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ABSTRACT

We advocate a new measure to evaluate hedge funds - relative alpha. It links each hedge

fund to a group of its peers in a straightforward, semi-parametric way. We allow for omitted

factors, yet do not require knowledge of the true factor structure nor do we need to estimate

any factor model. We show that relative alpha outperforms traditional, absolute alpha (e.g.,

based on Fung and Hsieh (2001)). Relative alpha has higher explanatory power in-sample,

predicts the out-of-sample performance of hedge funds, and is more persistent. Relative

alpha can also be applied successfully to mutual funds.
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Factor models for hedge funds are ubiquitous, with the seven factor model of Fung and Hsieh

(2001) being the de facto standard with more than a 1000 cites in Google Scholar by 2016.1

Yet factor models typically only use seven to ten factors and omit all remaining factors, since

they are usually estimated from hedge fund return samples of around 36 months. As a result,

the explanatory power of the Fung and Hsieh (2001) return model is only 22% to 30% in

terms of adjusted R2, and we worry that there could be omitted factors. In particular, any

risk premia associated with such omitted factors could show up in the factor model intercept

(alpha) of the misspecified model.2

A related concern is, what such poorly estimated factor models do to hedge fund selec-

tion.3 Hedge funds are typically selected by sorting the existing funds based on historical

alpha. Yet sorting on the true alpha could give different results from sorting on the alpha

from a misspecified model.

Finally, as alpha is often interpreted as a measure of managerial skill, we are worried as

there is no predictability in traditional hedge fund alpha in our large sample of 13,597 hedge

funds during February 1994 to June 2011. Alphas computed over one 36-month period have

no relation with alphas computed over the subsequent 36-month period.

This paper is about improving on the above situation. The basic idea is to avoid the

challenging estimation of factor model parameters (alpha and betas) based on a misspecified

1Alternative models are, e.g., Agarwal and Naik (2004), Jagannathan, Malakhov, and

Novikov (2010), and Namvar, Phillips, Pukthuanthong, and Rau (2016).
2As the expected return on an asset is the sum of betas times factor premia, an omitted

factor with a positive risk premium, when held long, would spuriously increase the estimated

alpha of the misspecified factor model, i.e., the one without the omitted factors.
3See also the theoretical concerns in Levy and Roll (2016), who argue that alpha is a poor

choice for constructing portfolios as it is sensitive to the (potentially misspecified) benchmark

model and theoretically only holds for infinitesimal changes in allocations.
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factor model, potentially suffering from omitted variables and short time series. Rather,

we note that for similar hedge funds, the contribution from factor loadings (betas) times

the respective factors should be similar as they share similar betas and the same factors.

Then, netting one hedge fund return against the return of a close peer will leave us with the

difference in alphas (hence relative alpha) and the difference in idiosyncratic components

(residuals), but largely devoid of the hard to estimate inner product of betas and factors.

Time-averaging the differences in returns further reduces the influence of the idiosyncratic

components, which have means of zero. We thus arrive at our measure of relative alpha,

which we further improve by cross-sectionally averaging over many peers while giving more

weight to more similar peers. A convenient metric for similarity turns out to be the variance

of return differences, which tends to be low for close peers. We take care to show this

relation in a simple theoretical factor model of hedge fund returns, in a simulation study,

and through 13f filings detailing the holdings of large hedge funds. Computationally, the

variance of return differences is easily computed solely from hedge fund returns.

Thus, relative alpha measures the outperformance of a hedge fund over its closest peers

without resorting to a particular factor model. A final hallmark of relative alpha is that

it works well. We argue that relative alpha performs better than absolute alpha in all the

above three areas of concern about absolute alpha: explaining hedge fund returns in-sample,

predicting future performance of hedge funds, and persistence of alpha. We now detail our

improvements due to relative alpha and our contribution to the literature in each of the three

areas.

First, in terms of explaining hedge fund returns, we add to the literature, which has been

trying to improve the omitted factor bias by adding additional factors. The factor models of

Agarwal and Naik (2004), Fung and Hsieh (2001), or Namvar et al. (2016) have seven to ten

factors and are thus much richer than a single market factor model or the Fama-French three

3



factor model.4 In particular, Fung and Hsieh (2001) is nowadays the standard factor model

for hedge fund research, but even the seven factor Fung and Hsieh (2001) model only accounts

in our sample for 22% - 30% (adjusted R2) of the hedge fund return variation, depending on

the sample length (12, 24, and 36 months). The Namvar et al. (2016) model performs even

worse. Thus, we are concerned that the remaining more than 70% of return variation might

be due to omitted factors. With a similar intuition to our paper, Jagannathan et al. (2010)

add a style index to their factor model, which accounts for some commonality in the omitted

factors across hedge funds in the same style.5 While we share their desire to incorporate

peer information, we argue that our approach is preferable since it avoids the estimation of

the (augmented) factor model altogether, which eliminates estimation errors in the betas.

Using our relative alpha approach and interpreting the returns on the closest peers as

pseudo-factors, we achieve an adjusted R2 of 68% - 82% for the seven closest peers and 67% -

78% for the ten closest peers. These high values are not surprising since we picked the peers

based on their similarity with the reference hedge fund, but they show that we achieve our

goal of finding peers that are similar to our hedge funds in terms of low variances of return

differences.

Second, in terms of predicting future hedge fund performance, we worry that omitted

factors might bias estimated absolute alphas. Sorts based on such biased alphas might not

be able to identify hedge funds, which will perform well out-of-sample. We already saw that

adjusted R2 tends to be low and Titman and Tiu (2011) document that the R2 of the Fung

and Hsieh (2001) model varies widely across hedge funds, with low R2 funds outperforming

4Doherty, Savin, and Tiwari (2016) combine several existing factor models to create a

pooled benchmark. Each subset of factors is weighted according to a log score criterion

following the approach of Geweke and Amisano (2011).
5Wilkens, Yao, Jeyasreedharan, and Boehler (2015) extend this model by using the style

index orthogonal to the standard factors as opposed to the simple style index.
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high R2 funds out-of-sample. Moreover, Bollen (2013) shows that hedge funds with low

R2 fail more often than high R2 funds even after controlling for idiosyncratic volatility.

These results would be consistent with a story, where the risky omitted factors command

high premia (leading to future outperformance), while possibly carrying large downside risks

(leading to fund failure).

Empirically, we find little evidence that absolute alpha predicts future hedge fund returns.

The out-of-sample monthly Sharpe ratio of a portfolio constructed from the top decile of

absolute alphas (estimated from rolling windows of 36 months of past returns) is only 0.32,

insignificantly higher than the Sharpe ratio of 0.26 for a same size portfolio of random hedge

funds (p-value of 0.11). Sorts based on the Namvar et al. (2016) model yield a monthly Sharpe

ratio of 0.29. In contrast, sorts based on our relative alpha perform significantly better with

a Sharpe ratio of 0.42. The advantage of relative over absolute alpha is even more drastic,

when we look at the monthly Sharpe ratio of a top-minus-bottom decile strategy. Absolute

alpha generates a monthly Sharpe ratio of 0.18 for the Fung and Hsieh (2001) and 0.15 for

the Namvar et al. (2016) model whereas relative alpha generates a monthly Sharpe ratio of

0.61, a remarkable 3.4 to 4 times higher.

Our results are robust during non-crisis times and weaken somewhat during crisis times,

as the crisis sample covers only 28 of the total 208 monthly cross sections. Results also

hold up but weaken somewhat when we look at the three major hedge fund styles separately

(Global macro, Equity long/short, Relative value) as the samples are much smaller now

(16%, 49%, 10% of the total).

Our results are being mirrored when using alternative performance measures. As our

Sharpe ratio results already suggest, mean returns are higher and volatility is lower for

relative alpha compared to absolute alpha. Using the Manipulation Proof Performance

Measure (MPPM) of Goetzmann, Ingersoll, Spiegel, and Welch (2007) gives significantly

larger certainty equivalents for relative alpha than for absolute alpha. Measuring tail risk by
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Value-at-Risk (VaR) generates significantly lower tail risk for relative alpha than for absolute

alpha. Finally, the second order stochastic dominance test of Davidson and Duclos (2013)

rejects that investors are indifferent between sorts based on relative versus absolute alpha

and would prefer relative alpha sorts.

We find that relative alpha outperforms absolute alpha in out-of-sample sorts based

on absolute alpha. This result basically remains in place when we use alternative sorting

criteria. Namely, we sort according to the absolute alpha of the Agarwal and Naik (2004)

factor model, the absolute alpha of the Namvar et al. (2016) factor model, the strategy

distinctiveness index (SDI) of Sun, Wang, and Zheng (2012), and the manipulation-proof

performance measure (MPPM) of Goetzmann et al. (2007).

We also show that our results are not qualitatively affected by changes to the methodology

and the sample. For example, we vary the size of sample from which we estimate the factor

models (from 36 to 24 months), increase the hedge fund holding period from one to 12 months

(which corresponds to the typical lock-up period in the hedge fund industry), eliminate small

hedge funds, and use de-smoothed instead of observed hedge fund returns.

We advocate the use of relative alpha for hedge funds, where the omitted factor problem

is severe at about 70% of adjusted R2 not being explained. But does relative also work for

mutual funds? There, the Fama and French (1992) three factor model leaves only about

a third of adjusted R2 unexplained. Yet relative alpha still outperforms absolute alpha

strongly in the top-minus-bottom decile portfolios, with more mixed results for the top and

the bottom portfolios separately. Thus, relative alpha still works in a mutual fund setting,

even though it was designed for hedge funds.

Third, in terms of persistence of alpha, we add to the existing literature of Ammann,

Huber, and Schmid (2013) and Capocci and Hübner (2004), who show limited evidence

concerning the predictability of absolute alpha. Historically measured absolute alpha has

little predictive value for future absolute alpha. As alpha is often interpreted as the skill
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of the hedge fund manager, lack of persistence in alpha could mean that managerial skill

is also not persistent.6 Another concern is that the lack of persistence is due to the poor

estimation of absolute alpha. Typical (seven to ten) factor models are often estimated with

only 36 monthly returns, leading to imprecise estimates of absolute alpha.

