strategies. To convey the intuition behind our results, it is explained in what
ways monetary transfers simplify the analysis. First, up-front transfers in the
first period allow the players to flexibly distribute the total equilibrium payoff.
Similarly, variation in transfers can be used in every period to substitute for
variation in continuation payoffs. This intuition will be used to show that simple
equilibria suffice to describe the PPE payoff set. Second, transfers can balance
incentive constraints between players in asymmetric situations and third, payment
of fines allows to settle punishments within one period.

3.1 Simple strategy profiles

A simple strategy profile is characterized by n+ 2 regimes. In the initial state x0,
play starts in the up-front transfer regime, in which players are required to make
up-front transfers described by net payments p0.12 Afterward, play can be in one

10Theorem 1 also holds for mixed strategies, but our results for perfect monitoring in Section
4 require this restriction to pure strategies.

11These sets depend on the discount factor, but since the discount factor is fixed, we do not
make this dependence explicit. Although the initial state x0 is also fixed, this dependence is
made explicit since the set of possible continuation payoffs of a PPE following a history that
ends in state x is equal to U(x).

12In a simple strategy profile, no player makes and receives positive transfers at the same
time. Any vector of net payments p can be mapped into a n× (n+ 1)-matrix of gross transfers
p̃ij (= payment from i to j) as follows. Denote by IP = {i|pi > 0} the set of net payers and by
IR = {i|pi ≤ 0}∪ {0} the set of net receivers including the sink for burned money indexed by 0.
For any receiver j ∈ IR, we denote by

sj = |pj |∑
j∈IR

|pj |

the share she receives from the total amount that is transferred or burned and assume that each
net payer distributes her gross transfers according to these proportions

p̃ij =
{

sjpi if i ∈ IP and j ∈ IR
0 otherwise.
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of n+ 1 regimes, which are indexed by k ∈ K = {e, 1, 2, ..., n}. We call the regime
k = e the equilibrium regime and k = i ∈ {1, ..., n} the punishment regime of
player i in state x.
A simple strategy profile specifies for each regime k ∈ K and state x an action
profile αk(x) ∈ A(x). We refer to αe as the equilibrium policy and to αi as the
punishment policy for player i. From the second period onwards, required net
transfers are given by pk(x, y, x′) and hence depend on the current regime k, the
previous state x, the realized signal y, and the realized state x′. The vectors of
all policies (αk)k∈K and all payment functions (pk)k∈K are called action plan and
payment plan, respectively.
The equilibrium and punishment regimes follow the logic of Abreu (1988), exploit-
ing that transfers are perfectly monitored so that any deviation from a transfer
can be punished in the same way. If no player unilaterally deviates from a required
transfer, play moves to the equilibrium regime (k = e). If player i unilaterally
deviates from a required transfer, play moves to the punishment regime of player i
(k = i). In all other situations the regime does not change. A simple equilibrium
is a simple strategy profile that constitutes a perfect public equilibrium of the
stochastic game.
For a given simple strategy profile, we denote expected continuation payoffs in
the equilibrium regime and the punishment regime by ue and ui, respectively. For
all k ∈ K and each player i, these payoffs are given by

uki (x) = (1− δ)πi(x, αk) + δE[uei (x′)− (1− δ)pki (x, y, x′)|x, αk]. (3)

We call U e(x) = ∑n
i=1 u

e
i (x) the joint equilibrium payoff and uii(x) the punishment

payoff of player i.
We use the one-shot deviation property to establish equilibrium conditions for
simple strategies without up-front transfers. In state x, player i has no profitable
one-shot deviation from a required action ai if and only if the following action
constraints are satisfied:

ai ∈ arg max
âi

(1−δ)πi(x, âi, αk−i)+δE[uei (x′)−(1−δ)pki (x, y, x′)|x, âi, αk−i]. (AC-k)

Moreover, player i should have no incentive to deviate from required payments
after the action stage. Hence we need for all regimes k ∈ K, states x, x′ and
signals y that the following payment constraints hold:

(1− δ)pki (x, y, x′) ≤ uei (x′)− uii(x′). (PC-k)

Finally, the budget constraints must hold that require that the sum of payments
is non-negative:

n∑
i=1

pki (x, y, x′) ≥ 0. (BC-k)
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The sum of payments is simply the total amount of money that is burned. Overall,
we have shown that a simple equilibrium with action plan (αk)k∈K exists if the set
of payment plans that satisfy conditions (AC-k), (PC-k) and (BC-k) is nonempty.
Moreover, this set is compact, so that we have the following proposition.

Proposition 1. There exists a simple equilibrium with an action plan (αk)k∈K
if and only if there exists a payment plan (p̄k)k∈K that solves the following linear
program

(p̄k)k ∈ arg max
(pk)k

∑
x∈X

n∑
i=1

(
uei (x)− uii(x)

)
(LP-OPP)

s.t.(AC-k),(PC-k),(BC-k)for all k ∈ K.

The plan (p̄k)k∈K is said to be an optimal payment plan for (αk)k∈K.

An optimal simple equilibrium has an optimal action plan (ᾱk)k and a corre-
sponding optimal payment plan (p̄k)k, meaning that it would solve the above
maximization problem with respect to both action and payment plan.

3.2 Distributing with up-front transfers

The effect of introducing up-front transfers is illustrated in Figure 1. Suppose

u2

u1

ū

w1

w2v̄

Figure 1: Distributing with up-front transfers

that the shaded area is the PPE payoff set in a two player stochastic game with
fixed discount factor without up-front transfers. The point ū is the equilibrium
payoff with the highest sum of payoffs for both players. If one could impose any
up-front transfer, the set of Pareto optimal payoffs would be simply given by a
line with slope −1 through this point. If up-front transfers must be incentive
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compatible, their maximum size is bounded by the harshest punishment that can
be credibly imposed on a player that deviates from a required transfers. The
points w1 and w2 in Figure 1 illustrate these worst continuation payoffs after the
first transfer stage for each player, with v̄i denoting the worst payoff of player i.
The Pareto frontier of PPE payoffs with voluntary up-front transfers is given by
the line segment through point ū with slope −1 that is bounded by the lowest
equilibrium payoff v̄1 of player 1 and the lowest equilibrium payoff v̄2 of player 2.
If we allow for money burning in the up-front transfers, any point in the depicted
triangle can be implemented in an incentive compatible way.
This intuition naturally extends to n player games. Moreover, one can show that
the PPE payoff set is compact by closely following the steps of APS.
Proposition 2. The set of PPE payoffs U(x0) is compact, such that there exist
a maximum joint PPE payoff

Ū(x0) = max
u∈U(x0)

n∑
i=1

ui = max
u∈U0(x0)

n∑
i=1

ui (4)

and for each player i = 1, ..., n a minimum PPE payoff

v̄i(x0) = min
u∈U(x0)

ui = min
u∈U0(x0)

ui. (5)

The set of PPE payoffs is equal to the simplex

U(x0) = {u ∈ Rn|
n∑
i=1

ui ≤ Ū(x0) and ui ≥ v̄i(x0)}. (6)

Proof. See Appendix B.

3.3 Optimal simple equilibria can implement all PPE pay-
offs

We now show that every PPE payoff can be implemented with a simple equi-
librium. Assume that a PPE exists, for all initial states. Since the set of PPE
payoffs is compact for each initial state x0 = x, we can take the PPE σe(x) with
the largest total payoff Ū(x), and the PPE σi(x) with the lowest possible payoff
v̄i(x) for player i among all PPE without up-front transfers. For all k ∈ K, we
define αk(x) as the action profile that is played in the first period of σk(x), and
wk(x)(y, x′) as the continuation payoffs in the second period when the realized
signal in the first period is y and the game transits to state x′. We denote the
equilibrium payoffs of σk(x) in the game without up-front transfers by

ūki (x) = (1− δ)πi(x, αk) + δE[wki (x)(y, x′)|x, αk]. (7)

Since σk(x) is a PPE, the function wk(x) : Y ×X → Rn enforces αk(x), meaning
that for all âi ∈ Ai(x) it holds that

(1−δ)πi(x, αk)+δE[wki (x)|x, αk] ≥ (1−δ)πi(x, âi, αk−i)+δE[wki (x)|x, âi, αk−i]. (8)
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The vector of policies (αk)k∈K will be the action plan for the simple strategy
profile that we are going to define. We define the payments in state x′ following
signal y and previous state x such that we obtain the continuation payoffs that
enforce αk(x). Hence, we define payments pk(x, y, x′) such that

wk(x)(y, x′) = ūe(x′)− (1− δ)pk(x, y, x′). (9)

It is straightforward to verify that the so defined simple strategy profile is indeed
a PPE: Since continuation payoffs uki (x) in the simple strategy profile are equal
to the payoffs ūki (x) in the original equilibria, the action constraints (AC-k) are
satisfied for all k ∈ K. The payments in the payment plan are incentive compatible
because player i at least weakly prefers the continuation payoff wk(x)(y, x′) to
v̄i(x′). Moreover, the sum of payments is non-negative since

Ū(x′) ≥
n∑
i=1

wki (x)(y, x′). (10)

Hence, (PC-k) and (BC-k) are satisfied as well and we have shown the following
result.

