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H I G H L I G H T S
c We allow for retaliation in a social-dilemma game with punishment.
c Retaliating behaviour evolves endogenously in the model.
c Punishers may induce a mixed, partially cooperative equilibrium without punishers.
c Under positive mutation rates, punishment can increase the level of cooperation.
c When mutations occur, punishment cannot stabilise full cooperation.
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a b s t r a c t

Models of evolutionary game theory have shown that punishment may be an adaptive behaviour in

environments characterised by a social-dilemma situation. Experimental evidence closely corresponds

to this finding but questions the cooperation-enhancing effect of punishment if players are allowed to

retaliate against their punishers. This study provides a theoretical explanation for the existence of

retaliating behaviour in the context of repeated social dilemmas and analyses the role punishment can

play in the evolution of cooperation under these conditions. We show a punishing strategy can pave the

way for a partially cooperative equilibrium of conditional cooperators and defecting types and, under

positive mutation rates, foster the cooperation level in this equilibrium by prompting reluctant

cooperators to cooperate. However, when rare mutations occur, it cannot sustain cooperation by itself

as punishment costs favour the spread of non-punishing cooperators.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Recent laboratory experiments have cast serious doubt on the
scope of earlier findings suggesting that punishment is a suitable
solution for social-dilemma situations. In particular, the very
cooperation-enhancing effect has been challenged: by relaxing
the restriction to a single punishment stage and allowing for
retaliation, Denant-Boemont et al. (2007) and Nikiforakis (2008)
demonstrate how sensitive the cooperative outcome of earlier
studies is to changes in the experimental setup (e.g., Yamagishi,
1986or Fehr and Gächter, 2000).1 While the (exogenous) restric-
tion to a single stage of punishment does not seem to be plausible
in most real-world situations, existing (evolutionary) models of
cooperation have comfortably rested on this assumption. The
present paper makes a first step in addressing the challenge posed
ll rights reserved.

several rounds of a social-

e.g., Dreber et al. (2008) or
by the experimental results mentioned. In our model, we provide
a possible explanation for why a retaliative strategy may be
adaptive within the context of an iterated social-dilemma game:
if punishers stop sanctioning free-riding behaviour after retalia-
tion and conditional cooperators do not require full cooperation
to maintain their cooperative attitude, retaliating defectors can
reap the benefits from conditional cooperators’ cooperation free
of punishment without having to cooperate themselves. Within
this framework, we show that punishing cooperators still can play
two roles: they can break up an equilibrium of omnilateral
defection and pave the way for a stable polymorphic equilibrium
composed of conditional cooperators and a mix of defecting
types; and they can increase the level of cooperation within a
polymorphic equilibrium if mutation plays a role. What punish-
ment cannot do, in the confines of our framework, is to maintain a
full-cooperation equilibrium if there is even a tiny mutation rate.

In the past, a variety of mechanisms have been proposed
to account for the high level of cooperation among humans,
such as kinship (Hamilton, 1964), reciprocal altruism (Trivers,
1971 or Axelrod and Hamilton, 1981), costly signalling (Zahavi,
1975 or Gintis et al., 2001), indirect reciprocity and reputation
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(Alexander, 1979, 1987; Nowak and Sigmund, 1998, or Ohtsuki
et al., 2009), ‘culture’ (Cavalli-Sforza and Feldman, 1981 or Boyd
and Richerson, 1985), norms (Sugden, 1986 or Sethi, 1996), group
selection (Sober and Wilson, 1998), and strong reciprocity (Gintis,
2000 or Gintis et al., 2003).2 The concept of strong reciprocity has
received a lot of attention, as it is unique among the explanations
proposed in the literature for the evolution of cooperation in that
it can account for the substantial degree of cooperation observed
in anonymous laboratory settings even when there is no repeated
interaction between the same players. While the concept may
have different readings, the general idea is that of a behavioural
disposition ‘‘to sacrifice resources to bestow benefits on those
who have bestowed benefits’’ and ‘‘to sacrifice resources to
punish those who are not bestowing benefits in accordance with
some social norm’’.3 In a prisoner’s dilemma or a public-good
game like the ones used in the aforementioned models on the
evolution of cooperation, this translates into a cooperative action
in settings without repeated interaction as well as with repeated
interaction, unless—in the latter case—if the other player(s) is
(are) in bad standing. Additionally, strong reciprocity stipulates
the punishment of defectors whenever there are punishment
stages and regardless of players’ anonymity.

It has been shown time and again that unconditional coopera-
tion cannot be stabilised easily in such settings; at the same time,
costly punishment can be evolutionarily stable and thus support
cooperation in societies even when there is no inter-group
conflict (Henrich and Boyd, 2001; Bowles and Gintis, 2004;
Carpenter et al., 2004; Carpenter, 2007). Recent contributions
have gone on to show that strong reciprocators can even invade a
non-cooperative society under certain conditions (Fowler, 2005;
Hauert et al., 2007; Mathew and Boyd, 2009; Rand and Nowak,
2011, object, rejoined by Garcı́a and Traulsen, 2012). However,
virtually none of these studies has taken into account that in
many real-life situations, punished players will have the oppor-
tunity to get back at their punishers. If at all, models of coopera-
tion have included additional punishment stages reserved to
sanction enforcement (Henrich and Boyd, 2001).4 The exception
to the rule comes as a couple of papers proposed by Janssen and
Bushman (2008) and Wolff (2009) who simply assume retaliative
behaviour into existence, relying on the experimental evidence to
justify this assumption. However, in light of the fact that they do
not explain why retaliation may arise in the first place (and that it
cannot arise in the situations they study), it remains unclear what
we can learn from these studies about those situations in which
retaliative behaviour may be adaptive. Rand et al. (2009) focus on
whether replacing the defecting response in tit-for-tat by defec-
tion plus punishment increases cooperation. While retaliative
behaviour is allowed to evolve within their model and does so
to a certain degree in some of their simulations, it remains
unclear what types do retaliate—and whether and how often
the according strategy part is effective in the sense of being
triggered. The present paper aims to be clearer in these respects.
Also, our focus lies on situations where punishment does not
imply non-cooperation.