Hoberg, Kumar, and Prabhala (2014) add an interesting perspective from the mutual

fund literature, but which is still relevant to our relative alpha measure in a hedge fund

setting. They define customized peer alpha as the outperformance of one mutual fund over

its close competitors. The distance to competitors is based on the characteristics (e.g., size,

momentum, dividend yield) of their stock holdings; all information which we do not have

readily available for hedge funds.7 The authors document persistence of their measure. While

we share the basic idea of comparing funds to close peers, our measure does not need holdings

information and relies solely on the readily available time series of hedge fund returns.

Our tests of alpha persistence show that relative alpha exhibits significant positive coef-

ficients in regressions of past relative alpha on future relative alpha. For samples of 24, 48,

and 72 months (the earlier half used for the past alpha estimation, the latter half used for the

future alpha estimation), our regressions have adjusted R2 of 24%, 29%, and 27%. Results

for absolute alpha are sobering with being either insignificant or having even marginally

significant negative coefficients for the Fung and Hsieh (2001) and the Namvar et al. (2016)

models with virtually no explanatory power (adjusted R2 less than 0.004).

6For mutual funds, Berk and Green (2004) argue that competition should eliminate such

skill related alpha. In Berk and van Binsbergen (2013) they thus argue that mutual funds

should not exhibit persistence in alpha. However, Glode and Green (2011) show theoretically

for hedge funds that potential information spillovers (associated with innovative trading

strategy or emerging sector) could lead to persistent alpha after all.
7Hedge fund holdings are unknown but for the 13f reports, which only apply to US equity

holdings of large funds (> $100 million).
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Furthermore, we design a simulation study to analyze under which circumstances relative

alpha works best. Relative alpha works well even in the presence of omitted variables, while

absolute alpha performs poorly in that situation. A large cross-section of hedge funds and

longer time series of returns contribute to the superior performance of relative alpha. Yet

the strong performance of relative alpha remains even when we drop half the cross section

of peer funds or shorten the time series from 36 to 24 months.

We next develop our new relative alpha measure in Section I. All data are presented in

Section II. Results and robustness checks follow in Section III. We study our relative alpha

measure via a simulation in Section IV and conclude with Section V.

I. Relative Alpha

We assume that there exists a (possibly very large) factor model with uncorrelated error

terms, which explains hedge fund returns.8 The factors can be correlated with each other,

but we do not allow factors to be linear combinations of other factors. We do not limit

ourselves to the seven or eight factors of Fung and Hsieh (2001) or Agarwal and Naik (2004)

but include otherwise omitted factors beyond those standard factors. Thus, our assumed

factor model would have high explanatory power but for the error term, i.e., an R2 of close

to one. Obviously, we cannot name these omitted factors, but we do not need to; we argue

below that we can still assess our performance measure relative alpha without the explicit

knowledge of the full factor model by essentially netting out much of the unknown factor

structure. The complete factor models for hedge funds i and j are then as follows:

8Empirically, a principle component based attribution model, where we are using suffi-

ciently many principal component so that we achieve a high R2, would fit the bill.
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rit − rf,t = αi +
L∑
l=1

βi,lFl,t + εi,t, (1)

rjt − rf,t = αj +
L∑
l=1

βj,lFl,t + εj,t, (2)

where (ri,t − rf,t) is the excess hedge fund return of hedge fund i at time t, Fl,t is the factor

l at time t, βi,l is the risk exposure of hedge fund i to factor l, and εi,t is a mean zero error

term for hedge fund i. Definitions for hedge fund j are similar.

To neutralize the impact of the factor exposure, we take expectations of the differences

in returns. If hedge funds i and j implement identical strategies (i.e., they load on the same

risk factors Fl,t and have βi,l = βj,l), then their factor loadings cancel, leaving only differences

in alphas as the error terms have mean zero:

E[ri,t − rj,t] = αi − αj +
L∑
l=1

(βi,l−βj,l)E[F l,t] + E[εi,t − εj,t] = αi − αj. (3)

We will use this difference in hedge fund i ’s alpha from hedge fund j ’s alpha to measure

the outperformance of one hedge fund over its peer.

Now clearly, hedge funds typically do not have perfectly identical betas and βi − βj may

have non-zero entries. Yet we argue that Equation (3) still hold approximately as long as

the entries of βi − βj are small in absolute value. Note, that the mean of each element of

βi − βj is zero across all pairings i, j as each hedge fund will appear just as often on the

left and on the right of the minus sign. Thus, the average value of the approximation errors∑L
l=1 (βil−βjl)E[F l,t] across all pairing i, j is also zero. In order to minimize the influence of

the approximation errors, we compute the relative alpha of a reference hedge fund j (∆j) as
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the weighted average of the differences in returns of j against all other hedge funds i:

∆j =
∑
i 6=j

wiE[ri,t − rj,t] ≈ αj −
∑
i 6=j

wiαi, (4)

with
∑
wi = 1.

Such weighted average reduces the total approximation error as the individual approxi-

mation errors (
∑L

l=1 (βi,l−βj,l)E[F l,t]) partially cancel.9 The remaining question is, how to

weight the different hedge funds. We noted above that the approximation error has mean

zero across all pairings of i and j. Yet the variability of the approximation error also matters

as more similar peers of hedge fund j would lead to less variable approximation errors and

thus to less variability in our relative alpha measure in Equation (4). Formalizing this idea,

we would ideally base our weights on the (element-wise) squared approximation error, i.e.,

the weighted sum of squared differences in betas times the squared expected factors:

L∑
l=1

(βi,l−βj,l)2E[F l,t]
2. (5)

Yet, as we do not observe the betas nor the many (potentially unknown) factors of the

model, we suggest to instead use the variance of return differences, which has a related

structure and can be simply computed from just the returns without any knowledge of the

betas nor the factors of the model:

V ar[ri,t − rj,t] = (βi − βj)′Cov[Fl,t](βi − βj) + σ2
i + σ2

j , (6)

9Unless all the mean zero approximation errors happen to have same sign whence they

simply add.
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where βi (βj) is the (L× 1) vector of risk exposures of hedge fund i (j ), Cov[Fl,t] is the

(L×L) variance-covariance matrix of the factors (assumed to be bounded from above), and

σ2
i (σ2

j ) is the variances of the error term εi,t (εj,t).

We now argue in three different ways that a low variance of return differences in Equation

(6) relates to a small squared approximation error in Equation (5). First, we introduce a

simple model, second a simulation, and third we present empirical evidence based on the

13f holdings data for large hedge funds. Plus, our results in Section III show that our trick

works really well empirically.

A simple model of hedge funds

We assume that hedge funds load on the factors based on some average beta vector plus

idiosyncratic variations in those betas, where all variations are iid normally distributed.

Further, we assume that the L factors are known with means E[F ] and covariance matrix

Cov[Fl,t]. Finally, we assume the residuals to be i.i.d. normally distributed with mean zero

and some (possibly different) variances. If hedge funds follow such simple factor model, then

the mean approximation error is zero.

PROPOSITION 1: Let us assume that βi,l = βl+ηi,l with ηi,l ∼ N (0, σ2
η),∀i. Further assume

that εi ∼ N (0, σ2
i ),∀i. We show that

E

[
L∑
l=1

(βi,l−βj,l)E[F l,t]

]
=

L∑
l=1

E[ηi,l − ηj,l]E[Fl,t] =
L∑
l=1

0× E[Fl,t] = 0.

Further, the squared approximation error positively covaries with the variance of return

differences. Thus, we can find close peers by searching for hedge funds with low variances of

differences in returns. We show this result in the following proposition with the proof being

relegated to Appendix.A.
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PROPOSITION 2: Using the above assumptions, we show that

Cov

[
V ar[ri,t − rj,t],

L∑
l=1

(βi,l−βj,l)2E[F l,t]
2

]
= (3− 1)(2σ2

η)
2

L∑
l=1

E[Fl]
2V ar[Fl] > 0.

Simulation of hedge fund returns

In Section IV (see for details), we use our main hedge fund database and assume that the

first 30 principal components are the true factor model for all hedge funds. Regressions

based on the true model yield an adjusted R2 of 95% and give us the true alpha, betas, and

residuals. We then simulate 100 different time series of factors (keeping the cross-sections

of the factors at a point in time constant). Using the alphas, betas, and random draws

from the residuals, we can create 100 simulated panels of time-series for each hedge fund

out of a large cross section of hedge funds. As in our theoretical model, we show that the

expectation of the approximation error
∑L

l=1(βi,l − βj,l)E[Fl,t] is -0.0005 and insignificantly

different from zero with a p-value of 0.65. We also run the regression of the variance of

return differences V ar[rit− rjt] on the squared approximation error
∑L

l=1(βi,l−βj,l)2E[Fl,t]
2.

The slope coefficient turns out to be positive at 0.7819 (significant with a p-value of 0.03).

13f filings

For some 710 large hedge funds with more than $100 million in assets under management,

we have information on their quarterly long holdings of US equities. We now interpret each

of these securities as a single factor and use the value-weighted allocations to those securities

as factor loadings (betas). Thus, we do not need to estimate the factor model but observe it

directly from the holdings information. We show in Section III that the mean approximation

error is insignificantly different from zero (0.0010 with a p-value of 0.89) and that the variance

of return differences is positively correlated with the squared approximation error (slope of

0.8366 with a p-value of 0.07). Note that results are biased against us since some hedge

funds have holdings, which do not need to be reported on form 13f. As a result, finding a
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significant slope is harder in the presence of omitted holdings.