Theorem 1. Assume a PPE exists. Then an optimal simple equilibrium exists
such that by varying its up-front transfers in an incentive compatible way, every
PPE payoff can be implemented.

Together with Proposition 1, this result directly leads to a brute force algorithm
to characterize the set of pure strategy PPE payoffs given a finite action space:
simply go through all possible action plans and solve (LP-OPP). An action plan
with the largest solution will be optimal. The big weakness of this brute-force
method is that it becomes computationally infeasible, except for very small action
and state spaces.
A better solution is to adapt the implementation of Judd, Yeltekin, and Conklin
(2003) to our framework with transfers and imperfect public monitoring. In the
setting with transfers, imperfect public monitoring does not constitute an obstacle
to the application of these methods (see Section 5). A substantial improvement
is possible in the case of perfect monitoring, for which we can propose a policy
iteration algorithm which is a large step from existing methods (see Section 4).
The goal of the following two subsections is to provide some easier intuition for
why and how monetary transfers allow to restrict attention to simple equilibria.

3.4 Intuition: Stationarity on equilibrium path by balanc-
ing incentive constraints

A crucial factor why action profiles on the equilibrium path can be stationary (only
depending on the state x) is that monetary transfers allow to balance incentive
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constraints among players. We want to illustrate this point with a simple example
of an infinitely repeated asymmetric prisoner’s dilemma game described by the
following payoff matrix:

C D
C 4,2 -3,6
D 5,-1 0,1

The goal shall be to implement mutual cooperation (C,C) in every period on
the equilibrium path. Since the stage game Nash equilibrium yields the minmax
payoff for both players, grim trigger punishments constitute optimal penal codes:
Any deviation is punished by playing forever the stage game Nash equilibrium
(D,D).
No transfers First consider the case that no transfers are conducted. Given grim-
trigger punishments, player 1 and 2 have no incentive to deviate from cooperation
on the equilibrium path whenever the following conditions are satisfied:

Player 1: 4 ≥ (1− δ)5 ⇔ δ ≥ 0.2,
Player 2: 2 ≥ (1− δ)6 +δ ⇔ δ ≥ 0.8.

The condition is tighter for player 2 than for player 1 for three reasons:

i) player 2 gets a lower payoff on the equilibrium path (2 vs 4),

ii) player 2 gains more in the period of defection (6 vs 5),

iii) player 2 is better off in each period of the punishment (1 vs 0).

Given such asymmetries, it is not necessarily optimal to repeat the same action
profile in every period. For example, if the discount factor is δ = 0.7, it is not
possible to implement mutual cooperation in every period, but one can show that
there is a SPE with a non-stationary equilibrium path in which in every fourth
period (C,D) is played instead of (C,C). Such a strategy profile relaxes the tight
incentive constraint of player 2, by giving her a higher equilibrium path payoff.
The incentive constraint for player 1 is tightened, but there is still sufficiently
much slack left.
With transfers Assume now that (C,C) is played in every period and from period
2 onwards player 1 transfers an amount of 1.5

δ
to player 2 in each period on the

equilibrium path. Player 1 has no incentive to deviate from the transfers on the
equilibrium path if and only if13

(1− δ)1.5 ≤ δ(4− 1.5)⇔ δ ≥ 0.375
13To derive the condition, it is useful to think of transfers taking place at the end of the

current period but discount them by δ. Indeed, one could introduce an additional transfer stage
at the end of period (assuming the new state would be already known in that stage) and show
that the set of PPE payoffs would not change.
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and there is no profitable one shot deviation from the cooperative actions if and
only if

Player 1: 4− 1.5 ≥ (1− δ)5 ⇔ δ ≥ 0.5,
Player 2: 2 + 1.5 ≥ (1− δ)6 +δ ⇔ δ ≥ 0.5.

The incentive constraints between the players are now perfectly balanced. Indeed,
if we sum both players’ incentive constraints

Joint: 4 + 2 ≥ (1− δ)(5 + 6) + δ(0 + 1)⇔ δ ≥ 0.5,

we find the same critical discount factor as for the individual constraints.
This intuition generalizes to stochastic games. Section 4 illustrates the incentive
constraints with optimal balancing of payments for the case of perfect monitoring,
where they take a simple form that is a close analog to the repeated games case.

3.5 Intuition: Settlement of punishments in one period

If transfers are not possible, optimally deterring a player from deviations can be-
come a very complicated problem. Basically, if players observe a deviation or an
imperfect signal that is taken as a sign of a deviation, they have to coordinate on
future actions that yield a sufficiently low payoff for the deviator. The punish-
ments must themselves be stable against deviations and have to take into account
how states can change on the desired path of play or after any deviation. Under
imperfect monitoring, such punishments arise on the equilibrium path following
signals that indicate a deviation, and thus efficiency losses must be as low as
possible in Pareto optimal equilibria.
The benefits of transfers for simplifying optimal punishments are easiest seen for
the case of punishing an observable deviation from a required action. Instead
of conducting harmful punishment actions, one can always give the deviator the
possibility to pay a fine that is as costly as if the punishment actions were con-
ducted. If the fine is paid, one can move back to efficient equilibrium path play.
Punishment actions only have to be conducted if a deviator fails to pay a fine.
After one period of punishment actions, one can again give the punished player
the chance to move back to efficient equilibrium path play if she pays a fine that
will be as costly as the remaining punishment. This is the key intuition for why
optimal penal codes can be characterized with stick-and-carrot punishments with
a single punishment action profile per player and state.14

14See Abreu (1986) for an early example of stick-and-carrot punishments as well as Acemoglu
and Wolitzky (2015) for a recent paper on community enforcement, who show that a specialized
enforcer punishment will be used for exactly one period in combination with the less efficient
community punishment. In their setting, the punishment power of an inefficient path of play is
linked via an incentive constraint to the more efficient enforcer punishment, while in our setting
it is linked to the perfectly efficient punishment of paying a fine.
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Despite this simplification, an optimal punishment policy must consider all states
and take into account the dynamic nature of a punished player’s best reply. The
nature of this dynamic problem can be seen most clearly in the perfect monitoring
case in Section 4, which develops a fast method to find optimal punishments
policies.

4 Solving Games with Perfect Monitoring

In this section, we develop efficient methods to find an optimal simple equilibrium
and to exactly compute the set of PPE payoffs in games with perfect monitoring.

4.1 Characterization for a given action plan

As we will show, in the case of perfect monitoring, transfers play no role in the
description of the joint equilibrium payoff and the punishment payoffs of an op-
timal simple equilibrium. This makes the case of perfect monitoring much easier
to handle than the general case. Consider a pure equilibrium regime policy αe

that specifies an action profile for each state x. Without money burning, the joint
payoff U(x) that is created by the stationary play of this policy starting in state
x is the solution to the following linear system of equations:15

U(x) = (1− δ)Π(x, αe) + δE[U(x′)|x, αe] for all x ∈ X. (11)

An optimal payment plan under perfect monitoring involves no money burning,
so that U e(x) = U(x) in the corresponding simple equilibrium.
Now consider a punishment policy αi against player i. After a deviation, a pun-
ished player i will be made exactly indifferent between paying the fines that settle
the punishment within one period, or to refuse any payments and play against
other players who follow this punishment policy in all future. Player i’s punish-
ment payoffs given a punishment policy αi will therefore be given as the solution
vi to the following Bellman equation

vi(x) = max
ai∈Ai(x)

{(1− δ)πi(x, ai, αi−i) + δE[vi(x′)|x, ai, αi−i]} for all x ∈ X. (12)

It follows from the contraction mapping theorem that there exists a unique payoff
vector vi that solves this Bellman equation. This optimization problem for finding
player i’s dynamic best reply payoff is a discounted Markov decision process. One
can compute vi, for example with the policy iteration algorithm.16 It consists of a

15This condition has a unique solution since the transition matrix has eigenvalues with abso-
lute value no larger than 1. The solution is given by U = (1 − δ)(I − δQ(αe))−1Π(αe), where
Q(αe) is the transition matrix given that players follow the policy αe.