In a recent contribution, Rand et al. (2010) remove the
restriction that punishment be targeted at defectors to question
2 The studies mentioned are only meant to indicate important early contribu-

tions. For a more detailed picture of the literature, the interested reader is kindly

referred to, e.g., the works collected in Hammerstein (2003).
3 Fehr and Henrich (2003, p. 57); for a discussion of the different readings of

strong reciprocity depending on whether this is seen as a behaviour (or beha-

vioural algorithm) or a strategy, cf. Stephens (2005).
4 Recent laboratory evidence suggests additional punishment stages are used

for additional punishment assignments and retaliation, but rarely for sanction

enforcement, e.g., Nicklisch and Wolff (2011).
the punishment-based explanation to cooperation altogether.
However, they do so by showing that, under a certain form of
learning, punishing cooperators can be invaded by cooperators
who punish everybody else—unconditionally or conditionally on
making positive contributions—as these invaders obtain a locally
higher payoff than those they punish, and behaviour is copied on
the basis of local payoff comparisons. In their model, only
defection coupled with unconditional punishment of everybody
else is evolutionarily stable. However, in evolutionary terms, their
model suggests living in communities is not adaptive, as there are
no gains from cooperation and agents merely destroy their own
resources to destroy even more of others’ resources. Note that it is
the mere possibility of punishing others—which in most relevant
situations of life in groups will be given—rather than the use of
punishment to ensure cooperation that leads to the gloomy
conclusion. The present paper proposes a different argument,
suggesting that retaliation best be considered in the framework of
repeated interactions5: retaliation may have a purpose in the
pursuit of resources. If group members are generally willing to
cooperate even if a small fraction of the group defects, and if
punishers cease to punish when retaliated against, retaliators
may have an evolutionary advantage when interactions are long
enough.

Addressing the question in a repeated-interaction perspective
is not without its own problems. Especially when interactions
take place in a group—such as in the typical public-good
case—the number of possible strategies is far too high for a
comprehensive analysis.6 Hence, we either have to drop the
repeated-game frame or restrict the number of admissible stra-
tegies. Given human interactions are often repeated and
repeated-game strategies such as tit-for-tat seem to be important,
we choose the second avenue, restricting the set of included
strategies first and performing a check of sensitivity to the
restriction afterwards.7 In restricting the number of strategies to
a tractable number, we choose stylisations of strategies we
encounter in laboratory experiments, as discussed in Section
2.1.8 In this sense, our model says something about the interac-
tion of those strategies we observe in the laboratory and why we
may not observe other strategies; the evolution of the former
when the latter would have been a possibility, however, is outside
the scope of the presented model.
2. The game

At each moment in time, a large number of groups each
consisting of N individuals are randomly drawn from a very large
population. Groups remain constant for the duration of an
indefinitely repeated game with continuation probability p. The
stage game consists of three stages. In stage 0, the contribution
stage, agents play a symmetric N-person binary public-good
game. A cooperating player incurs a net cost of c to convey a
benefit of b=ðN�1Þ to every other member of the group, where
0ocob, while a defecting player does not incur any cost nor
5 Important articles within this framework are Fudenberg and Maskin (1986,

1990) and Binmore and Samuelson (1992). I thank an anonymous reviewer for

pointing this out.
6 Even without repetition, a game with two punishment stages already leads

to a minimum of 16 possible strategies, as pointed out by an anonymous referee:

(contribute or defect)� (punish or not, contingent on the contribution deci-

sion)� (retaliate or not).
7 For a similar approach, see, e.g., Boyd and Richerson (1992); for the

importance of tit-for-tat-like strategies, cf., e.g., Rand et al. (2009) and references

cited therein.
8 As another caveat, we restrict attention to those experiments in ‘Western’

countries, as we are lacking appropriate data for other regions.
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convey any benefit. In the second stage, players may punish each
other, incurring a cost of k and causing a damage of p for the
player punished. In the third stage, finally, punished players may
retaliate with the same k : p punishment technology. Reproduc-
tion, or learning, takes place between interactions and follows the
standard discrete-time replicator dynamics (Taylor and Jonker,
1978), and therefore, the fraction xi of each agent type i evolves
according to

xiðtþ1Þ ¼
u0þuiðxðtÞÞ � xiðtÞ

u0þ
P
8jujðxðtÞÞ � xjðtÞ

, ð1Þ

where u0 is each agent’s baseline fitness and uiðxðtÞÞ is an i-agent’s
average additional fitness, or payoff, from the interaction given
the type distribution in the population, xðtÞ, at time t.
2.1. Strategies under consideration

Clearly, there is an infinite number of possible strategies—and
therefore, of potential agent-types—in a public-good game that is
repeated infinitely (albeit with a given ending probability), and
that allows both for punishment of other agents after each
contribution stage and for retaliation against such punishment.9

Hence, we need to restrict our attention to a subset of all possible
strategies. The following list presents a reduced set of agent-type
families, from which we will subsequently ‘recruit’ the four types
making up our model population.
D

9

disen

evide

Other

attrib

retali

previ

ment

Nickl

antiso
10

the o
never cooperates, never punishes, and does not react to
punishment. The traditional defector-type;
R
 never cooperates, always retaliates. The R-type is a direct
implementation of the idea that punished defectors may
retaliate, as ample experimental evidence suggests many do
(e.g., Nikiforakis, 2008);
Tn
 a nice tit-for-tat type who always cooperates if at least n

other players cooperated in the preceding stage game, and
defects, otherwise. Tn’s never punish and revert to coopera-
tion when punished.10 Tn-types were introduced by Joshi
(1987) and Boyd and Richerson (1988);
P
 always contributes and always punishes any non-contributing
player. Early treatments of punishment behaviour date back at
least to Axelrod (1986);
DTn
 starts by defecting, switching to Tn only once punished. DTn-
types are straightforward generalisations of the reluctant-

cooperator type introduced by Boyd and Richerson (1992);