Summing up, we conclude from our model, from our simulation, and our study of 13f

holdings that we can use the variance of return differences as a measure of similarity between

hedge funds. We next specify our weights in Equation (4), which we base on our similarity

measure. We suggest a Gaussian kernel weighting:

wi =
K
(
V ar[ri,t − rj,t]/h

)
∑

i 6=jK
(
V ar[ri,t − rj,t]/h

) , (7)

where K(·) is a Gaussian Kernel and h is the bandwidth according to the Silverman (1986)

rule of thumb. A low variance of return differences (i.e., a higher similarity) leads to a high

weight for the peer fund, with h controlling the relative importance of each peer fund. Yet,

our results do not change much if we use bandwidths from a fifth to five-times of the value

of the Silverman (1986) rule of thumb. We are now ready to compute relative alpha as:

∆j =
∑
i 6=j

wiE[ri,t − rj,t] =

∑
i 6=jK

(
V ar[ri,t − rj,t]/h

)
E[ri,t − rj,t]∑

i 6=jK
(
V ar[ri,t − rj,t]/h

) . (8)

Kernel estimates are biased on the boundary of the data and we suffer from this problem

as we evaluate the kernel estimate at a point where the variance is zero based on variances

which are all positive. Thus, we show in our robustness section that results do not change

when we use the local regression technique proposed by Hastie and Loader (1993), which

better accommodates the boundary bias.
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II. Data

For our hedge fund data, we rely on the MOAD database described in Hodder, Jackwerth,

and Kolokolova (2014). MOAD is a merged database of six commercially available databases

(CISDM, Barclays, TASS, HFR, Altvest, and Eurekahedge). We use only USD-denominated,

net-of-fees returns with at least 36 months of historical returns which leaves us with 13,597

hedge funds. Our sample runs from February 1994 until June 2011. The descriptive statistics

of our sample are presented in Table I, Panel A. We document excess kurtosis and left-

skewness in hedge fund returns, suggesting that returns are often not normally distributed.

The monthly Sharpe ratio is 0.18.

[Table I about here]

Hedge funds differ from other asset classes in many respects. One of them is the absence

of strict regulation. This leads to database biases as reporting is voluntary. We address those

biases as follows. First, our joint database is free of survivorship bias because it contains

both live and dead funds. Second, to control for the instant history bias, we delete the

first 12 months of each hedge fund’s returns. We compute our main results based on the

reported returns as we find them in the database (although we run a robustness check with

de-smoothed returns).

We obtain mutual fund data from the Morningstar database. We eliminate mutual funds

with less than 36 months of historical returns. The sample runs from February 1994 until

June 2011. The descriptive statistics are summarized in Table I, Panel B. Mutual fund

returns are characterized by excess kurtosis and left-skewness but to a lesser extent than

hedge funds. The monthly Sharpe ratio is 0.09. Overall, mutual funds demonstrate smaller

first and second moments compared to hedge funds.

For additional tests, we use section 13f quarterly filings to the SEC, on which large

hedge funds (with assets under management worth more than $100 million) report their
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long positions in US equity markets, ADRs, put and call options, and convertible notes.

These positions, however, do not include short sales, cash, or any other assets. The detailed

description of data shortcomings can be found in Agarwal, Jiang, Tang, and Yang (2013).10

Our sample covers 710 hedge funds from October 2001 until April 2011.

We further use the seven factors of the Fung and Hsieh (2001) model which are available

at David A. Hsieh’s Hedge Fund Data Library.11 Option-based factors from Agarwal and

Naik (2004) were graciously provided by the authors. We thank Kuntara Pukthuanthong

for sharing data on the Namvar et al. (2016) factors. For the mutual funds, we use the

three factors of the Fama and French (1992) model, which we downloaded from Kenneth R.

French’s website.12

III. Methodology and results

We now present our results where we first investigate the explanatory power of relative

and absolute alpha with respect to in-sample hedge fund returns. Next, we analyze their

ability to predict future performance. We continue with an investigation of the persistence

of relative alpha versus absolute alpha.

A. Explaining hedge fund returns in-sample

We are concerned about the low explanatory power of traditional factor models, such as

Fung and Hsieh (2001), as omitted factors could bias the estimated alpha. With average

adjusted R2 of 22%, 28%, and 30% at the 12, 24, and 36-months horizons, the seven factor

10We are very thankful to Achim Mattes and Olga Kolokolova for providing us with the

data.
11https://faculty.fuqua.duke.edu/∼dah7/HFData.htm
12http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data library.html
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Fung and Hsieh (2001) model leaves much variation in returns unexplained (see Table II,

column FH).

[Table II about here]

For our relative alpha measure, we cannot directly obtain R2. Instead, we use the returns

of the seven closest peer funds as pseudo factors. Then, we are able to repeat the above

exercise of computing average adjusted R2, which are significantly higher at 82%, 67%, and

68%, respectively. We do not want to oversell our results, since we picked the closest peers

exactly for similarity. Still, we picked the peers well as they explain more than two-thirds of

the return variation. That bodes well for our relative alpha calculations, where the quality

of the results will depend on how effective the peers cancel the products of factor loadings

and factors of the reference hedge fund.

We repeat the estimation using the ten factor Namvar et al. (2016) model and the ten

closest peers. The Namvar et al. (2016) model (22%, 24%, and 24%) performs even worse

than the Fung and Hsieh (2001) model, while using the ten closest peers (78%, 68%, and

67%) performs similarly to using the seven closest peers as pseudo factors.

B. Predicting future performance

We next compare the out-of-sample performance of sorted portfolios based on relative

and absolute alphas. We use 36-month rolling windows to estimate relative and absolute

alpha. The correlation between relative alpha and absolute Fung and Hsieh (2001) alpha is

on average 0.62 and ranges between 0.24 and 0.81, depending on the rolling window length

of 12, 24, and 36 months. Based on relative and absolute alphas separately, we sort the

hedge funds into top and bottom deciles and form equally weighted portfolios. We record

returns of top, bottom, and top-minus-bottom portfolios in the 37th month and repeat the
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procedure while moving one month forward. We take care of look-ahead bias by recording a

zero return instead of a missing return in case a hedge fund is delisted.13

Predicting future performance in the base case

[Table III about here]

The future performance of top portfolios sorted on relative alpha is superior to sorts on

absolute alpha, see Table III, columns Top Portfolio REL and FH. Both sorts deliver similar

mean returns of about 1% per month while the volatility is significantly lower for relative

alpha (2.08%) in comparison to Fung and Hsieh (2001) (2.47%, p-value of 0.01), which is

reflected in a significantly higher Sharpe ratio (0.42 for the top relative alpha portfolio versus

0.32 for Fung and Hsieh (2001)). The difference in Sharpe ratios is significant (p-vaue of

0.01), where we apply the heteroskedasticity and autocorrelation robust inference of Andrews

(1991).

We confirm these results for top portfolios when using performance measures other than

the Sharpe ratio. The Manipulation Proof Performance Measure (MPPM) of Goetzmann

et al. (2007) for relative alpha (9.59% annualized) is significantly higher than the MPPM

for Fung and Hsieh (2001) (8.39%, p-value of 0.00).14 The Value-at-Risk (VaR; with a 5%

13Among the top portfolios, around 0.7% of all hedge funds are missing the out-of-sample

return. Among bottom portfolios, the number is around 3%. There is little variation in these

percentages across relative versus absolute alpha. During crisis periods, the percentage rises

to almost 4%.
14We test the difference in MPPM by using a bootstrap procedure. We draw 1000 bootstrap

samples with replacement from the time series of the original portfolios and compute the

MPPM from these samples. We use the bootstrapped standard errors as the standard

deviation of the MPPM test statistic.
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tail probability) is significantly lower for relative alpha (-1.40%) than for absolute alpha

(-2.17%, p-value of 0.01).15 We finally test if all risk averse investor prefer the top relative

alpha portfolio to the top absolute alpha portfolios. We do so by testing if the top relative

alpha portfolio stochastically non-dominates (in the second order) the top absolute alpha

portfolio. The SSD test of Davidson and Duclos (2013) marginally cannot reject the null

with a p-value of 0.12.16

We find for the top portfolios that sorts based on relative alpha better predict future

performance than sorts based on absolute alpha. For the bottom portfolios, sorts based

on relative alpha are still significantly better than portfolios based on absolute alpha sorts

when we look at volatility, MPPM, and VaR. The differences are insignificant for the Sharpe

ratio and SSD. Yet when turning to the top-minus-bottom portfolios, relative alpha performs

much better than absolute alpha. The Sharpe ratio is now 3.4 to 4 times higher than for

absolute alpha (p-value of 0.00). Volatility, MPPM, VaR, and SSD are all highly significant

(p-values of 0.00, but for MPPM with 0.04).

Predicting future performance using 13f holdings

So far, we assume that hedge fund returns can be explained by a (possibly large) factor

model. Typically, we do not know those factors, but hedge fund holdings could serve as a

set of factors. We could treat each security as a factor and use its value-based weight as

its beta. The return on the portfolio of holdings should be close to the hedge fund return.

Differences can arise due to fees and if the holdings are incomplete or time-varying.

Indeed, large hedge funds with more than $100 million in assets under management need

to report their long holding of (mainly) U.S. equity in so-called 13f filings with the SEC. We

15We test the difference in value at risk by the method proposed in Wilcox and Erceg-Hurn

(2012).
16We apply the Davidson and Duclos (2013) test based on the t-statistic. We simulate the

distribution of the test statistics in order to account for small samples.
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collected a quarterly record of such 13f filings from October 2001 until April 2011 for 710

hedge funds. Then, we investigate the approximation error in line with our propositions.

First, we depict the distribution of approximation errors
∑L

l=1 (βil−βjl)E[F l,t] in Figure 1.

As expected, it is centered close to zero at 0.0010 (p-value of 0.89). Second, we run a linear

regression of the variances of the return differences against squared approximation errors.

We find a significantly positive slope of 0.8366 (p-value of 0.07). In line with proposition 2,

we interpret this as evidence that we can find close peers by searching for hedge funds with

low variances of differences in returns. Our results stay robust with respect to winsorizing.

We conclude that our propositions are in line with the empirical data for select hedge funds,

for which we can construct a factor model based on observed holdings.

[Figure 1 about here.]

Predicting future performance using different methodologies

We start assessing the robustness of our results by changing the methodology of the base

case, where we use all hedge funds and not only the large hedge funds with 13f filings. For

one, we shorten the size of the rolling window from 36 to 24 months. We expect our estimates

to be less precise due to the reduction in sample size. Indeed, the results in Table IA.1 show

that relative alpha still performs better than absolute alpha, but we lose three significant

results at the 5% level of the twelve significant results for the base case in Table III.

Next, we correct for the boundary bias of the kernel estimates by using locally weighted

regressions as proposed in Hastie and Loader (1993). Here, the twelve significant results in

Table IA.2 are very close to the base case.