16For details on policy iteration, convergence speed and alternative computation methods to
solve Markov Decision Processes, see e.g. Puterman (1994).
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policy improvement step and a value determination step. The policy improvement
step calculates for some punishment payoffs vi an optimal best-reply action α̃i(x)
for each state x, which solves

α̃i(x) ∈ arg max
ai∈Ai(x)

{(1− δ)πi(x, ai, αi−i) + δE[vi(x′)|x, ai, αi−i]}. (13)

The value determination step calculates the corresponding payoffs of player i by
solving the system of linear equations

vi(x) = (1− δ)πi(x, α̃i, αi−i) + δE[vi(x′)|x, α̃i, αi−i]. (14)

Starting with some arbitrary payoff function vi, the policy iteration algorithm
alternates between policy step and value iteration step until the payoffs do not
change anymore, in which case they will satisfy (12).
The following result is key for solving games with perfect monitoring.

Theorem 2. Assume there is perfect monitoring. There exists a simple equi-
librium with action plan (αk)k∈K and an optimal payment plan such that joint
equilibrium payoffs U are given by (11) and punishment payoffs vi are given by
(12) if and only if

U(x) ≥
n∑
i=1

vi(x) (15)

for all x ∈ X, and for all k ∈ K and x ∈ X

(1− δ)Π(x, αk) + δE[U |x, αk] ≥
n∑
i=1

max
ai∈Ai(x)

(1− δ)πi(x, ai, αk−i) + δE[vi|x, ai, αk−i].

(16)

Proof. See Appendix B.

4.2 Finding optimal action plans

Note from inequality (16) that it is easier to implement any action profile αk(x) if
-ceteris paribus- joint payoffs U(x) increase in some state or punishment payoffs
vi(x) decrease for some player in some state. Therefore the action plan of an
optimal simple equilibrium maximizes U(x) and minimizes vi(x) for each state
and player across all action profiles that satisfy the conditions (15) and (16) in
Theorem 2.
We now develop an iterative algorithm to find such an optimal action plan. In
every iteration of the algorithm there is a candidate set of action profiles Â(x) ⊂
A(x) which have not yet been ruled out as being possibly played in some simple
equilibrium. Â = ∏

x∈X Â(x) shall denote the corresponding set of policies.
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Optimal equilibrium regime policy

Let U(., αe) denote the solution of (11) for equilibrium regime policy αe. We
denote by

U(x; Â) = max
αe∈Â

U(x, αe) (17)

the maximum joint payoff that can be implemented in state x using equilibrium
regime policies from Â. Like the problem (12) of finding a dynamic best reply
against a given punishment policy the problem of computing U(.; Â) is a finite dis-
counted Markov decision process. A solution always exists and it can be efficiently
solved using policy iteration.

Optimal punishment policies

Let vi(., αi) be the resulting punishment payoffs, which solve the Bellman equation
(12), given a policy αi against player i. For the punishment regimes, we define by

vi(x; Â) = min
αi∈Â

vi(x, αi) (18)

player i’s minimum punishment payoff in state x across all punishment policies
in Â. Let ᾱi(Â) be the optimal punishment policy that solves this problem.
Computing vi(x; Â) and ᾱi(Â) is a nested dynamic optimization problem. We
need to find that dynamic punishment policy that minimizes player i’s dynamic
best-reply payoff against this punishment policy. While a brute force method that
tries out all possible punishment policies is theoretically possible, it is usually
computationally infeasible in practice since already for moderately sized games
(like our example in Subsection 4.3 below) the set of candidate policies can be
extremely large.
A crucial building block for finding an optimal simple equilibrium is Algorithm
1 below, that solves this nested dynamic problem by searching among possible
candidate punishment policies αi in a monotone fashion.
We denote by

ci(x, a, vi) = max
âi∈Ai(x)

((1− δ)πi(x, âi, a−i) + δE[vi(x′)|x, âi, a−i]) (19)

player i’s best-reply payoff of a static version of the game in state x in which
action profile a shall be played and continuation payoffs in the next period are
given by fixed numerical vector vi.

Algorithm 1. Nested policy iteration to find an optimal punishment policy ᾱi(Â)

0. Set the round to r = 0 and start with some initial punishment policy αr ∈ Â

1. Calculate player i’s punishment payoffs vi(., αr) given punishment policy αr
by solving the corresponding Markov decision process.

16



2. Let αr+1 be a policy that minimizes state by state player i’s best-reply payoff
against action profile αr(x) given continuation payoffs vi(., αr), i.e.

αr+1(x) ∈ arg min
a∈Â(x)

ci(x, a, vi(., αr)) (20)

3. Stop if αr itself solves step 2. Otherwise increment the round r and go back
to step 1.

Note that in step 2, we update the punishment policy by minimizing state-by-state
the best reply payoffs ci(x, a, vi(., αr)) for the fixed punishment payoff vi(., αr)
derived in the previous step. This operation can be performed very quickly. Re-
markably, this simple static update rule for the punishment policy suffices for the
punishment payoffs vi(., αr) to monotonically decrease in every round r.

Proposition 3. Algorithm 1 always terminates in a finite number of periods,
yielding an optimal punishment policy αi(Â). The punishment payoffs decrease in
every round (except for the last round):

vi(x, αr+1) ≤ vi(x, αr) for all x ∈ X and
vi(x, αr+1) < vi(x, αr) for some x ∈ X.

Proof. See Appendix B.

The proof in the appendix exploits monotonicity properties of the contraction
mapping operator that is used to solve the Markov decision process in step 1. In
the examples we computed, the algorithm typically finds an optimal punishment
policy by examining a very small fraction of all possible policies.17 While one can
construct examples in which the algorithm has to check every possible policy in
Â, the monotonicity results suggest that the algorithm typically stops after a few
rounds.

Policy Elimination Algorithm

The procedure allows us to compute for every set of considered action profiles
Â the highest joint payoffs U(., Â) and lowest punishment payoffs vi(., Â) that
can be implemented if all action profiles in Â would be enforceable in a PPE.
Following similar steps as in the proof of Theorem 2, one can easily show that

17For an example, consider the Cournot game described in Subsection 4.3 below. It has
21*21=441 states and, depending on the state, a player has between 0 to 20 different stage
game actions. If we punish player 1, the number of potentially relevant pure strategy punishment
policies a brute force algorithm has to search is given by the number of pure Markov strategies
of player 2. Here, each player has

∏20
m1=0

∏20
m2=0 m1 = (20!)21 different pure Markov strategies.

This is an incredible large number and renders a brute-force approach infeasible. Yet, in no
iteration of the outer loop, does Algorithm 1 need more than just 4 rounds to find an optimal
punishment policy.
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given a simple equilibrium with equilibrium regime payoffs U(., Â) and punishment
payoffs vi(., Â) exists, an action profile a can be played in a PPE starting in state
x, if and only if the following condition on joint payoffs is satisfied:

(1− δ)Π(x, a) + δE[U(x′, Â)|x, a] ≥
n∑
i=1

max
âi∈Ai(x)

(1− δ)πi(x, âi, a−i) + δE[vi(x′, Â)|x, âi, a−i]. (21)

If we start with the set of all action profiles Â = A, we know that all action
profiles that do not satisfy this condition can never be played in a PPE. We can
remove those action profiles from the set Â. If the optimal policies α̂k(Â) have
remained in the set, they form an optimal simple equilibrium, otherwise we must
repeat this procedure with the smaller set of action profiles until this condition is
satisfied.

Algorithm 2. Policy elimination algorithm to find optimal action plans

0. Let j = 0 and initially consider all policies as candidates: Âj = A.

1. Compute U e(.; Âj) and a corresponding optimal equilibrium regime policy
α̂e(Âj).

2. For every player i compute vi(.; Âr) and a corresponding optimal punishment
policy α̂i(Âr)

3. For every state x, let Âj+1(x) be the set of all action profiles that satisfy
condition (21) using U e(.; Âj) and vi(.;Aj) as equilibrium regime and pun-
ishment payoffs.

4. Stop if the optimal policies α̂k(Âj) are contained in Âj+1. They then con-
stitute an optimal action plan. Also stop if for some state x the set Âj+1 is
empty. Then no SPE in pure strategies exists. Increment the round r and
repeat Steps 1-3 until one of the stopping conditions is satisfied.

The policy elimination algorithm always stops in a finite number of rounds.18 It
either finds an optimal action plan (ᾱk)k∈K or yields the result that no SPE in
pure strategies exists.
Given our previous results, it is straightforward that this algorithm works. Unless
the algorithm stops in the current round, Step 3 always eliminates some candidate
policies, i.e. the set of candidate policies Âj gets strictly smaller with each round.
Therefore U(x; Âj) weakly decreases and vi(x; Âj) weakly increases each iteration.
Condition (21) is easier satisfied for higher values of U(x; Âj) and for lower values

18For a theoretical upper bound we note that in each iteration in which the algorithm does
not stop at least one action profile in at least one state is eliminated. Yet in practice, much
fewer iterations are needed, e.g. only 8 iterations in the example of Section 4.3.
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of vi(x; Âj). Therefore, a necessary condition that an action profile is ever played
in a simple equilibrium is that it survives Step 3. Conversely, if the polices α̂k(Âj)
all survive Step 3, it follows from Proposition 2 that a simple equilibrium with
these policies exists. That they constitute an optimal action plan simply follows
again from the fact that U(x; Âj) weakly decreases and vi(x; Âj) weakly increases
each round. That the algorithm terminates in a finite number of rounds is a
consequence of the finite action space and the fact that the set of possible policies
Âj gets strictly smaller each round.