PTn
 acts like a P-type unless retaliated against; then immediately

switches to behaving like a Tn-type (if retaliated against in
stage game t, the next move is conditioned on others’
behaviour in stage game t, too); PTn-types (i) may be
adaptive in the presence of R’s—and more adaptive than
P’s, as argued below—and (ii) may be the reason for retaliat-
ing behaviour to appear, in the first place. In the spirit of
Boyd and Richerson’s (1992) model, they also may be seen as
a kind of ‘semi-timid’ punisher type;
We do not include strategies using antisocial punishment as studies

tangling antisocial punishment and retaliation by design do not find

nce of ‘unprovoked’ antisocial punishment (e.g., Nicklisch and Wolff, 2011).

studies such as Cheung (2012) and Cinyabuguma et al. (2006) also tend to

ute most antisocial punishment to what may be called ‘‘pre-emptive

ation’’ (Cheung, 2012), while Herrmann et al. (2008) merely report received

ous-round punishment to be a very strong predictor of antisocial punish-

. Unfortunately, there has not been a study run with a design similar to

isch and Wolff (2011) in any of the places known to exhibit high rates of

cial punishment.

The reaction to punishment was added for completeness as it is not part of

riginal models; it will be irrelevant in our main model.
PD
11

‘‘abun

point

briefl

respe
12

weak

Howe

respe

DT0’s

and D
acts like a P-type unless retaliated against; then immediately
switches to behaving like a D-type; the discussion of PTn’s
also applies to PD’s.
2.2. Additional assumptions and type choice

In the following, we will make two additional assumptions.
First, restrict the attention to interaction groups of N¼3 indivi-
duals, to simplify the game enough to draw the main conclusions.
Second, assume that ððN�2Þ=ðN�1ÞÞb4c, meaning that cooperat-
ing types who cooperate in the presence of a single defecting
player still derive a strictly positive benefit from the interaction.
This may be seen as a strong assumption given the restriction to
groups of 3; however, there is no obvious reason why the main
results presented in this paper should not carry over qualitatively
to larger groups, in which case our second assumption seems no
longer unrealistic. As an indication, we sketch a model variant
with large N in Appendix B.

Similar to Boyd and Richerson (1992), we disregard pure
defectors in favour of other types that start free-riding but
subsequently react to punishment in either of two ways: by
cooperating in the next stage game or by retaliating. In terms of
the type taxonomy above, we replace D’s by DTn’s, on the one
hand, and R-types, on the other.11 Furthermore, we discard the
P-type as it is dominated by PT0, as well as the unconditionally
cooperating (if only after punishment) T0 and DT0 which are
dominated by T1 and DT1, respectively.12 We abstract from PT0’s
for a similar reason, even though there is a specific matching in
which the PT0 does better than a PT1, namely when matched with
an DT1 and an R-agent; in all other matchings, the PT0 does only
equally well or worse. Finally, we can safely disregard the PD-type
as it is behaviourally equivalent to the PTN�1-type under the
strategy set considered.

We are now left with seven agent types, R’s and three type
pairs involving conditional cooperation somewhere in their strat-
egy specification: T1 and T2, DT1 and DT2, and PT1 and PT2. To
arrive, finally, at a tractable strategy set, let us eliminate three of
the latter, one of each pair. For DTn’s, eliminating DT2 seems like
the natural choice, for a similar argument as presented for PT0’s
above: under many matchings, DT1 and DT2 do equally well;
under a number of matchings, DT1 does better; and only when
matched with a PT2 and an R-agent, the DT2 does better, while in a
group with a PT1 and an R-agent, either type may do better,
depending on the parameter choices (and the resolution of the
coordination problem between the PT1 and the DT1). A sensible
choice between the Tn- and the PTn-types, respectively, is less
obvious. The early works of Joshi (1987) and Boyd and Richerson
(1988) have shown that in a world of only Tn-types competing
with D’s, the only stable conditional-cooperator type is TN�1

(given all other types can be exploited by a single defector).
However, both go on to show that the conditions for TN�1 to
invade a defecting population are extreme. Two characteristics of
the present model suggest different aspects may be important in
our case: most importantly, we incorporate punishment and
Boyd and Richerson (1992, p. 177) justify this choice in two ways, by an

dant empirical evidence that organisms do respond to punishment,’’ and

ing out that this merely is a best case for the evolution of cooperation. We

y re-introduce pure defectors in Section 2.5 on equilibrium stability with

ct to excluded types.

Strictly speaking, all of the above dominance relationships referred to are

, and hence, the corresponding strategies need not be driven to extinction.

ver, as long as we are focusing on interior solution paths, i.e., punishing

ctively retaliating respectively free-riding types still occur, D’s, P’s, T0’s, and

are selected against more strongly than the corresponding DTN�1-, PT0-, T1-,

T1-types.
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defector types may react to being sanctioned; second, we have
posited above that there is a mutual benefit from cooperation
even if only a subset of ðN�1Þ players cooperate. The latter
assumption did not play a role in the earlier studies, as defector
types would still be better off; in the presence of punishing types,
however, this may change, and the benefits forgone by TN�1’s due
to their highly demanding cooperation requirements may now
play an important role. Finally, if we were to include
errors—which we refrain from for tractability—TN�1’s would
always be invaded by TN�2’s, for much the same reason as Tit-
for-Tat players can be invaded in the two-player case.13 For the
above reasons, this paper will focus on the less demanding TN�2

and PTN�2 (i.e., T1 and PT1) types. In Section 2.5, we demonstrate
that the ðPÞT2-types cannot invade any of the equilibria derived in
the following section. To recapitulate, the agent types considered
in the following model are the punishing cooperator PT1, the
conditional cooperator T1, the reluctant cooperator DT1, and the
retaliating defector R. We will represent population states as
x¼ ðxp,xt ,xd,xrÞ, where indices p, t, d, and r indicate PT1, T1, DT1,
and R-types, respectively.