Since hedge funds may have lock-up periods, investors might not be able to withdraw

their investment every month and reallocate to a new hedge fund. We repeat our main

results while increasing the portfolio holding period from one to twelve months. Our results

in Table IA.3 hardly change compared to the base case.
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Getmansky, Lo, and Makarov (2004) find that return smoothing can affect hedge fund

returns. We correct for potential MA(2) components and use the de-smoothed returns in-

stead. The results in Table IA.4 weaken for the top portfolios but stay as strong as ever

for the top-minus-bottom portfolios. Still, we come in with ten significant results compared

to twelve in the base case. Most likely, the estimation of the MA(2) model introduces ad-

ditional estimation error to both the reference hedge fund and all potential peers. Thus,

relative alpha is now saddled with estimation error, which we carefully avoid so far.

Predicting future performance using different samples

Our results are also robust to a number of changes to the sample. We start by considering a

sample consisting of the NBER crises periods from March 2001 to November 2001 and from

December 2007 to June 2009. For the crises periods, the sample shrinks drastically from

208 monthly cross sections to just 28. We thus expect our results to suffer and this indeed

happens. During the crises periods, we find four significant results in Table IA.5, Panel A,

down from twelve for the base case. Still, for the top-minus-bottom portfolios, relative alpha

performs significantly better than absolute alpha for volatility, MPPM, and SSD (p-values

of 0.05, 0.00, and 0.07). The non-crisis results in Table IA.5, Panel B hardly change from

the base case.

After changing the time-dimension of the sample, we next change the size of the cross

section of hedge funds. First, we eliminate hedge funds, which are closed to new investment,

as investors might not be able to allocate money to these hedge funds. The results in Table

IA.6 with ten significant results are almost as strong as the base case with twelve significant

results. As it might also be hard for investors to allocate funds to very small hedge funds,

we eliminate hedge funds with assets under management of less than $20 million as proposed

in Kosowski, Naik, and Teo (2007). Again, with twelve significant results in Table IA.7, the

situation does not change much compared with the base case.

Predicting future performance using other sorting measures
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To strengthen our argument, we repeat the analysis by sorting hedge funds into decile port-

folios based on alternative performance measures. All results are based on 36-month rolling

windows and on recording the subsequent out-of-sample returns. As performance mea-

surements, we use the the absolute alphas of Agarwal and Naik (2004) (AN) and Namvar

et al. (2016) (NPPR), the strategy distinctiveness Index (SDI) of Sun et al. (2012), and the

manipulation-proof performance measure (MPPM) of Goetzmann et al. (2007). The relevant

formulas and factors are collected in Appendix.B and Appendix.C.

All alternative performance measures perform worse than relative alpha, see Table IV,

with Panel A reporting the top portfolio results, Panel B the bottom portfolio, and Panel C

the top-minus-bottom portfolio. In our base case (column REL in each of the three panels),

we had twelve significant results of relative alpha against the absolute alpha of Fung and

Hsieh (2001). The corresponding numbers of significant results are eight for AN, eleven for

NPPR, twelve for SDI, and eleven for MPPM. So we perform just about as strong against

the alternative performance measures as against Fung and Hsieh (2001). A closer look at the

results for Agarwal and Naik (2004) shows that the weakening stems from fewer significant

results for the top portfolio, while the bottom portfolios and the top-minus-bottom portfolios

perform as strongly as ever.

[Table IV about here]

Predicting future performance for different investment styles

We also repeat the study within investment styles. Table V shows the results for top, bottom,

and top-minus-bottom portfolios for the three investment strategies with more than 10%

share of the total cross section: global macro (16% share in Panel A), equity long/short (49%

in Panel B), and relative value (10% in Panel C). Results for global macro stay with twelve

significant results just as strong as as they are in the base case. Somewhat surprisingly do our

results weaken somewhat for the large group of equity long/short hedge funds, which exhibit
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eight significant results. The losses of significance are concentrated in the top portfolios

with bottom and top-minus-bottom portfolios almost keeping their significance counts. For

relative value, we have weaker results with seven significant results. Yet, the sample dropped

drastically in size to only 10% of the cross section, thus making it harder to econometrically

establish significance.

[Table V about here]

Predicting future performance for mutual funds

Even though we designed relative alpha to be used for hedge funds, we were curious how well

it fares when used for mutual funds. For mutual funds, the Fama and French (1992) model

explains about two-thirds of the return variation, whereas the Fung and Hsieh (2001) model

explains only about one-third of the return variation for hedge funds. Thus, as relative alpha

is specifically designed to deal with omitted factors, its advantage for mutual funds is less

obvious. We repeat our study on mutual funds and present our results in Table VI. We

still find seven significant results, with the top-minus-bottom portfolios performing strongly,

while the results for top and bottom portfolios weaken somewhat. Our results suggest that

the benefit of relative alpha is less pronounced for mutual funds than for hedge funds, but

still present in the data. Repeating our study for the crises and non-crises periods separately

does not change our results from the base case for mutual funds, see Table IA.8.

[Table VI about here]
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C. Persistence of alpha

To analyze the persistence of alpha, we adopt a methodology commonly used in the

hedge fund literature. We consider consecutive 72-month periods17, starting with the 1st,

37th, 73rd, . . . observations. Each of these periods is divided into two 36-month sub-periods:

a formation period (1-36th months) and an evaluation period (37-72nd months). For each

hedge fund i which survives the whole 72-month period, we compute relative alpha during

the formation (41i) and the evaluation (42i) periods and estimate the following regression:

42i = a∆ + b∆41i + ωi, (9)

where a∆, b∆ are the parameters to be estimated, and ωi is an error term. We stack all

observations for the different non-overlapping periods and then run the joint regression.

Persistence in relative alpha is determined by a significantly positive coefficient b∆.

The persistence study is repeated for absolute alphas from the seven factor Fung and

Hsieh (2001) model and the ten factor Namvar et al. (2016) model:

α2i = aα + bαα1i + vi, (10)

where α1i(α2i) are the alpha estimates in the formation (evaluation) period for fund i ; aα, bα

17While 72 months (36+36) is a typical sample used in the hedge fund literature, it creates

a significant look-ahead bias as only funds are included, which survived for all 72 months.

Such filtering also eliminates many hedge funds. Consequently, we also use 48 (=24+24)

and 24 (=12+12) months samples. We have in our database some 7,145 hedge funds with

72 months of observations, 11,002 with 48, and 16,011 with 24 months.
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are the parameters to be estimated, and vi is an error term.

We know from Ammann et al. (2013) and Capocci and Hübner (2004) that there is little

evidence on hedge fund absolute alpha persistence. We are therefore interested if relative

alpha is more persistent than absolute alpha. We present the results for the 72-month

period in Table VII, Panel C. Relative alpha is strongly persistent with a t-stat of 24.03

while absolute alpha is actually anti-persistent with negative coefficients for both Fung and

Hsieh (2001) and Namvar et al. (2016) and t-stats of -2.45 and -2.65. Shortening the period

to 48 months (24 months each in the formation and the evaluation period) in Panel B again

shows strong persistence for relative alpha with a t-stat of 16.46, while Fung and Hsieh

(2001) stays negative (t-stat of -2.93) and Namvar et al. (2016) turns insignificant. Further

shortening the period to 24 months still shows strong persistence for relative alpha (t-stat

of 13.43), while Fung and Hsieh (2001) turns insignificant and Namvar et al. (2016) shows

anti-persistence (t-stat of -2.50).

[Table VII about here]

IV. Why does relative alpha work?

In order to see why relative alpha performs so well, we turn to a simulation study. In

our simulation, we know the true alphas and we can thus confirm that our two propositions

hold for our simulation. Further, we can vary the size of the cross section and the length of

the time series to assess how relative and absolute alpha are affected.

We simulate hedge fund returns based on the principal components extracted from the

observed hedge fund returns. For a time series of 36 months and a cross-section of 2,349

hedge funds, we use the first 30 principle components, which explain 95% of the total return

variation, as our true 30-factor model. We estimate alpha, betas, and residuals for each
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hedge fund based on the 30-factor model. We assume that those estimated parameters are

the true parameters for our simulation. The true alphas are distributed around zero with

mean 0.0019 and standard deviation 0.0324. We simulate 100 different scenarios. Here, we

resample with replacement the time series of factor realizations, while keeping the cross-

section of the 30 factors intact. Based on the true alpha and betas and random draws with

replacement from the residuals, we can generate new time series for all hedge funds during

each scenario.

Our simulation seamlessly incorporates omitted factors. Estimating the seven factor Fung

and Hsieh (2001) model for each hedge fund, the typical adjusted R2 is only 30-40%, i.e.,

much information of the true 30 factor model (with an adjusted R2 of 95%) is omitted.

We first simulate our full sample with 2,349 hedge funds and 36 monthly returns each.

Based on the relative alpha formula in Equation (8), we can substitute the true alpha dif-

ferences instead of the differences in returns, E[ri,t − rj,t]. We call this the true relative

alpha:

∆true
j =

∑
i 6=j

wi(αi,t − αj,t) =

∑
i 6=jK

(
V ar[ri,t − rj,t]/h

)
(αi,t − αj,t)∑

i 6=jK
(
V ar[ri,t − rj,t]/h

) . (11)

We average the true relative alphas and record the value of -0.0005 in Table VIII, Panel

A, Full Sample. The average estimated relative alpha is 0.0009, insignificantly different from

the true value with a p-value of 0.21. For absolute alpha, the average true value is 0.0015,

while the average estimated alpha based on the Fung and Hsieh (2001) model is 0.0051,

significantly different with a p-value of 0.00.

[Table VIII about here]

We next check on our two propositions. First, we suggested that the approximation error
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∑L
l=1 (βi,l−βj,l)E[F l,t] has a theoretical mean of zero and thus allows us to use expected

differences in returns to approximate differences in alpha. In Figure 2, we depict the distri-

bution of simulated approximation errors. It is a rather symmetric distribution and centered

at -0.0005, insignificantly different from zero with a p-value of 0.65.

[Figure 2 about here.]

Second, we argued that the squared approximation error increases in the variance of

return differences. Indeed, the slope of the variance of the return differences against squared

approximation error is significantly positive at 0.7819 (with a p-value of 0.03). Thus, we

are justified to give more weight to close peers (with low variances of return differences) in

order to reduce the squared approximation error and, thus, to estimate relative alpha more

precisely.

We now have our simulation in place, with a typical sample size, a realistic omitted

factor structure, and our two propositions hold. Next we turn to answer, why relative alpha

works so well. For one, the computation of relative alpha in Equation 8 needs a reasonable

number of close peer funds. We will thus vary the number of hedge funds in the cross section.