4.3 Example: Quantity competition with stochastic re-
serves

As numerical example, consider a stochastic game variation of the example Cournot
used to motivate his famous model of quantity competition. There are two pro-
ducers of mineral water, who have finite water reserves in their reservoirs. A state
is two dimensional x = (x1, x2), where xi describes the amount of water currently
stored in firm i’s reservoir. In each period, each firm i simultaneously chooses
an integer amount of water ai ∈ {0, 1, 2, ..., xi} that it takes from its reservoir
and sells on the market. Market prices are given by an inverse demand function
P (a1, a2). A firm’s reserves can increase after each period by some random integer
amount, up to a maximal reservoir capacity of x̄. We solve this game with the
following parameters: maximum capacity of each firm x̄ = 20, discount factor
δ = 2

3 , inverse demand function P (a1, a2) = 20− a1 − a2, and reserves refill with
equal probability by 3 or 4 units each period.19

19To replicate the example, follow the instructions on the Github page of our R package dyn-
game: https://github.com/skranz/dyngame. This package has implemented the policy elimina-
tion algorithm described above. This example with 21*21=441 states is solved with 8 iterations,
and takes less than a minute on an average notebook bought in 2013.
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Prices under Collusion
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Figure 2: Optimal collusive prices as function of firms’ reserves. Brighter areas
correspond to lower prices.

Figure 2 illustrates the solution of the dynamic game by showing the market prices
in an optimal collusive equilibrium as a function of the oil reserves of both firms.
Starting from the lower left corner, one sees that prices are initially reduced when
firms’ water reserves increase. This seems intuitive, since firms are able to supply
more with larger reserves. Yet, moving to the upper right corner we see that
equilibrium prices are not monotonically decreasing in the reserves: once reserves
become sufficiently large, prices increase again. An intuitive reason for this effect is
that once reserves grow large, it becomes easier to facilitate collusion as deviations
from a collusive agreement can be punished more severely by a credible threat to
sell large quantities in the next period.
Figure 3 corroborates this intuition. It illustrates the sum of punishment payoffs
v̄1(x) + v̄2(x) that can be imposed on players as a function of the current state. It
can be seen that harsh punishments can be credibly implemented when reserves
are large.
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Sum of punishment payoffs
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Figure 3: Sum of punishment payoffs v̄1(x) + v̄2(x). Darker areas correspond to
lower punishment payoffs.

5 Decomposition methods

In this section, we adapt the APS decomposition operator to our framework with
transfers and develop methods that allow to approximate the set of PPE pay-
offs. Since computationally the methods are close to Judd, Yeltekin, and Conklin
(2003), this section contains only a brief description of the necessary steps.
In games with transfers, the sets of possible (continuation) payoff profiles for each
state are simplices, and therefore also the APS decomposition operator operates
on collections of simplices, which can be represented by the maximum total payoff
and the minimum payoffs for each player.
For any (U, v) ∈ R(n+1)|X|, with elements U(x), v1(x), ..., vn(x) indexed by x ∈ X,
and action profile a ∈ A(x), let W(x, a, U, v) be the set of all w : Y × X → Rn
with

wi(y, x′) ≥ vi(x′) for all i = 1, ..., n, (22)
and

W (y, x′) =
n∑
i=1

wi(y, x′) ≤ U(x′), (23)

and, for all âi ∈ Ai(x),

(1− δ)πi(x, a) + δE[wi|x, a] ≥ (1− δ)πi(x, âi, a−i) + δE[wi|x, âi, a−i]. (24)

We can write the decomposition operator as a map D̂ : R(n+1)|X| → R(n+1)|X|,
which maps a vector (U, v) of maximum total payoffs and minimum payoffs into
a new vector of such payoffs (U ′, v′) such that the following conditions hold:
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• For each state x ∈ X

U ′(x) = max
a∈A(x)

Û(x, a, U, v) (25)

where Û(x, a, U, v) is defined by Û(x, a, U, v) = −∞ if the set W(x, a, U, v)
is empty and else by

Û(x, a, U, v) = max
w∈W(x,a,U,v)

(1− δ)Π(x, a) + δE[W (y, x′)|x, a]. (26)

• For each state x ∈ X and i ∈ {1, ..., n}

v′i(x) = min
a∈A(x)

v̂i(x, a, U, v) (27)

where v̂i(x, a, U, v) is defined by v̂i(x, a, U, v) =∞ if the set W(x, a, U, v) is
empty and else by

v̂i(x, a, U, v) = min
w∈W(x,a,U,v)

(1− δ)πi(x, a) + δE[wi(y, x′)|x, a]. (28)

Note that the optimizations over W are just linear optimization problems.
The vector of the largest total payoffs and lowest possible payoffs (Ū , v̄) for each
state, which describes the PPE payoff set, is a fixed point of D̂, meaning that

Ū(x) = Û(x, ᾱe(x), Ū , v̄) for all x, (29)

v̄i(x) = v̂i(x, ᾱi(x), Ū , v̄) for all x, i (30)

for some action plan (ᾱk)k. This action plan is the action plan of an optimal
simple equilibrium which according to Theorem 1 describes the PPE payoff set.
Conversely, among all action plans (αk)k and values (U, v) that satisfy equations
(29) and (30), the action plan that maximizes ∑x∈X (U(x)−∑n

i=1 vi(x)) must be
an action plan of an optimal simple equilibrium. Moreover, there exists a simple
equilibrium with an action plan (αk)k∈K if and only if there exist U and v such
that

Û(x, αe(x), U, v) ≥ U(x) for all x ∈ X, (31)
v̂i(x, αi(x), U, v) ≤ vi(x) for all x ∈ X, i = 1, ..., n. (32)

Starting with values U0(x) ≥ Ū(x) and v0
i (x) ≤ v̄i(x) for all x ∈ X, the sequence

(D̂m(U0, v0))m converges to Ū (from above) and v̄ (from below). Repeatedly
applying the operator D̂ yields in every round a tighter outer approximation for
Ū and v̄. We can use the results from the algorithm for perfect monitoring as
initial values U0 and v0.
To obtain bounds on the approximation error, it is also necessary to obtain inner
approximations of the equilibrium payoff sets. Similar to Judd, Yeltekin, and
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Conklin (2003), one can reduce the outer approximations of Ū and increase the
outer approximations of v̄ by a small amount (say, 2%-3%) and then apply the de-
composition operator D̂ on these adjusted values. If the decomposition increases
all joint equilibrium payoffs and reduces all punishment payoffs, an inner approx-
imation has been found. For each decomposition step, we get a corresponding
action plan consisting of the optimizers of (25) and (27). For this action plan the
linear program (LP-OPP) always has a solution. We obtain from that solution a
simple equilibrium and an even tighter inner approximation.
An alternative method to search for an inner approximation is to run (LP-OPP)
for the action plans that result from the decomposition steps of the outer approx-
imation. If a solution exists, it also forms an inner approximation.
Inner and outer approximations allow to reduce for every state and regime the
set of action profiles that can possibly be part of an optimal action plan. Let
(U in, vin) and (U out, vout) describe the inner and outer approximations. Consider
a state x and an action profile a ∈ A(x). IfW(x, a, U out, vout) is empty, then there
does not exist any PPE in which a is played and we can dismiss it. If a can be
enforced by some w ∈ W(x, a, U out, vout), but

Û(x, a, U out, vout) < U in(x),

then a will not be played in the equilibrium regime in state x of an optimal
equilibrium, since even with the outer approximations of U and v it can only
decompose a lower joint payoff than the current inner approximation. Similarly,
if

v̂i(x, a, U out, vout) > vini (x)
then a will not be an optimal punishment profile for player i in state x.
Hence, finer inner and outer approximations speed up the computation of new
approximations since a smaller set of action profiles has to be considered. More-
over, if the number of candidate action profiles can be sufficiently reduced, it may
become tractable to compute the exact payoff set by applying the brute force
method from Subsection 3.3 on the remaining action plans.