2.3. Payoffs and equilibria

Having specified the game and the strategies to be considered,
we next derive the expected payoffs corresponding to each
strategy. Using Table 1, it is tedious but straightforward to
determine the following payoff equations:

uðR,xÞ ¼ b xtþxpþ
p

1�p ½ðxtþxpÞ
2
þxpxdÞ�

� �
�2ðkþpÞxp,

uðDT1,xÞ ¼ b xtþxpþ
p

1�p
ðxtþxpÞ

2
þxpð2xdþ

p
1þp

xrÞ

� �� �
�2pxp

�
pc

1�p
2xp�x2

p�
p

1þp
2xpxr

� �
,

uðT1,xÞ ¼
b

1�p ðxtþxpþpxdxpÞ�
c

1�p ð1�p½1�xtð2�xtÞ

�xpð2�xpÞþ2xpxt�Þ,

uðPT1,xÞ ¼
b

1�p xtþxpþp xd xtþxpþxdþ
xr

1þp

� �� �� �
�2kxd�2ðkþpÞxr

�
c

1�p 1�p 1�xtð2�xtÞ�xpð2�xpÞþ2xpxt�xd xdþ2
p

1þp xr

� �� �� �
,

ð2Þ

where the time index t is dropped for legibility.
Focusing on monomorphic equilibria, we immediately see that

none of the four strategies selected is evolutionarily stable: R’s
can always be invaded by neutral drift by DT1’s and vice versa; the
same holds true for PT1’s and T1’s, respectively. Additionally, in
the absence of punisher types, T1’s can be invaded by either
defecting type. At the same time, T1’s can invade any of the
defecting types as well as any mix thereof, as long as the
continuation probability p is sufficiently close to unity; the lower
the p, the higher the critical fraction of T1’s needed to invade until
invasion becomes impossible altogether. The defecting types’
invasion barrier against T1’s is given by

x̂
crit
t ¼

b�2c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�4c½b�c�=p

q
2ðb�cÞ

, ð3Þ

which exists only if the continuation probability p and the public
good’s benefit-to-cost ratio are sufficiently large.14 Obviously, the
ability of the conditional-cooperator type to invade a defecting
13 See Nowak and Sigmund (1993).
14 For similar results, cf. Joshi (1987) and Boyd and Richerson (1988).
population stems from the former’s ability to concentrate the
benefits of future cooperation predominantly on their likes, which
can only pay if future interactions are sufficiently likely. On the
other hand, PT1’s cannot invade R’s while they can invade DT1’s, as
long as their investment into establishing cooperation within an
interaction is outweighed by the expected long-term benefits:

cþ2kop b�c

1�p
: ð4Þ

The following proposition establishes an interesting result that is
counterintuitive only at first sight.

Proposition 1. If the continuation probability p exceeds pmax ¼

ð2pþ2k�cÞ=ð2pþ2kÞ, neither cooperative strategy is stable against

invasion by some defecting type.

Proof is given in Appendix A.
The intuition for why a high continuation probability p allows

retaliators to invade punishing cooperators is analogous to why
punishers can invade a population of reluctant cooperators. Either
type incurs punishment costs in the first stage game to reap
future benefits: the punisher by inducing cooperation and the
retaliator by curtailing being sanctioned. Conversely, punishers
resist invasion by retaliators if and only if conforming to the
prevailing—cooperative—behaviour in all interaction stage games
is less costly than incurring the one-time cost of being punished
and retaliating; that is, if

c

1�po2ðpþkÞ: ð5Þ

Finally, DT1’s cannot invade a population of all PT1’s as long as

co2p: ð6Þ

This is straightforward: after the first stage game, punishers have
induced DT1’s to contribute, so there are no payoff differences
from the second stage game on; further, if contributing is less
costly than being punished by all other players, then it pays not to
try free-riding in the first stage game when all other players are
punishers. Note that condition (6) may imply condition (5) if
pok=ðkþpÞ, and vice versa, otherwise. This simply speaks of the
fact that, when a second encounter is sufficiently unlikely,
retaliating does not pay, as the probability of future gains from
unpunished free-riding are close to nil. In the remainder of this
paper, we will concentrate on future encounters being sufficiently
likely, so that (5) implies (6).

Proposition 2. Define x
p
�maxfc=½ð1�pÞð2kþ2pÞ�,c=2pg and

assume co2p. Then, the subset of points in the PT1–T1 continuum

that are stable against invasion by both defecting types is nonempty

and given by xNE
C ¼ fð1�yð1�x

p
Þ,yð1�x

p
Þ,0,0Þ9yA ½0,1Þg, if and only if

p
o

2pþ2k�c

2pþ2k
, br

2c

p
, and

r
2pþ2k�c

2pþ2k
otherwise:

8>>><
>>>:

ð7Þ

Proof is given in Appendix A.
Proposition 2 describes the set of ‘fully cooperative’ equilibria

and delineates the conditions for their existence. As expected, the
prospects for cooperation are better the lower the net contribu-
tion costs c and the stronger the impact of a punishment action.
At the same time, punishment costs are negligible as selection
acts on a global level and punishment actions are rare close to
any ‘fully cooperative’ equilibria. Evidently, the ‘cooperative’



Table 1
Matching table.

i1 i2 i3 probði2 ,i39i1Þ uði19i2 ,i3Þ uði29i1 ,i3Þ uði39i1 ,i2Þ

T1 T1 T1 x2
t

b�c

1�p
T1 T1 R 2xtxr b=2�c

1�p
b

1�p
T1 T1 DT1 2xtxd b=2�c

1�p
b

1�p
T1 T1 PT1 2xtxp b�c

1�p
b�c

1�p
T1 R R x2

r
�c b

2
T1 R DT1 2xrxd �c b

2

b

2
T1 R PT1 2xrxp b=2�c

1�p b�p�kþp b=2

1�p
b

2
�c�k�pþpb=2�c

1�p
T1 DT1 DT1 x2

d
�c b

2
T1 DT1 PT1 2xdxp b

2
�cþpb�c

1�p b�pþpb�c

1�p
b

2
�c�kþpb�c

1�p
T1 PT1 PT1 x2

p
b�c

1�p
b�c

1�p
R R R x2

r
0

R R DT1 2xrxd 0 0

R R PT1 2xrxp b

2
�p�k

�c�2k�2p

R DT1 DT1 x2
d

0 0

R DT1 PT1 2xdxp b

2
�p�kþp b=2

1�p
b

2
�pþppb=2�c

1�p2
�c�2k�pþpb=2�pc

1�p2

R PT1 PT1 x2
p b�2p�2kþp b

1�p
b

2
�p�kþpb=2�c

1�p
DT1 DT1 DT1 x2

d
0

DT1 DT1 PT1 2xdxp b

2
�pþpb�c

1�p
�c�2kþpb�c

1�p
DT1 PT1 PT1 x2

p b�2pþpb�c

1�p
b

2
�c�kþpb�c

1�p
PT1 PT1 PT1 x2

p
b�c

1�p

Note: Probabilities with i2 and i3 being focal are omitted for brevity. Payoffs for i2 (and i3) are only given where different from i1 (i2).
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equilibrium component presented in Proposition 2 is not the only
set of (neutrally) stable states: there is also a ‘defecting compo-
nent’ xNE