Second, closeness is measured as the variance of return differences and our estimate thereof

will be more precise the longer the time series of returns is. We thus vary the number of

observations available in the time series.

Varying the number of hedge funds

We first compared relative and absolute alpha based on the simulated full sample with

N=2,349 hedge funds. The error between the true and the estimated average values are -

0.0014 for relative alpha and -0.0036 for absolute alpha, see Table VIII, Panel A, Full Sample.

We next reduce the number of hedge funds, which can be used as peers for relative alpha.

That should make it harder for relative alpha and absolute alpha should not be affected

much. Yet the results for the Medium Sample with 1,175 instead of 2,349 hedge funds
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hardly change. The error for relative alpha remains unchanged and is still insignificant, the

error for absolute alpha increases to -0.0043 and has a p-value of 0.00. Only when we move

to the Small Sample with 294 hedge funds widens the error for relative alpha sufficiently to

-0.0020 to turn significant with a p-value of 0.06. The error for absolute alpha increases in

magnitude to -0.0055 and has a p-value of 0.00. We conclude that a smaller cross-section

does indeed worsen the performance of relative alpha but for that to happen, we need to

reduce the number of potential peers by 87%.

Varying the length of the time series

Now, starting again from the Full Sample with 36 months of returns, we change the number

of returns available. From Table VIII, Panel B, Short Sample, we see that reducing the

time series to 24 months increases in magnitude the error for relative alpha very little from

-0.0014 to a value of, again insignificant, -0.0015, while the error for absolute alpha increases

in magnitude from -0.0036 to -0.0051, remaining strongly significant. Going to the Very

Short Sample with only 12 returns, the error for relative alpha decreases to -0.0008 but is

now marginally significant with a p-value of 0.07. The absolute alpha error turns positive

with a value of 0.0019 and remains strongly significant. We find that relative alpha copes

quite well with shorter time series, while absolute alpha performs worse with significant

errors throughout.

We conclude from our simulation that the good performance of relative alpha is due to its

capability of dealing with omitted factors. In order to achieve that feat, the method needs

reasonably long time series of returns (24 months seem to suffice in our simulation) and a

large enough cross section of peer funds (some 1000 seem to suffice), which can cancel out

the unknown factor loadings.

27



V. Conclusion

We propose a novel performance measure, relative alpha, which assesses the outperfor-

mance of a hedge fund with respect to a group of peers. It exhibits the intriguing property

that (potentially unknown) factors and their loadings partially cancels, as the peers are

selected based on the variances of differences in returns, with more weight going to funds

with low variances. We argue carefully, based on a theoretical model, a simulation study,

and empirical evidence from hedge fund holdings reported on forms 13f, that this variance

indeed leads to the desired cancellation. We are thus left with a measure of a hedge fund’s

weighted alpha difference with its peers. A nice side effect is that the investor does not even

need to know the exact factor structure, nor any of the omitted factors.

Relative alpha beats absolute alpha in three areas: Explaining hedge fund returns in-

sample, predicting future returns, and persistence of alpha. In terms of explaining returns,

we find that using the seven closest peers identified by relative alpha explains more return

variation (adjusted R2 of 67% to 82%) than the seven factor Fung and Hsieh (2001) model

(22% to 30%) and a similar result holds for the ten factor Namvar et al. (2016) model.

In terms of predicting future returns, we sort hedge funds based on alpha and investigate

the out-of-sample performance of the top, bottom, and top-minus-bottom deciles. Relative

alpha deciles perform significantly better than absolute alpha deciles, where we use a number

of performance measures (mean, variance, Sharpe ratio, manipulation-proof performance

measure, Value at Risk, and second order stochastic dominance). Using alternative criteria

for sorting (alphas of alternative factor models, the strategic distinctiveness index, or the

manipulation-proof performance measure) does not change the results. The basic results are

robust to changes in the sample and the methodology. Relative alpha even works for mutual

funds, for which the Fama and French (1992) model is less prone to omitted factors than the

Fung and Hsieh (2001) model for hedge fund returns. In terms of persistence of alpha, we
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use past alpha to predict future alpha. Relative alpha is strongly persistent in our sample, as

opposed to absolute alpha, which is either insignificant or significantly anti-persistent (i.e.,

high absolute alpha in one period leads to low absolute alpha in the next period).

In a simulation study that realistically models omitted variables, we show that relative

alpha works better than absolute alpha, if there is a large number of hedge funds (greater

1,000) in the cross-section and if time series of returns have a reasonable length (24 months

or more).
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Appendix

Appendix A. Proofs

We show that Cov
[
V ar[ri,t − rj,t],

∑L
l=1 (βi,l−βj,l)2E[F l,t]

2
]

= (3− 1)(2σ2
η)

2
∑L

l=1E[Fl]
2V ar[Fl] > 0.

As we repeatedly need the term (βi,l−βj,l), we define zl = βi,l−βj,l = βl+ηi,l−βl−ηj,l =

ηi,l − ηj,l with distribution N (0, 2σ2
η). We can now prove proposition 2:

Cov

[
V ar[rit − rjt],

L∑
l=1

(βi,l−βj,l)2E[F l,t]
2

]

= Cov
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L∑
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L∑
l=1

L∑
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L∑
k=1,k 6=l

zlzkCov[Fl, Fk] + σ2
i + σ2

j

]
E

[
L∑
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Appendix B. Performance Measures

Manipulation-proof Performance Measure of Goetzmann et al. (2007)
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Θ̂ =
1

(1− ρ)4t
ln

(
1

T

T∑
t=1

[
1 + rt
1 + rft

]1−ρ
)
, (12)

where T is the total number of observations, 4t is the length of time between obser-

vations, rt is the return of a hedge fund in t, rft is the risk-free rate, ρ is the relative

risk-aversion coefficient.

Strategy Distinctiveness Index of Sun et al. (2012)

SDI = 1− corr(rt, µ), (13)

where rt is the return of a hedge fund in t, and µ is the average return of all funds

belonging to the same style.

Appendix C. Factor Models

Fung and Hsieh (2001)

1. Bond Trend-Following Factor, lookback straddles

2. Currency Trend-Following Factor, lookback straddles

3. Commodity Trend-Following Factor, lookback straddles

4. Excess return on the S&P 500 index over the risk-free rate

5. Difference in the returns on the Wilshire Small Cap 1750 index and Wilshire Large

Cap 750 index

6. The monthly change in the 10-year treasury constant maturity yield

7. The monthly change in the spread between Moody’s Baa yield and 10-year trea-

sury constant maturity yield

Agarwal and Naik (2004)

1. Returns on Russel 3000 Index

31



2. Returns on Morgan Stanely Capital International world excluding US Index

3. MSCI emerging market index

4. Salomon Brothers government and corporate bond index

5. Salomon Brothers world government bond

6. Lehman high yield index

7. Federal Reserve Bank competitiveness-weighted dollar index

8. Goldman Sachs commodity index

9. Factor-mimicking portfolio for size

10. Factor-mimicking portfolio for book-to-market equity

11. Factor-mimicking portfolio for the momentum effect

12. The monthly change in the spread between Moody’s Baa yield and 10-year trea-

sury constant maturity yield

13. At-the-money European call on the S&P 500 composite index

14. At-the-money European put on the S&P 500 composite index

15. Out-of-the-money European call on the S&P 500 composite index

16. Out-of-the-money European put on the S&P 500 composite index
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Table I Descriptive statistics

The summary statistics are the equally weighted cross-sectional averages, standard devia-

tions, minima, maxima, medians, 25% and 75% quantiles of: the mean monthly return, µ;

the standard deviation of monthly returns, σ; the skewness, Skewness; the excess kurtosis,

Kurtosis; the minimum, Minimum; the maximum, Maximum; the Sharpe ratio, Sharpe ratio;

the Manipulation Proof Performance Measure (MPPM); and Value-at-Risk (VaR). Panel A

represents statistics for hedge fund returns, Panel B represents statistics for mutual fund

returns. The sample is February 1994 to June 2011.

Panel A: Hedge Funds

Mean Std.dev Minimum Maximum Median 25% quantile 75% quantile

µ 0.0081 0.0033 -0.0037 0.0199 0.0076 0.0062 0.0095

σ 0.0391 0.0272 0.0021 0.1357 0.0335 0.0193 0.0491

Skewness -0.4134 1.2978 -7.822 3.8999 -0.2271 -0.8562 0.3702

Kurtosis 8.6664 8.7884 2.6535 88.3032 6.0398 4.5052 8.3633

Minimum -0.1477 0.0976 -0.5162 -0.0057 -0.1157 -0.1855 -0.0831

Maximum 0.1652 0.1531 0.0094 1.0106 0.1245 0.0682 0.2081

Sharpe ratio 0.1831 0.1076 -0.2072 0.7654 0.1672 0.1184 0.2338

MPPM 0.0273 0.0531 -0.2074 0.1368 0.0394 0.0169 0.0535

VaR -0.0528 0.0398 -0.1977 -0.0009 -0.0442 -0.0692 -0.0239

Panel B: Mutual Funds

Mean Std.dev Minimum Maximum Median 25% quantile 75% quantile

µ 0.0057 0.0022 -0.0055 0.0172 0.0054 0.004 0.0072

σ 0.0385 0.0212 0.0017 0.1374 0.0397 0.0176 0.0532

Skewness -0.5214 0.4968 -5.1031 1.8331 -0.5512 -0.7051 -0.2654

Kurtosis 5.4357 3.4634 1.3254 54.1807 4.5841 4.0418 5.5513

Minimum -0.1514 0.0854 -0.8399 0.0001 -0.1597 -0.211 -0.0758

Maximum 0.1236 0.0776 0.0047 0.6897 0.1131 0.0689 0.1573

Sharpe ratio 0.0928 0.0666 -1.2323 0.8543 0.0924 0.0614 0.1212

MPPM 0.0018 0.0351 -0.9734 0.0867 0.0099 -0.006 0.0194

VaR -0.0612 0.036 -0.1979 0.0002 -0.0632 -0.0883 -0.0247



Table II Current hedge fund performance

The table shows the in-sample performance of factor models using the seven and ten closest

peers identified by the distance measure proposed in the paper as pseude-factors (7 Peers

and 10 Peers), the Fung and Hsieh (2001) (FH) model, and the Namvar et al. (2016) (NPPR)

model. We use rolling windows of 36 months (Panel A), 24 months (Panel B), and 12 months

(Panel C). The table reports average alpha estimates (Alpha), average standard errors (Std.

dev.), and average adjusted R2.