6 Principal-agent examples

The following two examples illustrate how our results can be used to easily obtain
closed form solutions in two examples of principal-agent relationships that are
described by stochastic games. In a principal-agent game, the principal is a player
who has (apart from voluntary transfers) only a trivial choice of continuing or
terminating the relationship, or of hiring the agent at a fixed wage or not. There
is never money burning on the equilibrium path, because the principal can simply
receive the remaining surplus.
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6.1 A principal-agent game with a durable good

In our first example, a principal (player 1) can employ an agent (player 2) to pro-
duce a single durable good for her. If the product has been successfully produced,
the state of the world will be given by x1, otherwise it is x0. In state x0, the
agent can choose production effort e ∈ [0, 1] and the product will be successfully
produced in the next period with probability e. The principal’s stage game payoff
is 1 in state x1 and 0 in state x0. The agent’s stage game payoff is −ce, where
c > 0 is an exogenous cost parameter. For the moment, we assume that once the
product has been produced, the state stays x1 forever.

Perfect monitoring We first consider the case of perfect monitoring. In the
terminal state x1, joint payoffs are given by U(x1) = 1. The joint equilibrium
payoff in state x0 in a simple equilibrium with effort e satisfies

U(x0, e) = −(1− δ)ce+ δ(e+ (1− e)U(x0, e))⇔

U(x0, e) = δ − (1− δ)c
δe+ (1− δ)e.

We assume (1− δ)c < δ, i.e., it is socially efficient that the agent exerts maximum
effort. In an optimal simple equilibrium, the agent’s punishment payoff in both
states is v̄2 = 0, and the principal’s punishment payoffs are v̄1(x0) = 0 and
v̄1(x1) = 1. Using Theorem 2,20 we can conclude that effort e can be implemented
if and only if U(x0, e) ≥ eδ, i.e., if

(1− δ) c ≤ δ2(1− e). (33)

Condition (33) implies that positive effort can be induced under sufficiently large
discount factors, while it is not possible to induce full effort e = 1 under any given
discount factor δ ∈ [0, 1). The intuition is simple. Once the product has been
successfully built, the game is in the absorbing state x1. Since payoffs in x1 are
fixed, the principal will not conduct any transfers. The principal can only reward
the agent for positive effort in the case that the agent has exerted high effort but
the project has not been successful, which happens with probability (1−e). Thus,
the agent cannot be reimbursed for full effort, but there is a positive chance to
get reimbursed for partial effort.

Imperfect monitoring and costly punishment Consider now imperfect mon-
itoring in the form that the principal can only observe the realized state. It is
straightforward that then in every simple equilibrium the agent chooses zero ef-
fort and no transfers are conducted. The reason is that the principal cannot be
induced to make any payments in state x1, and at the same time any transfers

20Although those results were derived only for a finite action space, they go through also for
compact subsets of Rm.
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by the principal in the state x0 increase the agent’s incentives not to exert any
effort. This observation illustrates how monitoring imperfections may be much
more devastating in a stochastic game than in a repeated game: In a standard
repeated principal agent games with a noisy public signal about the agent’s effort
choice, socially optimal effort levels can always be implemented for sufficiently
large discount factors.
We now introduce the possibility of costly punishment. Assume that in state x1
the agent can choose destructive effort d ∈ {0, 1} where d = 1 has the consequence
that the product is destroyed in the next round and the state becomes again x0,
while for d = 0 the product remains intact. The agent incurs costs for destructive
efforts of size kd with k ≥ 0.
To find the optimal simple equilibrium, we consider the possible action profiles of
the agent. If the optimal simple equilibrium has no destructive effort (α1

2(x1) = 0),
it must be the same as in the previous case with zero production effort. If the
optimal simple equilibrium has α1

2(x1) = 1, the principal’s punishment payoffs are
v̄1(x0) = 0 and v̄1(x1) = (1− δ). The agent’s punishment payoff is still v̄2 = 0 in
both states.
For a game like this one, a principal-agent game in which the agent’s punishment
payoff is constant over the states, our results from the previous section greatly
simplify:

Corollary 1. Consider an action plan (αk2)k in a principal-agent game in which
for all states A1(x) contains only one action. Moreover, assume for joint payoffs U
(as defined by (11)) and punishment payoffs vi (as defined by (12)) that v2(x) = v̄2
independent of the state. There exists a simple equilibrium with action plan (αk2)k,
joint payoffs U and punishment payoffs vi if and only if there exist payments
tk(x, y, x′) from principal to agent such that for all k = e, 1, 2, and x, x′ ∈ X and
y ∈ Y

0 ≤ tk(x, y, x′) ≤ δ

1− δ (U(x′)− v1(x′)− v̄2) (34)

and
αk2(x) ∈ arg max

ã2
(π2(x, ã) + E[tk|x, ã2]). (35)

Proof. See Appendix B.

In particular, if there is perfect monitoring in a state x, the action αk2(x) can be
part of the simple equilibrium if and only if

(1−δ)Π(x, αk2)+δE[U |x, αk2] ≥ (1−δ)(π1(x, αk2)+max
ã2

π2(x, ã2))+δ(v̄2+E[v1|x, αk2]).
(36)

Applied to the case at hand this means that the agent can choose destructive
effort to punish α1

2(x1) = 1 as well as αe2(x1) = 0 and αe2(x0) = e if and only if

− (1− δ)k + δU(x0, e) ≥ 0 (37)
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and
e ∈ arg max

ê
−(1− δ)cê+ δ2ê. (38)

The first condition uses that there is perfect monitoring in state x1, so that we
can apply (36) for k = 1 and x = x1. The second condition uses that in state x0,
the agent should be maximally rewarded if the next state is x1 and maximally
punished if the next state is x0.

It can be seen from (38) that due to the linear production technology, every
optimal simple equilibrium in which the agent chooses positive effort must have
maximal effort e = 1. Overall, it follows that high effort can be implemented if
and only if

(1− δ)(δc+ k) ≤ δ2 (39)
and

(1− δ)c ≤ δ2. (40)

Hence, if the agent has the opportunity to exert costly effort to punish the prin-
cipal after a successful project, full effort provision can be implemented under
sufficiently large discount factors.
The constructed simple equilibria use optimal penal codes in which the agent
uses a punishment that is costly in the current period and that is only conducted
because it is rewarded in the future. In many natural applications of repeated
games, simple Nash reversion strategies that punish any deviation by an infinite
reversion to a stage game Nash equilibrium are able to implement cooperative
actions given sufficiently large discount factors. In the current example, a natural
analog to Nash reversion would be to punish any deviation from required effort
or transfers by reverting to the unique MPE of the stochastic game: e = d = 0
and no transfers. However, such a punishment cannot achieve any positive effort
by the agent. The ineffectiveness of reversion to an MPE as a punishment in this
simple example suggests that for stochastic games it seems particularly useful to
have a simple characterization of equilibria with optimal penal codes.

6.2 A principal-agent game with an outside option

As our last example, we consider a principal-agent game in which the agent can
devote effort to two different tasks: He can exert production effort in the rela-
tionship with the principal, and/or exert search effort to work towards an outside
alternative.21 This example illustrates that the presence of transfers does not im-
ply that the set of PPE payoffs is increasing in the discount factor. We will see
that when the agent can invest into his outside option, his punishment payoff is

21The set-up is reminiscent of Herbold (2014), who analyzes on the job search. In our sim-
ple example, however, it is never optimal to have the agent spend some effort in the current
relationship and some on search.
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increasing in the discount factor and consequently the set of PPE payoffs can be
smaller for larger discount factors.
The game between the principal (player 1) and the agent (player 2) is as follows.
If the game is in the initial state x0, principal and agent first decide whether
they take their outside option, which yields 0 for both. If both decide against the
outside option, the agent can choose unobservable productive effort e ∈ [0, 1] and
search effort s ∈ [0, 1]. The cost of effort to the agent is equal to c(e, s) = (e+s)2.
With probability e, the principal receives a return y ≥ 2.22 With probability s,
the game moves to a state x1, in which the game is the same as in x0 except that
taking the outside option would now yield 1 to the agent. We assume that the
agent can search independently of the principal: If one of the players decides to
take the outside option in state x0, the agent can choose search effort s ∈ [0, 1] at
cost c(0, s) to increase the probability s of a state transition.23

The principal’s minmax payoff is v̄1 = 0 in both states. The agent’s minmax
payoff in state x1 is given by v̄2(x1) = 1, while in state x0 it is given by

v̄2(x0) = max
s

δ − (1− δ)s
δs+ 1− δ s,

which can be calculated to equal

v̄2(x0) = 2− 4δ + 3δ2 − 2(1− δ)
√

1− 2δ + 2δ2

δ2 .

The punishment payoff v̄2(x0) is increasing in δ, since the same search effort creates
a larger surplus when δ is larger. All these minmax payoffs are achieved by MPE.
To characterize the set of PPE payoffs we need to determine the largest surplus
that can be generated in a simple equilibrium. Note first that any effort level that
can be implemented in a simple equilibrium in state x1 can also be implemented in
state x0. Since we are only interested in the simple equilibrium that generates the
largest possible surplus in state x0, it suffices to consider simple equilibria in which
agent and principal would take the outside option in state x1, yielding payoff vector
(0, 1) in state x1. Since the agent’s marginal return to effort is constant, we only
need to consider simple strategy profiles in which the agent either concentrates
on creating surplus in the relationship (s(x0) = 0) or outside of the relationship
(e(x0) = 0).24

The maximum feasible joint payoff is achieved by work effort eFB = 1 and search
effort sFB = 0, yielding a surplus of U0(x0) = y − 1. We first ask for conditions

22The assumption y ≥ 2 guarantees that cooperation is efficient. It follows from the analysis
below that for y ≤ 2, no cooperation at all is possible.