D ¼ fð0,0,dxd,1�dxdÞ9dA ½0,1Þg, where xd is the highest
fraction of DT1’s under which PT1’s do not obtain a positive payoff,
and therefore, cannot invade the mix of retaliators and reluctant
conditional cooperators.15

Unless the continuation probability is close to unity (and
hence, T1’s could invade defectors), both components are also
dynamically stable in the sense that a small perturbation away
from any point but the end points of these components results in
the system reverting to a point on the same component that is not
too far away. The reason for this stability is that near the defecting
component xNE

D , retaliation is not costly because there are so few
punishers (i.e., uðR,xÞ � uðDT1,xÞ) while punishment is because of
the large fraction of retaliators (i.e., uðPT1,xÞouðR,xÞ; T1’s cannot
invade, anyway); near the cooperative component xNE

C , little
defection happens, which means being a punisher is not costly
(i.e., uðPT1,xÞ � uðT1,xÞ), while defection is costly due to the
high fraction of punishers (i.e., uðR,xÞouðDT1,xÞouðPT1,xÞ). The
induced adaptations by unsuccessful invaders and the agents
15 This fraction is given by the solution to

xd ¼�
pð1�p2Þþpðb=2�pcÞ

p2b�pcð1�pÞ
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1�p2Þþpðb=2�pcÞ

p2b�pcð1�pÞ

� �2

þ
ð1�p2Þðcþ2kþ2pÞ

p2b�pcð1�pÞ

s
:

This solution exists: the first term is negative because pð1�p2Þ, b=2�pc, and

p2b�pcð1�pÞ are positive: obviously, pð1�p2Þ40; b=2�pc40 because, by

assumption, ðN�2Þb=ðN�1Þ4c; and p2b4pcð1�pÞ because, following from (4),

p2b4pcþ2pkð1�pÞ, and, in turn, pcþ2pkð1�pÞ4pcð1�pÞ. From there, it is

obvious that xd 40; on the other hand, condition (4) also ensures xd o1.
using the pure strategy being slightly more costly than the other
pure strategy contained in the equilibrium take place at compar-
able time rates in the replicator dynamic. Therefore, the system
moves back towards the respective equilibrium component,
unless when the population approaches the respective compo-
nent’s end-point.16

Finally, the examination of monomorphic equilibria at the outset
suggests there may be another stable equilibrium component. If the
conditions are such that some critical mass of T1’s can invade
defecting strategies and conversely, defecting strategies can invade
conditional cooperators, then there must be at least one other set of
steady states xM ¼ fð0,x̂

NE
t ,rð1�x̂

NE
t Þ,ð1�rÞð1�x̂

NE
t ÞÞ9rA ½0,1�g, in

which a fraction of T1’s coexists with a—possibly degenerate—mix
of defecting types.17 This set is defined by

x̂
NE
t ¼

b�2cþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�4c½b�c�=p

q
2ðb�cÞ

: ð8Þ

Proposition 3. Assume co2p. If x̂
NE
t ¼ ðb�2cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�4c½b�c�=p

q
Þ=

2ðb�cÞ has a solution within ½0,1�, the subset of steady states on the

T1–DT1–R plain that is stable against invasion by PT1’s is nonempty

and given by xNE
3 ¼ fð0,x̂

NE
t ,rð1�x̂

NE
t Þ,ð1�rÞð1�x̂

NE
t ÞÞ9rA ½0,r̂�g, where
16 Cf. Weibull and Salomonsson (2006), and references cited therein, for an

analogous argument on very similar dynamic phenomena.
17 If x̂

crit
t as defined in (3) is larger than 0, its combination with any mix of

defecting strategies also constitutes a set of—necessarily unstable—steady states.



r̂ ¼
2pþpðb�2cÞþp2ðb�2pÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2pþpðb�2cÞþp2ðb�2pÞ�2�8cðkþpÞð1�p�p2þp3Þ

q
2cð1�pÞ

:

19 The condition is given by ðp=ð1�pÞÞ½bð1�2E�ð1=ð1þpÞÞxrÞ�cð2�e
�ð2p=ð1þpÞÞxrÞ�þ2k40, where e is the fraction of entrants per type that are

produced by mutation. The left-hand side decreases in xr when, as assumed,

b42c. If we set xr � 1�2e and take the limit for e-0, the left-hand condition

reduces to pb�2cþ2kð1�p2Þ=p40, which will be fulfilled for most relevant
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Proof is given in Appendix A.
Proposition 3 simply states that whenever x̂

NE
t as defined by

(8) exists, then there will also be a subset of the above-defined set
xM that is stable against invasion by PT1’s. This simply follows
from the fact that PT1’s will be worse off than T1’s whenever all
defectors within xM retaliate.

2.4. Dynamics

For a better understanding of the model dynamics, we provide
exemplary model trajectories under different conditions in Fig. 1.
As initial population states, we choose strategy distributions such
that—initially equal—small shares of invading strategies compete
with one incumbent strategy. We do not depict R as the incum-
bent strategy, as it is always stable against invasion (and would
always look like the upper left-hand panel in Fig. 1, only with
retaliator fractions near one). Instead, we add the uniform mix of
types as an initial state, for an illustration on the dynamics under
more mixed initial states.