Panel A: 36 months in-sample

7 Peers 10 Peers FH NPPR

Alpha -0.0029 -0.0037 0.0063 0.0072

Std. dev. 0.0061 0.0083 0.0055 0.0059

adj. R2 0.6797 0.6734 0.2977 0.2388

Panel B: 24 months in-sample

7 Peers 10 Peers FH NPPR

Alpha -0.0036 -0.0048 0.0064 0.0068

Std. dev. 0.0058 0.0074 0.0069 0.0078

adj. R2 0.6672 0.6769 0.2840 0.2353

Panel C: 12 months in-sample

7 Peers 10 Peers FH NPPR

Alpha -0.0039 -0.0050 0.0065 0.0054

Std. dev. 0.0093 0.0209 0.0138 0.0206

adj. R2 0.8229 0.7768 0.2165 0.2199
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Table III Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds

The table demonstrates the out-of-sample performance of top, bottom, and top-minus-

bottom decile portfolios constructed by sorting hedge funds based on relative alpha (REL)

and absolute alpha estimated from Fung and Hsieh (2001) (FH) for the full sample from

February 1994 to June 2011. The characteristics include the monthly mean (µ), standard

deviation (σ), Sharpe ratio, Manipulation Proof Performance Measure (MPPM), and Value-

at-Risk (VaR). We also provide p-values for differences between the mean, standard deviaton,

Sharpe Ratio, MPPM, and VaR of the relative alpha portfolios and their competitors. The

last two rows provide t-statistics and p-values of the Davidson and Duclos (2013) second-

order stochastic non-dominance test.

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0107 0.0100 0.0027 0.0039 0.0080 0.0061

p-value 1.0000 0.7438 1.0000 0.6471 1.0000 0.2804

σ 0.0208 0.0247 0.0214 0.0285 0.0099 0.0228

p-value 1.0000 0.0149 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.4182 0.3207 0.0316 0.0641 0.6073 0.1768

p-value 1.0000 0.0089 1.0000 0.3988 1.0000 0.0001

MPPM 0.0959 0.0839 -0.0002 0.0071 0.0693 0.0391

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0140 -0.0217 -0.0213 -0.0318 -0.0021 -0.0209

p-value 1.0000 0.0100 1.0000 0.0140 1.0000 0.0000

SSD 1.0000 1.6867 1.0000 1.5453 1.0000 5.9536

p-value 1.0000 0.1160 1.0000 0.1320 1.0000 0.0000
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Table IV Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds with alternative measures

The table demonstrates out-of-sample performance characteristics of top (Panel A), bottom

(Panel B), and top-minus-bottom (Panel C) decile portfolios constructed by sorting hedge

funds based on relative alpha (REL), absolute alpha estimated from Agarwal and Naik

(2004) (AN) and Namvar et al. (2016) (NPPR), the Strategy Distinctiveness Index from

Sun et al. (2012) (SDI), and the Manipulation Proof Performance Measure from Goetzmann

et al. (2007) (MPPM) for the full sample from February 1994 to June 2011. The charac-

teristics include the monthly mean (µ), standard deviation (σ), Sharpe ratio, Manipulation

Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We also provide p-values

for differences between the mean, standard deviaton, Sharpe Ratio, MPPM, and VaR of the

relative alpha portfolios and their competitors. The last two rows provide t-statistics and

p-values of the Davidson and Duclos (2013) second-order stochastic non-dominance test.

Panel A: Top Portfolio

REL AN NPPR SDI MPPM

µ 0.0107 0.0093 0.0103 0.0064 0.0107

p-value 1.0000 0.3736 0.8747 0.0474 0.9967

σ 0.0208 0.0217 0.0289 0.0225 0.0278

p-value 1.0000 0.8328 0.0000 0.2639 0.0001

Sharpe ratio 0.4182 0.3026 0.2865 0.1944 0.3140

p-value 1.0000 0.1461 0.0296 0.0000 0.0654

MPPM 0.0959 0.0701 0.0843 0.0432 0.0903

p-value 1.0000 0.0000 0.0000 0.0000 0.0000

VaR -0.0140 -0.0174 -0.0243 -0.0204 -0.0235

p-value 1.0000 0.2600 0.0040 0.0020 0.0100

SSD 1.0000 0.8941 2.4108 2.1604 1.8292

p-value 1.0000 0.3420 0.0180 0.0330 0.0870
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Predicting future portfolio performance: relative alpha versus absolute alpha. Hedge funds
with alternative measures (cont’d)

Panel B: Bottom Portfolio

REL AN NPPR SDI MPPM

µ 0.0027 0.0057 0.0040 0.0061 0.0044

p-value 1.0000 0.3843 0.5733 0.0881 0.5458

σ 0.0214 0.0323 0.0244 0.0185 0.0315

p-value 1.0000 0.0000 0.0629 0.0393 0.0000

Sharpe ratio 0.0316 0.0920 0.0808 0.2218 0.0728

p-value 1.0000 0.0610 0.3078 0.0002 0.2858

MPPM -0.0002 0.0164 0.0128 0.0427 0.0095

p-value 1.0000 0.0000 0.0000 0.0000 0.0000

VaR -0.0213 -0.0300 -0.0219 -0.0150 -0.0247

p-value 1.0000 0.1000 0.8780 0.0000 0.2220

SSD 1.0000 1.3704 0.2180 -1.2324 1.3105

p-value 1.0000 0.1400 0.5990 0.9650 0.1470
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Predicting future portfolio performance: relative alpha versus absolute alpha. Hedge funds
with alternative measures (cont’d)

Panel C: Top-Bottom Portfolio

REL AN NPPR SDI MPPM

µ 0.0080 0.0036 0.0063 0.0003 0.0064

p-value 1.0000 0.0277 0.4308 0.0000 0.5004

σ 0.0099 0.0258 0.0286 0.0092 0.0324

p-value 1.0000 0.0000 0.0000 0.2705 0.0000

Sharpe ratio 0.6073 0.0341 0.1482 -0.1885 0.1341

p-value 1.0000 0.0001 0.0002 0.0000 0.0000

MPPM 0.0693 -0.0009 0.0366 -0.0227 0.0333

p-value 1.0000 0.0000 0.0000 0.0000 0.0000

VaR -0.0021 -0.0269 -0.0272 -0.0098 -0.0346

p-value 1.0000 0.0000 0.0000 0.0000 0.0000

SSD 1.0000 5.8580 6.1819 9.0194 6.3337

p-value 1.0000 0.0000 0.0000 0.0000 0.0000
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Table V Predicting future portfolio performance within self-reported styles: relative alpha
versus absolute alpha

The table demonstrates out-of-sample performance of top, bottom, and top-minus-bottom

decile portfolios constructed by sorting hedge funds based on relative alpha (REL) and

absolute alpha estimated from Fung and Hsieh (2001) (FH) for the three largest self-reported

styles: global macro (16% of the sample in Panel A), equity long-short (49% in Panel B),

and relative value (10% in Panel C). We use the full sample from February 1994 to June

2011. The characteristics include the monthly mean (µ), standard deviation (σ), Sharpe

ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We

also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test.

Panel A: Global macro

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0091 0.0083 0.0034 0.0049 0.0057 0.0034

p-value 1.0000 0.7341 1.0000 0.4668 1.0000 0.2803

σ 0.0201 0.0255 0.0181 0.0237 0.0144 0.0266

p-value 1.0000 0.0008 1.0000 0.0001 1.0000 0.0000

Sharpe ratio 0.3526 0.2460 0.0736 0.1211 0.2518 0.0495

p-value 1.0000 0.0530 1.0000 0.3704 1.0000 0.0289

MPPM 0.0768 0.0633 0.0102 0.0246 0.0398 0.0028

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0128 -0.0203 -0.0179 -0.0178 -0.0128 -0.0289

p-value 1.0000 0.0000 1.0000 0.9660 1.0000 0.0000

SSD 1.0000 2.3237 1.0000 1.8597 1.0000 4.1962

p-value 1.0000 0.0180 1.0000 0.0810 1.0000 0.0000



Predicting future portfolio performance within self-reported styles: relative alpha versus
absolute alpha (cont’d)

Panel B: Equity long short

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0114 0.0105 0.0025 0.0038 0.0089 0.0067

p-value 1.0000 0.7829 1.0000 0.7180 1.0000 0.4213

σ 0.0317 0.0330 0.0282 0.0408 0.0155 0.0346

p-value 1.0000 0.5678 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.2959 0.2562 0.0164 0.0423 0.4461 0.1349

p-value 1.0000 0.3218 1.0000 0.8536 1.0000 0.0020

MPPM 0.0940 0.0818 -0.0089 -0.0099 0.0774 0.0348

p-value 1.0000 0.0000 1.0000 0.3174 1.0000 0.0000

VaR -0.0300 -0.0326 -0.0337 -0.0469 -0.0063 -0.0267

p-value 1.0000 0.3740 1.0000 0.0180 1.0000 0.0000

SSD 1.0000 0.6390 1.0000 1.8081 1.0000 4.1984

p-value 1.0000 0.4150 1.0000 0.0800 1.0000 0.0000
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Predicting future portfolio performance within self-reported styles: relative alpha versus
absolute alpha (cont’d)

Panel C: Relative value

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0111 0.0107 0.0039 0.0031 0.0072 0.0076

p-value 1.0000 0.8012 1.0000 0.6571 1.0000 0.7960

σ 0.0160 0.0154 0.0153 0.0181 0.0122 0.0147

p-value 1.0000 0.0315 1.0000 0.0194 1.0000 0.0091

Sharpe ratio 0.5596 0.5564 0.1181 0.0598 0.4163 0.3685

p-value 1.0000 0.9534 1.0000 0.3010 1.0000 0.6503

MPPM 0.1032 0.0988 0.0175 0.0069 0.0590 0.0618

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0068 -0.0077 -0.0119 -0.0162 -0.0079 -0.0106

p-value 1.0000 0.6820 1.0000 0.0280 1.0000 0.6200

SSD 1.0000 0.2623 1.0000 1.1778 1.0000 1.5202

p-value 1.0000 0.5530 1.0000 0.2190 1.0000 0.1380
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Table VI Predicting future portfolio performance: relative alpha versus absolute alpha.
Mutual funds

The table demonstrates out-of-sample performance of top, bottom, and top-minus-bottom

decile portfolios constructed by sorting mutual funds based on relative alpha and the absolute

alpha estimated from Fama and French (1992) (FF) for the full sample February 1994 to June

2011. The characteristics include the monthly mean (µ), standard deviation (σ), Sharpe

ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We

also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test.