23Note that this assumption implies that the discount factor in this example cannot be inter-
preted as a survival rate of the relationship.

24To see this formally, note that for any continuation payoffs given by w, the agent maximizes
−c(e+ s)(1− δ) + δ(s+ (1− s)ew(y, 0) + (1− s)(1− e)w(0, 0)). The Hesse matrix has principal
determinants equal to −c′′(e+ s)(1− δ) and (c′′(e+ s)(1− δ))2− (c′′(e+ s)(1− δ) + δ(w(y, 0)−
w0(0, 0)))2 ≤ 0, hence there is no interior maximum.
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on the discount factor δ such that U0(x0) can be attained in a simple equilibrium.
In this case, the algorithm that is outlined in Section 5 would terminate after
the first step. If a high return y is rewarded with maximum continuation payoff
U0(x0), and a low return 0 with minimum continuation payoff v̄2(x0), the return
to production effort if s = 0 is equal to δ

1−δ (U
0(x0) − v̄2(x0)), while the return

to search effort if e = 0 is equal to δ
1−δ (1 − v̄2(x0)). Hence, first best effort is

enforceable with continuation payoffs between v̄2(x0) and U0(x0) in state x0 if
and only if the following two conditions are satisfied:

y ≥ 2

and
δ

1− δ (y − 1− v̄2(x0)) ≥ c′(1) = 2. (41)

The first condition is always satisfied. Evaluating condition (41), one can show
that it is never satisfied for y = 2, but that for y > 2 there is a cut-off δ̄ such that
it holds for larger δ. If δ ≥ δ̄, the set of PPE payoffs is given by

U(x0) = {(u1, u2) ∈ R2; u1 + u2 = y − 1, u1 ≥ 0, u2 ≥ v̄2(x0)}.

In this range of discount factors, the payoff set is shrinking in δ, since the agent
needs to receive a larger share of the surplus as the discount factor increases.
For δ < δ̄, the largest effort level is given by a fixed point equation (corresponding
to equation (29)). An effort level e > 0 can be implemented with maximum total
payoffs U if δ

1−δ (U − v̄2(x0)) ≥ 2e and U ≥ 1. The largest possible effort level in
a simple equilibrium is therefore given by the largest solution to

2e = δ

(1− δ)(ey − e2 − v̄2(x0))

that also satisfies ey− e2 ≥ 1. If no solution exists, no cooperation is possible and
U(x0) only contains the payoff vector (0, v̄2(x0)).
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Appendix A: Comparision with Algorithm to Solve
Stochastic Games Without Transfers

Recently, two algorithms have been developed to solve for the pure strategy PPE
payoff set of stochastic games with perfect monitoring and no transfers (but a
public correlation device): Yeltekin, Cai and Judd (2015) and Abreu, Brooks
and Sannikov (2016, henceforth ABS). Yeltekin, Cai and Judd (2015) extend
the repeated game methods developed by Judd, Yeltekin and Conklin (2003) to
stochastic games. ABS implement a considerably faster method for two player
games: their numeric simulations shows speed ups by factors of 300 and more.
In this appendix, we compare results and performance of our algorithm with the
ABS algorithm.25 To compare the resulting payoff sets with and without transfers,
we first study the simple two state Prisoners’ Dilemma that ABS use as example
in their paper. The payoff matrices are depicted in Table 1. The superscripts
denote the probability to remain in the current state.

State 1 State 2
C D C D

C 1,11/3 -1,21/2 C 3,31/3 1,41/2

D 2,-11/2 0,01/3 D 4,11/2 2,21/3

Table 1: Payoffs of Prisoners’ Dilemma Example

This small game can be very quickly solved with and without transfers and Figure
4 shows the corresponding equilibrium payoff sets for the discount factor δ = 0.7
in state 1.
The punishment payoffs are the same with and without transfers and both games
share a point on the Pareto-frontier (red circle). The main difference is that
transfers generate a linear Pareto frontier, which allows any split of this joint
payoffs that guarantees each player at least his lowest equilibrium payoff. Numer-
ical experiments show that the critical discount factor needed to sustain mutual
cooperation remains the same with and without transfers (roughly δ = 0.357).26

Figure 5 shows the payoff sets for a small version of the dynamic Cournot game
of section 4.3 with reserves of at most 5 units.

25ABS have provided a well documented open source C++ implementation of their algo-
rithm (see http://babrooks.github.io/SGSolve/). We have written an R interface to their li-
brary (see https://github.com/skranz/RSGSolve) and included some functionality in our dyn-
game package that allows to quickly compare the solutions and algorithmic performance for
stochastic games with and without transfers. Usage examples with code can be found here:
https://github.com/skranz/dyngame/tree/master/examples.

26That transfers don’t change the critical discount factor is due to two facts: i) the game and
optimal equilibrium strategies are symmetric, i.e. no transfers are needed on the equilibrium
path to smooth incentives constraints and ii) the harshest punishment is the MPE of always
playing (D,D), which can also be implemented without transfers.
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Figure 4: Equilibrium payoff sets in state 1: with transfers (red, solid) and without
transfers (blue, dashed)

We see that the payoff set without transfers lies essentially in the interior of the
payoff set with transfers.27 The bottom panel is a zoomed-out version that also
shows as grey circles candidate payoff points (called pivots) of early iterations
(called revolutions) from the ABS algorithms. We see that the equilibrium payoff
set with transfers is substantially smaller than the set of points initially considered
by the ABS algorithm. In this example 91% of pivots lie outside the equilibrium
payoff set with transfers.
In particular, the punishment payoffs with transfers (minimal payoffs for both
players) generate a lower bound that is much stricter than many pivots considered
in the ABS algorithm. This observation suggests the possibility that as a side
effect, our algorithm could be useful to speed up the computation of payoff sets
in games without transfers by providing tighter initial approximations.
Table 2 illustrates that larger stochastic games can be solved much faster with our
algorithm (assuming transfers) than with ABS (without transfers). We solve dif-
ferent versions of the Cournot game in which we vary the discount factor and the
maximum number of reserves for each player - the number states grows quadrati-
cally in this number. The following tables shows the runtimes for both algorithms,
which we have run on a notebook.28

27Note that every equilibrium payoff without transfers can also be implement in the corre-
sponding game with transfers, Yet, looking precisely at Figure 5, one sees that one corner point
of ABS’s payoff set even lies slightly outside our payoff set for the game with transfers. This
result can be due to the fact that ABS, like also Yeltekin, Cai and Judd (2015), only compute
an outer approximation of the equilibrium payoff set.

28The ABS algorithm can be customized with several parameters, e.g. 13 parameters that
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Figure 5: Equilibrium payoff sets for a Cournot example: with transfers (red,
solid) and without transfers (blue, dashed).
The zoomed-out version in the bottom panel also shows as grey circles candidate
payoff points (pivots) of early iterations of the ABS algorithm.
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Runtime in seconds
With transfers No transfers (ABS) Speedup No of States δ

0.06 1.12 17 9 0.7
0.08 1.64 21 16 0.7
0.07 (no solution found) - 25 0.7
0.07 26.8 365 36 0.7
0.17 (no solution found) - 49 0.7

0.01 6.4 636 9 0.9
0.03 13.9 463 16 0.9
0.04 317 7940 25 0.9

Table 2: Runtime of the algorithms with and without transfers.

For small games and a lower discount factor of δ = 0.7 the speed up of our
algorithm with transfers compared to ABS’ algorithm for games without transfers
is moderate, only 17 times for the smallest game. Yet, for a discount factor of
δ = 0.9, we find for the game with 25 states, that solving the game without
transfers takes 7940 times as long as solving the game with transfers.
Figure 6 shows the runtime of our algorithm for several Cournot example with
a discount factor of δ = 0.9 in which we vary the size of a player’s maximum
reservers in integer steps from 2 up to 20. As a measure of the size the game, we
plot on the x-Axis the total number of action profiles (summed over all states) of
that stochastic game.
The plot suggests that runtime increases more than linear in the total number
of action profiles. This means that even though our algorithm runs substantially
faster than algorithms for stochastic games without transfers, it does not break
the curse of dimensionality.