The first column represents the case in which all preconditions
for the emergence of cooperation are favourable; in particular, the
continuation probability p fulfils condition (7), and p4c, so that a
single punisher is enough to make contributing worthwhile. The
second condition is less restrictive than it may sound: punish-
ment only has to be higher than the net costs of contributing, that
is, contribution costs net of the benefit derived from the public
good.18 The panels in this column confirm what we have derived
above: there are two types of equilibrium sets to which the
population converges, a set in which cooperation prevails and one
that leads to universal defection.

In the second column, we depict the case when condition (5) is
violated, that is, p is high enough that it pays to be a retaliator in a
population of only PT1’s. In line with Propositions 1 and 2, a
population with too high a fraction of punishers is readily invaded
by retaliators. The latter may be followed by conditional coop-
erators if public-good benefit and continuation probability are
large enough (so that the solution to (8) exists as in the depicted
case). However, under some initial population states, conditional
cooperators will only be able to invade a defecting population if
the initial presence of PT1’s allows the fraction of T1’s to surpass
the critical mass: if the initial punisher fraction is set to zero in
the third central-column panel, the population is stuck in a
defecting equilibrium (not depicted). In this sense, we can state:

Proposition 4. Fix p such that ðcþ2kÞ=ðbþ2kÞopo1. If xNE
3 is

nonempty (i.e., the b-to-c ratio and p are sufficiently high), then cZ2k=3
is sufficient (but not necessary) to ensure the existence of initial states

such that a punishing strategy is needed to reach the ‘partially coopera-

tive’ equilibrium component xNE
3 . Notwithstanding, the punishing strategy

may be driven to extinction in the ensuing equilibrium.

Proof is given in Appendix A.
Proposition 4 does not mean being a punisher is a dumb thing

to do: the third central-column panel shows the punishing strategy
may be highly successful in the initial, defecting state of the world,
provided defectors are likely to be reluctant cooperators. What the
extinction of punishers does mean is that it pays to switch
strategies once retaliators become sufficiently common.
18 For example, in a linear laboratory setting with endowments of 10

experimental-currency units and a marginal per-capita return of 0.6, this would

mean that a punisher can harm any other player at least by 4 units.
The right-hand column represents the case that poc, the case in
which the costs a single punisher can inflict on a non-contributing
agent are lower than the net costs of contributing; at the same time,
the continuation probability is both too high for PT1 to be stable
against invasion by retaliators and too low for an equilibrium in
which conditionally cooperative and defecting types coexist. There-
fore, the only attractor left is the ‘defecting’ equilibrium component
xNE

D , in this case comprising all possible mixes of reluctant defectors
and retaliators, even though punishers may initially spread and
persist for some time before being driven out by retaliating players.
If we reduce the continuation probability so that PT1 is stable again,
we obtain horizontally stretched versions of the upper three first-
column panels (not depicted here). However, when starting from an
uniformly mixed initial population state, the population goes to pure
defection straight away. This clearly indicates what should be clear
from the beginning: if the expected potential benefits from future
interaction are small because these interactions are unlikely to
happen, and if punishers have rather limited punishment possibilities,
the likelihood of a cooperative equilibrium being reached is small.

2.5. Sensitivity to strategy exclusion and mutation

In this section, we will touch briefly on two things: (i) we will
illustrate that neither of the equilibria derived above would be
invaded by strategies that we excluded from the analysis and (ii)
we will review what happens to the prevalence of cooperation if we
allow for mutations. For the first purpose, Fig. 2 is provided. It depicts
trajectories for the cases when small fractions of PT2, T2, DT2, and
D-types are injected into the long-term equilibria (in order not to tilt
the results in any direction, we chose equal fractions of DT1’s and R’s
in the center and right panels). What Fig. 2 shows is that the
equilibria derived above are stable against invasion by the undomi-
nated types disregarded in our analysis. If at all, they may help PT1’s
to invade a polymorphic equilibrium temporarily in the high con-
tinuation probability case (right-hand panel).

The remainder of this section is devoted to the cooperative-
equilibrium cases when mutations occur. Given Eqs. (2), it is easy
to show that in a world of omnilateral defection, retaliators are
almost always selected against under our assumptions when the
cooperating types are maintained in small fractions by muta-
tion.19 The intuition is clear: the defecting types do equally well
when matched with conditional cooperators; but a retaliator
meeting a punishing cooperator incurs additional costs to leash
back at the punisher while substantially lowering the chances of
benefitting from the public good in the future. On the other hand,
with mutation keeping the defecting types alive, punishing
cooperators will be selected against strongly in a world in which
they are omnipresent while they would increase in numbers
under the parameters chosen in this paper when everybody else is
a conditional cooperator.20 The intuition for these facts is that,
when everybody is a punisher, it is costless to free-ride on
punishment without losing the benefits in terms of future
parameter combinations ðk,pÞ.
20 Disregarding any terms with squared mutant fractions, i.e., setting e2 � 0,

the comparison uðT1 ,xÞ�uðPT1 ,xÞ40 is easily transformed into

ðpb=ð1�pÞÞxt�4k�2po0, which is negative for xt¼0 but positive for xt¼1 under

the parameter values chosen above.
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Fig. 1. Evolution of types under p¼ 3=5, k¼ 1=2, p¼ 3=2 (first column); p¼ 4=5, k¼ 1=2, p¼ 3=2 (second column); p¼ 3=5, k¼ 2=7, p¼ 6=7 (third column); in all cases,

c¼1, b¼4 (i.e., MPCR¼ 2=3). Note that in the central and right-hand third-row panels, the time-scale was adapted.
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interactions, while when nobody else punishes, a punisher reaps
higher benefits—compared to a conditional cooperator—from
sporadic encounters with reluctant cooperators.