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FF REL FF REL FF

µ 0.0067 0.0060 0.0037 0.0048 0.0030 0.0012

p-value 1.0000 0.8860 1.0000 0.8151 1.0000 0.5022

σ 0.0455 0.0536 0.0415 0.0472 0.0112 0.0352

p-value 1.0000 0.0245 1.0000 0.0765 1.0000 0.0000

Sharpe ratio 0.0998 0.0709 0.0364 0.0547 0.0728 -0.0277

p-value 1.0000 0.2057 1.0000 0.6458 1.0000 0.2727

MPPM 0.0156 -0.0095 -0.0142 -0.0104 0.0077 -0.0341

p-value 1.0000 0.0000 1.0000 0.0355 1.0000 0.0000

VaR -0.0524 -0.0646 -0.0515 -0.0593 -0.0093 -0.0425

p-value 1.0000 0.0900 1.0000 0.2260 1.0000 0.0000

SSD 1.0000 1.0217 1.0000 0.7139 1.0000 6.3038

p-value 1.0000 0.2780 1.0000 0.3990 1.0000 0.0000
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Table VII Persistence of alpha: relative alpha versus absolute alpha

The table presents estimated slope coefficients (b) from stacked, non-overlapping linear re-

gressions: 42i = a∆ + b∆41i + ωi for relative alpha (REL) and α2i = aα + bαα1i + vi for

absolute alpha estimated from the Fung and Hsieh (2001) (FH) or the Namvar et al. (2016)

(NPPR) model. It also provides Newey-West t-statistics on the significance of the b estimates

as well as adjusted R2. By stacking the regressions, we assume that the slope coefficients are

constant across periods. We consider three cases where formation and evaluation periods

each consist of 12 months (Panel A), 24 months (Panel B), and 36 months (Panel C).

Panel A: 12 months in-sample (12 months out-of-sample)

REL FH NPPR

a -0.0057 0.0050 0.0066

t-stat -10.7852 17.0346 13.6835

b 0.6543 -0.0311 -0.0847

t-stat 24.0326 -2.4518 -2.6462

adj. R2 0.2351 0.0000 0.0030
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Persistence of alpha: relative alpha versus absolute alpha (cont’d)

Panel B: 24 months in-sample (24 months out-of-sample)

REL FH NPPR

a -0.0005 0.0054 0.0042

t-stat -6.4940 24.7098 3.4867

b 0.6877 -0.0440 0.1310

t-stat 16.4548 -2.9289 1.1034

R2 0.2903 0.0018 0.0022

Panel C: 36 months in-sample (36 months out-of-sample)

REL FH NPPR

a -0.0003 0.0049 0.0066

t-stat -3.5808 21.2341 19.3733

b 0.6708 -0.0104 -0.0703

t-stat 13.4251 -0.6324 -2.5024

R2 0.2731 0.0000 0.0042
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Table VIII Simulation study

The table demonstrates results of the simulation study as described in Section IV. We sim-

ulate hedge fund returns by using a factor model that we assume to be true, using 100

simulation runs. In order to preserve the empirical characteristics of our hedge fund returns,

we extract the first 30 principal components and set the assumed true parameters equal

to the estimated parameters as observed in the data. The cross-sectional dimension in the

base case is denoted as N=2,349 and the length of the time series is T=36. In Panel A we

keep T constant but vary N. In Panel B, we keep N constant but vary T. In the first row we

report the true relative alpha (REL) based on Equation (11), where we substitute E[rit−rjt]

with the differences in true alphas, and the true absolute alpha (ABS). In the second row

of results, we estimate relative alpha as in Equation (8) and absolute alpha based on the

Fung and Hsieh (2001) model. In the third row we report the differences between the true

parameters and the estimated ones. The fourth row (p-value) contains the p-values of testing

the differences against zero with a t-test.

Panel A: Variation in the Size of the Cross-Section

Full sample Medium sample Small sample

N=2,349 N=1,175 N=294

REL ABS REL ABS REL ABS

Average true alpha -0.0005 0.0015 -0.0004 0.0011 -0.0007 0.0000

Average estimated alpha 0.0009 0.0051 0.0010 0.0054 0.0013 0.0055

Difference -0.0014 -0.0036 -0.0014 -0.0043 -0.0020 -0.0055

p-value 0.3022 0.0000 0.8614 0.0000 0.0574 0.0000
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Simulation study (cont’d)

Panel B: Variation in Time-Series

Full sample Short sample Very short sample

T=36 T=24 T=12

Rel Abs Rel Abs Rel Abs

Average true alpha -0.0005 0.0015 -0.0005 0.0015 -0.0005 0.0015

Average estimated alpha 0.0009 0.0051 0.0010 0.0066 0.0003 -0.0004

Difference -0.0014 -0.0036 -0.0015 -0.0051 -0.0008 0.0019

p-value 0.3022 0.0000 0.3899 0.0000 0.0692 0.0033
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Figure 1. Density of Approximation Errors based on hedge fund holdings in 13f filings.

The figure shows the density of the approximation errors
∑L

l=1(βi,l − βj,l)E[Fl,t], where we

treat each security reported in the 13f filings as a factor and use the value-based weight as

its beta.
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Figure 2. Density of approximation errors based on simulated hedge fund returns.

The figure shows the density of the approximation errors
∑L

l=1(βi,l − βj,l)E[Fl,t], where we

use simulated hedge fund returns and risk factors to obtain β and E[Fl,t].
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Table IA.1 Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds with 24 month in-sample estimation

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting hedge funds based on relative alpha and

absolute alpha estimated from Fung and Hsieh (2001) (FH) for the full sample from February

1994 to June 2011. The characteristics include the monthly mean (µ), standard deviation (σ),

Sharpe ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR).

We also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test. For the rolling window estimations we use 24 months.

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0116 0.0114 0.0043 0.0040 0.0073 0.0073

p-value 1.0000 0.9371 1.0000 0.9206 1.0000 0.9711

σ 0.0211 0.0264 0.0278 0.0261 0.0198 0.0241

p-value 1.0000 0.0011 1.0000 0.3617 1.0000 0.0042

Sharpe ratio 0.4463 0.3490 0.0761 0.0710 0.2556 0.2136

p-value 1.0000 0.0259 1.0000 0.9280 1.0000 0.8228

MPPM 0.1039 0.0975 0.0131 0.0099 0.0514 0.0515

p-value 1.0000 0.0000 1.0000 0.0018 1.0000 0.3287

VaR -0.0142 -0.0222 -0.0210 -0.0253 -0.0032 -0.0213

p-value 1.0000 0.0480 1.0000 0.0100 1.0000 0.0000

SSD 1.0000 1.6893 1.0000 1.6043 1.0000 2.5050

p-value 1.0000 0.1020 1.0000 0.1240 1.0000 0.0170
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Table IA.2 Predicting future portfolio performance: relative alpha versus absolute alpha.
Correcting for the boundary bias of the kernel estimates.

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting based on relative alpha and absolute alpha

Fung and Hsieh (2001) (FH) for the full sample from February 1994 to June 2011. The char-

acteristics include the monthly mean (µ), standard deviation (σ), Sharpe ratio, Manipulation

Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We also provide p-values

for differences between the mean, standard deviaton, Sharpe Ratio, MPPM, and VaR of the

relative alpha portfolios and their competitors. The last two rows provide t-statistics and

p-values of the Davidson and Duclos (2013) second-order stochastic non-dominance test. We

correct for the boundary bias of the kernel estimates by using the locally weighted regression

method proposed by Hastie and Loader (1993).

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0111 0.0100 0.0028 0.0039 0.0083 0.0061

p-value 1.0000 0.7438 1.0000 0.6471 1.0000 0.2804

σ 0.0210 0.0247 0.0211 0.0285 0.0098 0.0228

p-value 1.0000 0.0149 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.4189 0.3207 0.0315 0.0641 0.6109 0.1768

p-value 1.0000 0.0083 1.0000 0.3984 1.0000 0.0000

MPPM 0.0958 0.0839 -0.0004 0.0071 0.0713 0.0391

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0135 -0.0217 -0.0220 -0.0318 -0.0015 -0.0209

p-value 1.0000 0.0098 1.0000 0.0148 1.0000 0.0000

SSD 1.0000 1.6898 1.0000 1.5441 1.0000 5.9936

p-value 1.0000 0.1151 1.0000 0.1335 1.0000 0.0000
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Table IA.3 Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds with 12 month holding period

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting hedge funds based on relative alpha and

absolute alpha estimated from Fung and Hsieh (2001) (FH) for the full sample from February

1994 to June 2011. The characteristics include the monthly mean (µ), standard deviation (σ),

Sharpe ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR).

We also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test. We hold hedge funds in our portfolios for the period of 12 months.

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH7 REL FH REL FH7

µ 0.0084 0.0073 0.0040 0.0052 0.0044 0.0021

p-value 1.0000 0.6144 1.0000 0.6133 1.0000 0.1590

σ 0.0206 0.0252 0.0190 0.0268 0.0095 0.0214

p-value 1.0000 0.0051 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.3100 0.2076 0.1017 0.1158 0.2549 0.0023

p-value 1.0000 0.0040 1.0000 0.7840 1.0000 0.0469

MPPM 0.0687 0.0511 0.0168 0.0244 0.0269 -0.0076

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0181 -0.0248 -0.0194 -0.0259 -0.0064 -0.0239

p-value 1.0000 0.0080 1.0000 0.0120 1.0000 0.0000

SSD 1.0000 1.5608 1.0000 2.0958 1.0000 5.3898

p-value 1.0000 0.1390 1.0000 0.0510 1.0000 0.0000
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Table IA.4 Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds with de-smoothed returns

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting based on relative alpha and absolute alpha

estimated from Fung and Hsieh (2001) (FH) for the full sample from February 1994 to June

2011. The characteristics include the monthly mean (µ), standard deviation (σ), Sharpe

ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We

also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test. We de-smooth hedge fund returns according to Getmansky, Lo, and

Makarov (2004).