Appendix B: Remaining Proofs

Proof of Proposition 2: With up-front transfers, players can always redistribute
the maximum possible surplus or burn part of it as long as every player gets
weakly more than his lowest possible payoff. Given compactness, the minimum

specify different types of tolerances. Since there is no clear guide, which parameters to chose in
our comparison, we have run it with the default parameters that ABS specify in their code.
In some cases, the ABS algorithm did not find a solution. We got the error code: ’Caught the
following exception: bestAction==NULL. Could not find an admissible direction.’ We also tried
out different specifications of the tolerances, and found that in some instances that solutions
then could be found. We decided to stick with the default configuration for creating this table.
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Figure 6: Runtime of our algorithm for stochastic games with transfers, for dy-
namic Cournot examples of different sizes.

and the maximum exist and the PPE payoff set must have the simplex form as
stated in the proposition. It is also straightforward to see that for the calculation
of maximum total payoff Ū(x) and minimum individual payoffs v̄i(x) it does not
matter whether one considers all PPE payoff vectors in the set U(x), or only payoff
vectors in the set U0(x0) of payoffs of PPE without up-front transfers. First, for
any given PPE σ, the continuation equilibrium σ|p0 that results from σ being
restricted to the subgame following first period transfers p0 = σ(x0) yields a PPE
σ0 with weakly larger total payoff. Second, for any given PPE σ, the continuation
equilibrium σ|p̂0 with p̂0

i = 0 and p̂0
−i = σ(x0) must have a weakly lower payoff for

player i than σ.
To show that the set U(x0) is compact, we closely follow the recursive methods
of APS, which directly transfer to stochastic games (see e.g. Judd and Yeltekin
(2011) for such an extension). In the following, we adapt the terminology to our
case of a stochastic game with transfers.
For any collection of (continuation payoff) setsW = ∏

x∈XW(x) withW(x) ⊂ Rn,
an action profile a ∈ A(x) is enforceable on W in state x if there exists a function

w : Y ×X →
⋃
x̂∈X
W(x̂) with w(y, x′) ∈ W(x′) for all y,

such that a is a Nash equilibrium of the static game with strategy set A(x) and
payoffs

(1− δ)πi(x, .) + δE[wi(y, x′)|x, .].

The function w enforces a. Note that the payoff functions in the static game are
continuous. We say that a payoff vector v is decomposable onW in state x if there
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exist a ∈ A(x) and w such that a is enforced by w on W in state x and

vi = (1− δ)πi(x, a) + δE[wi(y, x′)|x, a].

We define an operator B that maps a collection of continuation payoff setsW into
a collection of sets of decomposable payoffs:

B(W) =
∏
x∈X
{v ∈ Rn; v is decomposable on W in state x}.

We have illustrated in Section 3.2 how the possibility of upfront transfers trans-
forms the payoff set into a simplex. To account for upfront transfers (but not yet
assuming compactness of the payoff set), we define a set operator T that maps a
subset W ⊂ Rn to

T (W) =
{
u ∈ Rn|

n∑
i=1

ui ≤
n∑
i=1

wi and ui ≥ wii for some w,w1, ..., wn ∈ W
}
.

(42)
The possibility of up-front transfers is incorporated by defining

D(W) = ×x∈XT (B(W)x),

A set W is called self-generating if W ⊂ D(W).
Claim. The results of APS apply:
(i) The operator D is monotone: If W ⊂W ′ then D(W) ⊂ D(W ′).
(ii) If W is compact, then D(W) is compact.
(iii) The set of PPE continuation payoffs U = ∏

x0∈X U(x0) is a fixed point of D.
(iv) Any bounded self-generating set is a subset of U .

Closely following the arguments in APS yields the claims (i)−(iv) for the operator
B. The results for D follow since T is monotone, preserves compactness, and has
U(x0) as a fixed point. Moreover, applying T to a subset of U(x0) yields again a
subset of U(x0).
Note that when we apply the operatorD to a compact set, the result is a collection
of n-simplices, which are spanned by n + 1 vectors of the form (u1, ..., un) with
ui = vi for all but at most one j, and uj = U − ∑i 6=j vi, for some v1, ..., vn, U.
To represent such a simplex, one therefore needs only n + 1 numbers, and if we
iteratively apply the operator D, we obtain decreasing sequences of such simplices.
To ensure that U is a subset of the sets in this sequence, we start with vectors U0

and v0 satisfying U0(x) ≥ Ū(x) and v0
i (x) ≤ v̄i(x) for all x ∈ X and all i = 1, ..., n.

When we iteratively apply D to the set

F =
∏
x∈X
{u ∈ Rn :

n∑
i=1

ui ≤ U0(x) and ui ≥ v0(x)},
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then U ⊂ Dm(F ) for all m. This follows from monotonicity of the operator D and
the fact that U is a fixed point of D. The sequence Dm(F ) converges against U in
the Hausdorff-metric. The set ⋂∞m=1 D

m(F ) is equal to U , and as the intersection
of compact sets, the set of PPE continuation payoffs U must be compact as well.
�

Proof of Theorem 2:
For each state x ∈ X and regime k ∈ K, condition (16) allows to choose a
distribution uki (x), i = 1, ..., n, of the surplus such that

n∑
i=1

uki (x) = (1− δ)Π(x, αk) + δE[U |x, αk] (43)

and
uki (x) ≥ max

âi

(1− δ)πi(x, âi, αk−i) + δE[vi|x, âi, αk−i], (44)

holding with equality for i = k.A simple strategy profile with transfers pki (x, αk(x), x′)
achieves this distribution of payoffs if the expected transfers

t̄ki (x) = (1− δ)E[pki (x, αk(x), x′)|x, αk(x)]

satisfy
δt̄ki (x) = (1− δ)πi(x, αk) + δE[uei |x, αk]− uki (x).

If we define t̄ki (x) by this condition, it holds that ∑n
i=1 t̄

k
i (x) = 0. Moreover, it

follows from condition (44) that

E[uei − vi|x, αk] ≥ t̄ki (x).

The intuition behind this is that it is more difficult to induce an action and a
subsequent expected payment afterward than to induce an expected payment.
We still need to show that for each k ∈ K and state x there exist payments
ti(x′) = (1 − δ)pki (x, αk(x), x′) for each state x′ such that the following three
conditions hold:

ti(x′) ≤ uei (x′)− vi(x′), (45)
n∑
i=1

ti(x′) = 0, (46)∑
q(x′)x′ti(x′) = t̄ki (x), (47)

where q(x′) = q(x′|x, αk(x)) is the transition probability from state x to state x′
if αk(x) is played. We use Theorem 22.1 in Rockafellar’s “Convex Analysis” to
show that such payments exist. This theorem says that the existence of a vector
with entries ti(x′), i = 1, .., n, x′ ∈ X, that satisfies the above three conditions
is equivalent to the non-existence of real numbers λi(x′) ≥ 0, µ(x′), and ηi, i =
1, .., n, x′ ∈ X, that satisfy the following two conditions:

λi(x′) + µ(x′) + ηiq(x′) = 0 for all i, x′ (48)∑
i,x′

λi(x′)(uei (x′)− vi(x′)) +
n∑
i=1

ηit̄i
k(x) < 0. (49)
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We assume to the contrary that such a solution to (48) and (49) exists. These
two conditions imply that

−
∑
x′
µ(x′)(U(x′)−

n∑
i=1

vi(x′)) +
n∑
i=1

ηi(t̄ik(x)− E[uei − vi|x]) < 0.

Let x̃ be a state with µ(x̃)
q(x̃) ≤

µ(x′)
q(x′) for all x′ ∈ X. Since condition (48) holds for all

x′ ∈ X, it also holds for x′ = x̃, i.e., ηi = −λi(x̃)+µ(x̃)
q(x̃) . Hence, it follows that

∑
x′

(µ(x̃)q(x′)
q(x̃) − µ(x′))(U(x′)−

n∑
i=1

vi(x′)) +
n∑
i=1

λi(x̃)
q(x̃) (E[uei − vi|x]− t̄ik(x)) < 0.

This implies ∑
x′

(µ(x̃)q(x′)
q(x̃) − µ(x′))(U(x′)−

n∑
i=1

vi(x′)) < 0.