Combining the above, we would expect a circle: retaliators
would be taken over by reluctant cooperators, followed suit by
punishers and conditional cooperators who are, in turn, invaded
by retaliators as soon as the fraction of punishers starts to fade.
This is, indeed, what happens when the conditions for coopera-
tion are favourable (i.e., when condition (7) holds) and as long as
mutation is weak. We illustrate this in the center and right-hand
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first-row panels of Fig. 3. When mutation is stronger, it can induce
a polymorphic equilibrium as in the upper left-hand panel of
Fig. 3.21

In the second row, we depict the other case in which a positive
level of cooperation was attainable, namely, when punishment
was not constrained to being weak and the likelihood of future
interactions is high. In the absence of mutation the population
approached a polymorphic equilibrium component comprising
conditional cooperators and a mix of defectors that was stable
against invasion by punishers. With mutation, the equilibrium is
fully mixed, as mutation counteracts the selective forces working
against punishers, with the corresponding repercussions on the
equilibrium levels of retaliators, conditional and reluctant coop-
erators. A numerical analysis suggests that the equilibrium level
of punishers—and cooperation, for that matter—increases mono-
tonically in the mutation rate in the relevant range, while the
equilibrium converges smoothly towards an equilibrium in the
above-mentioned component as the mutation rate approaches
zero, as indicated also by the according second-row panels. Note
that the effects of mutation on the cooperation level may be
substantial: already for the case depicted in the central panel (i.e.,
for a mutation rate of 1%), first- and further-iteration cooperation
rates are 60.4% and 52.9%, respectively, compared to 50% and
37.5% when no mutations occur.

Summarising, we find that, for intermediate continuation
probabilities, moderate mutation puts the population on a cycle
of cooperation enacted by punishment, free-riding on punish-
ment, defection supported by retaliation, decline of retaliation,
and cooperation-by-punishment again, where the periods of
defection tend to be longer than those of cooperation. In turn,
under high continuation probabilities as well as under high
mutation rates, the population approaches a stable polymorphic
equilibrium in which the mutation rate determines the coopera-
tion level; the lower the mutation rate, the lower the level of
cooperation, and the less punishing cooperators in the population.
We re-state the above in the following result:
Result 1. In the presence of moderate mutation rates, punishment
plays two roles: under intermediate continuation probabilities
fulfilling condition (7), it induces short periods of high cooperation
levels between longer periods of omnilateral defection; when
continuation probabilities are high, it is able to shift up notably
the existing cooperation level in the polymorphic steady state.
21 Note that the graphs are produced under the assumption of a very large

population, so that stochastic sampling of mutants plays no role.
3. Summary and discussion

Laboratory experiments suggest retaliation may be an impor-
tant factor in human behaviour, and that this may have detri-
mental effects on cooperation. Yet, virtually all models of strong
reciprocity and sanction-enforced cooperation disregard the pos-
sibility of defectors getting back at their punishers. In this paper,
we provide a model that accounts for the spread of retaliation as
part of a strategy within the context of a repeated social dilemma,
and examine its effects on the achievable cooperation level,
paying particular attention to the role of punishment in thwarting
defection. In the model presented, retaliators may thrive in a
society with punishers as they can discourage punishment actions
while free-riding on future cooperative effort. Depending on the
specific parameters, the population is predicted to end up in a
cooperative state supported by punishment, in a polymorphic
state in which a stable fraction of conditional cooperators coexists
with defecting strategies, or a defecting state guarded against
invasion by punishers through retaliation.

When mutation plays no role—or players do not experiment
on their strategy even sporadically, under a different model
interpretation—a punishing-cooperator strategy may be evolu-
tionarily stable when the continuation probability is sufficiently
small; when it surpasses a critical value, it pays for defecting
types to invest into discouraging future punishment actions by
retaliating (Proposition 1). In this case, mirroring the earlier
results by Joshi (1987) and Boyd and Richerson (1988), there will
be a polymorphic equilibrium component composed of condi-
tional cooperators and a mix of defecting types, in which there are
enough retaliating players to rule out invasion by punishing
cooperators (Proposition 3). Yet, even though in this equilibrium
there are no punishers present, they may play an important role:
in a world of omnilateral defection, in which sufficiently many
players are reluctant cooperators, punishers may break the inva-
sion barrier conditional cooperators face and thereby jump-start
cooperation (Proposition 4). In this sense, the temporary presence
of punishers may be an unexpected solution to the equilibrium-
selection problem in the literature on cooperation in infinitely
repeated games.

The limited role for punishment is accentuated when looking
at the case that mutation plays a role. In this case, punishment
merely induces short periods of cooperation that interrupt com-
paratively long periods of almost omnilateral defection when
future interactions are not too likely; under a high continuation
probability, it helps bring up the level of cooperation to a limited
but non-negligible extent in an already partially cooperative
population (Result 1). In this sense, punishment seems to be a
facilitating device that can pave the way for and boost the power



0 1000 2000 3000 4000

0.0

0.2

0.4

0.6

0.8

1.0
fra
ct
io
ns

iterations

PT1
T1
DT1
R

0 1000 2000 3000 4000

fra
ct
io
ns

iterations
0 2000 4000 6000 8000

fra
ct
io
ns

iterations

0 1000 2000 3000 4000

fra
ct
io
ns

iterations
0 1000 2000 3000 4000

fra
ct
io
ns

iterations
0 1000 2000 3000 4000

fra
ct
io
ns

iterations

0.0

0.2

0.4

0.6

1.0

0.0

0.2

0.4

0.6

1.0

0.0

0.2

0.4

0.6

1.0

0.0

0.2

0.4

0.6

1.0

0.0

0.2

0.4

0.6

1.0

0.80.8

0.8 0.8 0.8

Fig. 3. Dynamics for a model including mutation rates of m¼ 0:02 (left), m¼ 0:01 (center), and m¼ 0:001 (right), for p¼ 3=5 (first row) and p¼ 4=5 (second row); in all

cases, c¼1, b¼4, k¼ 1=2, and p¼ 3=2. In the upper right-hand panel, the time scale was adapted.

I. Wolff / Journal of Theoretical Biology 315 (2012) 128–138136
of conditional cooperation, rather than being an explanation for
the evolution of cooperation of itself. A retaliation strategy, in
contrast, has a place in this scenario as it conveys a benefit to its
carrier-organism as soon as punishers become sufficiently wide-
spread.
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Appendix A. Proofs for Propositions 1–4
Proposition 1. If the continuation probability p exceeds

pmax ¼ ð2pþ2k�cÞ=ð2pþ2kÞ, neither cooperative strategy is stable

against invasion by some defecting type.