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH7 REL FH REL FH7

µ 0.0089 0.0086 0.0038 0.0046 0.0051 0.0040

p-value 1.0000 0.9020 1.0000 0.7847 1.0000 0.6023

σ 0.0228 0.0254 0.0230 0.0372 0.0104 0.0292

p-value 1.0000 0.1215 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.3014 0.2583 0.0756 0.0695 0.2948 0.0661

p-value 1.0000 0.2404 1.0000 0.8448 1.0000 0.0116

MPPM 0.0729 0.0672 0.0113 0.0054 0.0349 0.0081

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0211 -0.0221 -0.0231 -0.0417 -0.0069 -0.0307

p-value 1.0000 0.3660 1.0000 0.0000 1.0000 0.0000

SSD 1.0000 1.0100 1.0000 2.7141 1.0000 5.7986

p-value 1.0000 0.2850 1.0000 0.0070 1.0000 0.0000
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Table IA.5 Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds during crisis versus non-crisis period.

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting hedge funds based on relative alpha and

absolute alpha estimated from Fung and Hsieh (2001) (FH) for the crises periods (Panel

A) and non-crises periods (Panel B) as defined by NBER classification. The character-

istics include the monthly mean (µ), standard deviation (σ), Sharpe ratio, Manipulation

Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We also provide p-values

for differences between the mean, standard deviaton, Sharpe Ratio, MPPM, and VaR of the

relative alpha portfolios and their competitors. The last two rows provide t-statistics and

p-values of the Davidson and Duclos (2013) second-order stochastic non-dominance test.

Panel A: Crisis Period

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0006 -0.0027 -0.0067 -0.0069 0.0072 0.0042

p-value 1.0000 0.6703 1.0000 0.9809 1.0000 0.5510

σ 0.0245 0.0315 0.0333 0.0336 0.0150 0.0219

p-value 1.0000 0.1930 1.0000 0.9601 1.0000 0.0499

Sharpe ratio -0.0438 -0.1361 -0.2486 -0.2526 0.3714 0.1169

p-value 1.0000 0.0475 1.0000 0.9257 1.0000 0.3106

MPPM -0.0235 -0.0693 -0.1199 -0.1230 0.0629 0.0224

p-value 1.0000 0.0000 1.0000 0.2859 1.0000 0.0000

VaR -0.0351 -0.0485 -0.0477 -0.0566 -0.0102 -0.0291

p-value 1.0000 0.1700 1.0000 0.2960 1.0000 0.2020

SSD 1.0000 1.2589 1.0000 0.2461 1.0000 1.8221

p-value 1.0000 0.2120 1.0000 0.5760 1.0000 0.0720
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Predicting future portfolio performance: relative alpha versus absolute alpha. Hedge funds

during crisis versus non-crisis period (cont’d).

Panel B: Non-crisis Period

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH REL FH REL FH

µ 0.0124 0.0120 0.0043 0.0056 0.0081 0.0064

p-value 1.0000 0.8812 1.0000 0.5842 1.0000 0.3607

σ 0.0198 0.0229 0.0184 0.0273 0.0089 0.0230

p-value 1.0000 0.0503 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.5213 0.4324 0.1151 0.1281 0.6893 0.1856

p-value 1.0000 0.0782 1.0000 0.7949 1.0000 0.0000

MPPM 0.1155 0.1091 0.0194 0.0285 0.0703 0.0418

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0101 -0.0162 -0.0194 -0.0281 -0.0014 -0.0160

p-value 1.0000 0.0260 1.0000 0.0020 1.0000 0.0000

SSD 1.0000 1.4120 1.0000 2.0243 1.0000 5.7738

p-value 1.0000 0.1710 1.0000 0.0440 1.0000 0.0000
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Table IA.6 Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds open to new investments

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting hedge funds based on relative alpha and

absolute alpha estimated from Fung and Hsieh (2001) (FH) for the full sample from February

1994 to June 2011. The characteristics include the monthly mean (µ), standard deviation (σ),

Sharpe ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR).

We also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test. We restrict the sample of hedge funds to the ones open to new investors.

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH7 REL FH REL FH7

µ 0.0107 0.0096 0.0027 0.0035 0.0080 0.0062

p-value 1.0000 0.6587 1.0000 0.7706 1.0000 0.3485

σ 0.0218 0.0250 0.0216 0.0303 0.0104 0.0251

p-value 1.0000 0.0527 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.3952 0.3018 0.0296 0.0463 0.5746 0.1629

p-value 1.0000 0.0152 1.0000 0.6870 1.0000 0.0002

MPPM 0.0942 0.0792 -0.0008 0.0001 0.0685 0.0378

p-value 1.0000 0.0000 1.0000 0.4341 1.0000 0.0000

VaR -0.0164 -0.0223 -0.0228 -0.0330 -0.0022 -0.0211

p-value 1.0000 0.0100 1.0000 0.0080 1.0000 0.0000

SSD 1.0000 1.4780 1.0000 1.8347 1.0000 5.8946

p-value 1.0000 0.1470 1.0000 0.0710 1.0000 0.0000
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Table IA.7 Predicting future portfolio performance: relative alpha versus absolute alpha.
Hedge funds with AUM> 20 mio

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting based on relative alpha and absolute alpha

estimated from Fung and Hsieh (2001) (FH) for the full sample from February 1994 to June

2011. The characteristics include the monthly mean (µ), standard deviation (σ), Sharpe

ratio, Manipulation Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We

also provide p-values for differences between the mean, standard deviaton, Sharpe Ratio,

MPPM, and VaR of the relative alpha portfolios and their competitors. The last two rows

provide t-statistics and p-values of the Davidson and Duclos (2013) second-order stochastic

non-dominance test. We exclude any hedge funds with asset under management less than

20 Mio.

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FH7 REL FH REL FH7

µ 0.0107 0.0100 0.0027 0.0039 0.0080 0.0061

p-value 1.0000 0.7438 1.0000 0.6471 1.0000 0.2804

σ 0.0208 0.0247 0.0214 0.0285 0.0099 0.0228

p-value 1.0000 0.0149 1.0000 0.0000 1.0000 0.0000

Sharpe ratio 0.4182 0.3207 0.0316 0.0641 0.6073 0.1768

p-value 1.0000 0.0089 1.0000 0.3988 1.0000 0.0001

MPPM 0.0959 0.0839 -0.0002 0.0071 0.0693 0.0391

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0140 -0.0217 -0.0213 -0.0318 -0.0021 -0.0209

p-value 1.0000 0.0060 1.0000 0.0060 1.0000 0.0000

SSD 1.0000 1.6867 1.0000 1.5453 1.0000 5.9536

p-value 1.0000 0.1050 1.0000 0.1270 1.0000 0.0000
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Table IA.8 Predicting future portfolio performance: relative alpha versus absolute alpha.
Mutual funds during crisis versus non-crisis period.

The table demonstrates out-of-sample performance characteristics of top, bottom, and top-

bottom decile portfolios constructed by sorting mutual funds based on relative alpha and

absolute alpha estimated from Fama and French (1992) (FF) for the crises periods (Panel

A) and non-crises periods (Panel B) as defined by NBER classification. The character-

istics include the monthly mean (µ), standard deviation (σ), Sharpe ratio, Manipulation

Proof Performance Measure (MPPM), and Value-at-Risk (VaR). We also provide p-values

for differences between the mean, standard deviaton, Sharpe Ratio, MPPM, and VaR of the

relative alpha portfolios and their competitors. The last two rows provide t-statistics and

p-values of the Davidson and Duclos (2013) second-order stochastic non-dominance test.

Panel A: Crisis period

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FF REL FF REL FF

µ -0.0137 -0.0181 -0.0140 -0.0098 0.0003 -0.0083

p-value 1.0000 0.8353 1.0000 0.7954 1.0000 0.3452

σ 0.0676 0.0896 0.0655 0.0555 0.0124 0.0462

p-value 1.0000 0.1419 1.0000 0.3878 1.0000 0.0000

Sharpe ratio -0.2259 -0.2199 -0.2383 -0.2051 -0.1037 -0.2147

p-value 1.0000 0.7996 1.0000 0.7967 1.0000 0.7451

MPPM -0.2710 -0.3936 -0.2694 -0.1940 -0.0183 -0.1584

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.1078 -0.1322 -0.0989 -0.0837 -0.0200 -0.0832

p-value 1.0000 0.0040 1.0000 0.2420 1.0000 0.0000

SSD 1.0000 0.9476 1.0000 -0.2654 1.0000 3.4122

p-value 1.0000 0.3270 1.0000 0.7800 1.0000 0.0010
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Predicting future portfolio performance: relative alpha versus absolute alpha. Mutual funds

during crisis versus non-crisis period (cont’d).

Panel B: Non-crisis period

Top Portfolio Bottom Portfolio Top-Bottom Portfolio

REL FF REL FF REL FF

µ 0.0103 0.0102 0.0068 0.0073 0.0035 0.0029

p-value 1.0000 0.9848 1.0000 0.9086 1.0000 0.8235

σ 0.0396 0.0436 0.0351 0.0453 0.0109 0.0328

p-value 1.0000 0.2322 1.0000 0.0013 1.0000 0.0000

Sharpe ratio 0.2019 0.1815 0.1285 0.1109 0.1074 0.0181

p-value 1.0000 0.4722 1.0000 0.6486 1.0000 0.3248

MPPM 0.0672 0.0604 0.0316 0.0223 0.0123 -0.0121

p-value 1.0000 0.0000 1.0000 0.0000 1.0000 0.0000

VaR -0.0425 -0.0424 -0.0350 -0.0510 -0.0081 -0.0364

p-value 1.0000 0.6880 1.0000 0.0980 1.0000 0.0000

SSD 1.0000 0.6236 1.0000 1.4956 1.0000 5.5487

p-value 1.0000 0.3960 1.0000 0.1310 1.0000 0.0000
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