By definition of x̃ and because of condition (15), the expression on the left-hand-
side must be non-negative. Hence, we arrived at a contradiction, which means
that the system given by (45), (46), and (47) must have a solution and we can
define payments (1− δ)pki (x, αk(x), x′) = ti(x′).
It remains to define the payments following a unilateral deviation. For any com-
bination of states x,x′ and signal y with yi 6= αki (x) and y−i = αk−i(x) we choose
payments

(1− δ)pki (x, y, x′) = uei (x′)− vi(x′), (50)
such that continuation payoffs after a deviation in the action stage are indeed
given by vi. Payments for players other than i can be defined such that

(1− δ)pkj (x, y, x′) ≤ uej(x′)− vj(x′)

and
n∑
j=1

pkj (x, y, x′) = 0,

using condition (15).
Now we have to show that the so defined simple strategy profile is indeed a PPE.
The budget and payment constraints are satisfied by definition. The relevant
action constraints take the form

uki (x) ≥ max
ai∈Ai(x)

((1− δ)πi(x, ai, αk−i) + δE[vi|x, ai, αk−i]),

and are therefore also satisfied (see inequality 44). Moreover, it holds by definition
that uii(x) = vi(x), and since there is no money burning, U e(x) = U(x). The
payment plan that we have defined is an optimal payment plan, because U(x) is
an upper bound of the equilibrium joint payoff U e(x), and similarly

uii(x) ≥ max
ai

(1− δ)πi(x, ai, αi−i) + δE[uii|x, ai, αi−i]
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implies that vi(x) is a lower bound of the punishment payoff uii(x). Thus, we have
shown the “if” part of the Theorem. The “only if” part is straightforward. Any
simple equilibium satisfies (AC-k). Using (PC-k), we get

(1− δ)πi(x, αk) + δE[−(1− δ)pki (x, y, x′) + uei (x′)|x, αk]
≥ max

ai∈Ai(x)
(1− δ)πi(x, ai, αk−i) + δE[vi|x, ai, αk−i].

Summing up and using (BC-k) yields condition (16):

(1− δ)Π(x, αk) + δE[U e|x, αk] ≥
n∑
i=1

max
ai∈Ai(x)

(1− δ)πi(x, ai, αk−i) + δE[vi|x, ai, αk−i].

Condition (15) follows from summing up the constraints (PC-k) for all players.�
Proof of Proposition 3: For a given policy α, let Cα

i be an operator mapping the
set of punishment payoffs in itself defined by

Cα
i (vi)[x] = ci(x, α(x), vi)

It can be easily verified that Cα
i is a contraction-mapping operator. It follows

from the contraction-mapping theorem that player i’s best-reply payoffs are given
by the unique fixed point of Cα

i , which we denote by vi(α). This means

vi(α) = Cα
i (vi(α)) (51)

It is a well known result that the operator Cα
i is monotone:

vi ≤ ṽi ⇒ Cα
i (vi) ≤ Cα

i (ṽi) (52)

where vi ≤ ṽi is defined as vi(x) ≤ ṽi(x)∀x ∈ X. We denote by [Cα
i ]k the operator

that applies k times Cα
i and define its limit by

[Cα
i ]∞ = lim

k→∞
[Cα

i ]k.

The contraction mapping theorem implies that [Cα
i ]∞ is well defined and trans-

forms every payoff function v into the fixed point of Cα
i , i.e.

[Cα
i ]∞(v) = v(α) (53)

Furthermore, it follows from monotonicity of Cα
i that

Cα
i (vi) ≤ vi ⇒ [Cα

i ]∞(vi) ≤ vi (54)

and
Cα
i (vi) < vi ⇒ [Cα

i ]∞(vi) < vi (55)
where two payoff functions ui and ũi satisfy ui < ũi if ui ≤ ũi and ui 6= ũi.
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We now show that for any two policies a and ã the following monotonicity results
hold

Cα
i (v(α)) = C α̃

i (v(α)) ⇒ v(α) = v(α̃) (56)
Cα
i (v(α)) > C α̃

i (v(α)) ⇒ v(α) > v(α̃) (57)
v(α) � v(α̃) ⇒ Cα

i (v(α)) � C α̃
i (v(α)) (58)

We exemplify the proof for (57). It follows from (51), the left part of (57), (54)
and (53) that

v(α) = Cα
i (v(α)) > C α̃

i (v(α)) ≥
[
C α̃
i

]∞
(v(α)) = v(α̃).

(56) and can be proven similarly. To prove (58), assume that there is some α̃ with
Cα
i (v) ≤ C α̃

i (v) but ṽ � v. We find

v = Cα
i (v) ≤ C α̃

i (v) ≤
(
C α̃
i

)∞
(v) = ṽ

which contradicts the assumption ṽ � v.
Intuitively, these monotonicity properties of the cheating payoff operator are cru-
cial for why the algorithm works. If one wants to find out whether a policy α̃ can
yield lower punishment payoffs for player i than a policy α, one does not have
to solve player i’s Markov decision process under policy α̃. It suffices to check
whether for some state x the cheating payoffs given policy α̃ and punishment pay-
offs v(α) are lower than v(α)(x). If this is not the case for any admissible policy
α̃ then a policy α is an optimal punishment policy, in the sense that it minimizes
player i’s punishment payoffs in every state.
The fixed point condition (51) of the value determination step and the policy
improvement step (20) imply that vr = Cαr

i (vr) ≥ Cαr+1
i (vr). We first establish

that if
vr = Cαr

i (vr) = Cαr+1

i (vr). (59)
then we have vri = v̂i. For a proof by contradiction, assume that condition holds
for some r but that there exists a policy α̂ such that v(αr) � v(α̂), i.e. α̂ leads
in at least some state x to a strictly lower best-reply payoff for player i than αr.
By (58) this would imply Cαr

i (vr) ≮ C α̃
i (vr). This means that α̂ must also be a

solution to the policy improvement step and since (59) holds, we then must have

Cαr

i (vr) = C α̂
i (vr)

However, (56) then implies that v(αr) = v(α̂), which contradicts the assumption
v(αr) � v(α̂). Thus if the algorithm stops in a round R, we indeed have vR = v̂i.
If the algorithm does not stop in round r, it must be the case that vr = Cαr

i (vr) >
Cαr+1
i (vr). (57) then directly implies the monotonicity result vr > vr+1. The
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algorithm always stops in a finite number of rounds since the number of policies
is finite and there a no cycles because of the monotonicity result.�
Proof of Corollary 1: Assume there exists a simple equilibrium with action plan
(αk2)k and with optimal payment plan (pk2)k such that joint payoffs are U and
punishment payoffs are v1 and v̄2. It must be the case that pe1 + pe2 = 0, since
else one could define more efficient payments p̃e1(x, y, x′) = −pe2(x, y, x′) without
affecting the validity of the action and payment constraints. Then define

tk(x, y, x′) = δ

1− δ (ue2(x′)− (1− δ)pk2(x, y, x′)− v̄2).

The conditions (PC-k) imply that tk(x, y, x′) ≥ 0 and

tk(x, y, x′) ≤ δ

1− δ (U(x′)− v1(x′)− v̄2)

Moreover, the conditions (AC-k),

αk2(x) ∈ arg max
ã

(1− δ)π2(x, ã) + δE[ue2(x′)− (1− δ)pk2(x, y, x′)|x, ã],

imply that αk2(x) ∈ arg maxã π2(x, ã) + E[tk|x, ã].
For the other direction, assume that there exist payments tk(x, y, x′) as in the
proposition and define

ue2(x) = (1− δ)π2(x, αe) + E[(1− δ)te(x, y, x′) + δv̄2]

and
(1− δ)pe2(x, y, x′) = ue2(x′)− 1− δ

δ
te(x, y, x′)− v̄2

as well as pe1 = −pe2, such that U e(x) = U(x) and (BC-e) holds by definition. Also
define

(1− δ)p2
2(x, y, x′) = ue2(x′)− v̄2

and p2
1 = −p2

2, such that such that u1
1(x) = v1(x) and (BC-2) holds by definition.

Finally, define
(1− δ)p1

1(x, y, x′) = ue1(x′)− v1(x′)
and

(1− δ)p1
2(x, y, x′) = ue2(x′)− 1− δ

δ
t1(x, y, x′)− v̄2,

such that u1
1(x) = v1(x). The condition (BC-1) then holds as well, since it is

equivalent to U(x′) − v1(x′) − v̄2 ≥ 1−δ
δ
t1(x, y, x′) (condition (34)). Moreover,

(PC-k) for the agent holds because

ue2(x′)− (1− δ)pk2(x, y, x′) = 1− δ
δ

tk(x, y, x′) + v̄2 ≥ v̄2.

For the principal, (PC-e) holds because

ue1(x′)− (1− δ)pe1(x, y, x′) = U(x′)− 1− δ
δ

te(x, y, x′)− v̄2 ≥ v1(x′),
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(PC-1) holds with equality, and (PC-2) holds because U(x′) ≥ v1(x′)+ v̄2. Finally,
the action constraints follow from condition (35) since the payments were defined
such that the agent’s continuation payoff is equal to (1−δ)

δ
t plus a constant. In case

of perfect monitoring, the conditions are equivalent to the condition in (36), since
any deviation is punished by withholding transfers while following prescribed play
is rewarded by the maximum payment. An action plan (ak2)k can therefore be part
of a simple equilibrium if and only if for all states x,

π2(x, ak2) + δ

1− δE[U − v1 − v̄2|x, ak] ≥ max
ã2

π2(x, ã2)

which can be rearranged to equal condition (36). �
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