Proof. By (2), and as noted above,

uðT1,ð0,1�e,e,0ÞÞ�uðDT1,ð0,1�e,e,0ÞÞ ¼� ð1�e
2pÞc�eð1�eÞpb

1�p
,

which is negative under any value of p for small enough e. PT1, on
the other hand, is stable against invasion by R if and only if

uðPT1,ð1�e,0,0,eÞÞ�uðR,ð1�e,0,0,eÞÞÞ

¼ 2ðkþpÞð1�2eÞ� ð1�e
2pÞc�eð1�eÞpb

1�p 40: ð9Þ
Letting e go to 0 and rearranging, we obtain the critical value from
the proposition. &

Proposition 2. Define x
p
�maxfc=½ð1�pÞð2kþ2pÞ�,c=2pg and

assume co2p. Then, the subset of points in the PT1–T1 continuum

that are stable against invasion by both defecting types is nonempty

and given by xNE
C ¼ fð1�yð1�x

p
Þ,yð1�x

p
Þ,0,0Þ9yA ½0,1Þg, if and only if

p
o

2pþ2k�c

2pþ2k
, br

2c

p
, and

r
2pþ2k�c

2pþ2k
otherwise:

8>>><
>>>:

ð10Þ

Proof. First of all, along the PT1–T1 continuum, all cooperating
strategies obtain the same payoff of ðb�cÞ=ð1�pÞ. Equating
uðR,ðx0p,1�x0p,0,0ÞÞ as defined by (2) with ðb�cÞ=ð1�pÞ gives
x0p ¼ c=½ð1�pÞð2kþ2pÞ�; for uðDT1,ðx00p,1�x00p,0,0ÞÞ ¼ ðb�cÞ=ð1�pÞ,
we obtain x00p ¼ c=2p. Eq. (10) and co2p ensure the existence of
xNE

C . By the monotonicity of defector payoffs along the PT1–T1

vertex, any fraction of punishers above x
p

implies a lower payoff
for the defecting entrants.

If p4 ð2pþ2k�cÞ=ð2pþ2kÞ, Proposition 1 ensures xNE
C ¼ |.

Finally, if p¼ ð2pþ2k�cÞ=ð2pþ2kÞ, evolutionary stability of

xNE
C ¼ fð1,0,0,0Þg depends on the exact b-to-c ratio: if e¼ 0,

uðPT1,xNE
C Þ�uðR,xNE

C Þ ¼ 0; at the same time, the left-hand side of

(9) decreases in e if and only if its derivative is negative:

�2cþpb�2epðb�cÞo0, ð11Þ

obtained by substituting c=ð1�pÞ ¼ 2ðpþkÞ and rearranging.

Hence, only if b42c=p is there an e such that any e, 0oeoe,

yields uðPT1,ð1�e,0,0,eÞÞ�uðR,ð1�e,0,0,eÞÞÞ40. &
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Proposition 3. Assume co2p. If x̂
NE
t ¼ ðb�2cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2
�4c½b�c�=p

q
Þ=

2ðb�cÞ has a solution within ½0,1�, the subset of steady states on the

T1–DT1–R plain that is stable against invasion by PT1’s is nonempty

and given by xNE
3 ¼ fð0,x̂

NE
t ,rð1�x̂

NE
t Þ,ð1�rÞð1�x̂

NE
t ÞÞ9rA ½0,r̂�g,

where
r̂ ¼
2pþpðb�2cÞþp2ðb�2pÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½2pþpðb�2cÞþp2ðb�2pÞ�2�8cðkþpÞð1�p�p2þp3Þ

q
2cð1�pÞ

:

Proof. Existence of stable states in xNE
3 follows from the fact that

for r¼ 0, uðPT1,xNE
3 Þ�uðT1,xNE

3 Þ ¼ �ð1�x̂
NE
t Þ2ðkþpÞo0. To obtain

the boundary of xNE
3 , we equate uðT1,xNE

3 Þ to uðPT1,xNE
3 Þ and

rearrange to obtain

ðx2
dþxdxrÞpb

1�p �ðx2
dþ2xdxrþx2

r Þ � 2k� x2
dþ

2xdxrp
1þp

� �
c

1�p
�ðxdxrþx2

r Þ � 2p¼ 0: ð12Þ

Recalling that xd ¼ rð1�x̂
NE
t Þ and xr ¼ ð1�rÞð1�x̂

NE
t Þ, (12) simplifies

to

�r2 c

1þp
þr pb

1�p
�

2pc

1�p2
þ2p

� �
�2ðkþpÞ ¼ 0: ð13Þ

Solving (13) for r yields r̂ from the proposition.22 Monotonicity
of PT1- and T1-payoffs along r ensures uðPT1,xNE

3 ÞouðT1,xNE
3 Þ for

all xAxNE
3 . &

Proposition 4. Fix p such that ðcþ2kÞ=ðbþ2kÞopo1. If xNE
3 is

nonempty (i.e., the b-to-c ratio and p are sufficiently high), then cZ2k=3
is sufficient (but not necessary) to ensure the existence of initial states

such that a punishing strategy is needed to reach the ‘partially coopera-

tive’ equilibrium component xNE
3 . Notwithstanding, the punishing strategy

may be driven to extinction in the ensuing equilibrium.

Proof. Note that x̂
crit
t defined by (3) exists whenever xNE

3 is none-
mpty. Moreover, when PT1’s are absent, any mix of DT1 and R is stable

against invasion by T1: by b4c, x̂
crit
t 40 for any po1. Particularly,

this holds also for mixes of defector types in which DT1 is very
prevalent. Consider the special case x0 ¼ ð0,0,1,0Þ. By (4), PT1’s can

invade x0 if p4ðcþ2kÞ=ðbþ2kÞ. Existence of xNE
3 obviously requires

b2
�4c½b�c�=p40, which implies p4 ðcþ2kÞ=ðbþ2kÞ if c42k=3.23

The final claim from the proposition is evident from the example
given in the third central-column panel of Fig. 1. &

Appendix B. Supplementary data

Supplementary data associated with this article can be found in
the online version at http://dx.doi.org/10.1016/j.jtbi.2012.09.012.
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