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Abstract

This paper takes a closer look on the consequences of using a market index as a proxy for

the latent market return in the capital asset pricing model. In particular, the consequences

of two major sources of misspecification are analyzed: (i) the use of inaccurate weights and

(ii) the use of only a subset of the asset universe to construct the index. The consequences

resulting from the use of a badly chosen market proxy reach from inconsistent parameter

estimates to misinterpretation of tests indicating the existence of abnormal returns.

A new minimum distance approach of estimating the CAPM under measurement error

is presented, which identifies the CAPM parameters by exploiting the cross-equation cross-

sectional restrictions resulting from a common measurement error. The new approach allows

for quantifying the impact of measurement error and for testing the presence of spurious

abnormal returns. Practical guidelines are presented to mitigate potential biases in the

estimated CAPM parameters.
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Measure what is measurable, and make

measurable what is not so.

Galileo Galilei

1 Introduction

The empirical evidence supporting capital asset pricing model (CAPM) in the version of Sharpe

(1964) and Lintner (1965) is far from being convincing. Nevertheless the CAPM is still a center

piece of the asset pricing theory taught in MBA investment courses and it is still a widely used

tool among practitioners. The reasons for its failure are manifold and have launched a large

body of literature. Besides its theoretical simplicity leaving room for numerous generalizations

based on more realistic settings (multifactor models, conditional CAPM, consumption CAPM

etc.), the failure of producing convincing evidence in favor of the CAPM can also be attributed

to the difficulties of its empirical implementation. This branch of the literature has generated

numerous studies of using alternative estimation and testing procedures.1 Fama and French

(2004) offer a concise summary of the struggle to find empirical support for the CAPM.

This paper addresses the implications of using the return of a market index as a proxy for

the return of the true (equilibrium) market portfolio for the estimation of the CAPM. In a

certain sense the measurement problem can be regarded as a primary one, because the CAPM as

such is not questioned, but relates to the problem of obtaining a workable empirical framework.

The measurement problem is at the heart of the Roll’s critique (1977) who argues that the

true market portfolio includes a large range of investment opportunities including international

securities, real estate, precious metals, etc., so that the true value weighted market portfolio

is empirically elusive. In particular, he concludes (Roll (1977), p.130): ”The Theory is not

testable unless the exact composition of the true market portfolio is known and used in the

tests.” Moreover, by using market proxies due to data limitations empirical tests of the CAPM

effectively test whether the market proxies are on the minimum variance frontier.

We take different approach to Roll’s identification problem by assuming that the CAPM

holds true and investigate the properties of the CAPM in the presence of measurement problem.

By using a linear projection framework within the Sharpe-Lintner version of the CAPM we

1See Campbell et al. (1997), Chap. 5 and Jaganathan et al. (2010) for surveys on the econometric implementa-
tion.
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pick up Roll’s critique to account for the fact that the market index in empirical studies is

only a proxy that correlates more or less strongly with the true market index. This leads to an

observational model with a non-zero intercept which is observationally equivalent to a general

factor model with non-zero excess returns. Consequently, in the presence of measurement error

results of standard tests on the existence of abnormal returns, e.g. in the tradition of Gibbons

et al. (1989), render to be spurious. Our projection framework can serve as an alternative

approach by providing an indirect test of the viability of the conventional CAPM by testing the

CAPM against a general factor model with measurement error.

The sources of misspecification of the market return can be manifold and lead to different

biases in the estimated alphas and betas. Generally the weights in the market index used for a

CAPM regression may simply differ from the true weights by including a subset of assets and/or

by misspecification of the weights even if the asset universe is correctly defined. The choice

of an index consisting of a limited number of large stocks such as the Dow Jones Industrial

Average (DJIA) can serve as an example of the first type of misspecification, while, the choice

between a volume weighted versus an equally weighted index is an example for the latter type of

misspecification. What seems to be an econometric problem in the first place for both types of

measurement error has its roots in false theoretical model assumptions, e.g. assumptions about

the fixed supply side in terms of volume or quantities.

Measurement error in the market index leads to a systematic bias in the parameter estimates

and may therefore lead to erroneous investment strategies. As we will show in this study, the

direction and severity of the bias of the CAPM parameters strongly depend on the nature

of the measurement error. The consequences for the least squares estimates in the classical

errors-in-variables case, where the market index differs from the latent true market return only

by an additive idiosyncratic error, are well-known: First, estimates of the beta coefficients suffer

from an attenuation bias, i.e. the estimated risk premia are biased towards zero. Second, the

estimated intercepts are biased upwards such that positive alphas occur even if the CAPM holds

true.

This paper takes a closer look on the measurement error bias in the CAPM beyond the

conventional measurement error bias. In particular, we derive the bias for the CAPM alphas

and betas under different assumptions on the type of misspecification of the market index. In
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particular, we show that the typical attenuation bias occurring in linear regression models with

additive measurement error generally does not hold. By means of Monte Carlo simulations,

where the return process is generated from an artificial capital market, we assess the size of the

bias and provide practical guidance for the choice of the market index in empirical work.

Finally this paper presents a novel approach of estimating the CAPM in the presence of

measurement error. Contrary to general systems of linear regression equations with measurement

error, the CAPM contains the same mis-measured explanatory variable in each equation. Using

the property that the CAPM with measurement error is a system of regression equations

with nonlinear cross-equation restrictions we present a new identification strategy which is

superior to instrumental variables approaches that typically suffer from the weak instrument

problem as market returns are only weakly auto-correlated. Our minimum-distance approach is

easy to implement and allows to estimate different versions of the CAPM including the true

CAPM without measurement error, the CAPM with measurement error and a factor model

with measurement error and excess returns under rather general assumptions on the type of the

measurement error.

While the vast majority of empirical studies simply ignores the measurement problem or

implicitly assumes that its impact on the parameter estimates is negligible, only a few studies

consider the impact of measurement error in the market return on the outcome of efficiency

tests (e.g. Stambaugh (1982), Kandel and Stambaugh (1987) and Shanken (1987)). They show

that a rejection of market efficiency by the market proxy implies also a rejection for the true

portfolio if the true market portfolio is sufficiently correlated with the proxy (ca. 0.7 or larger).

The projection framework considered in these studies, however, ignores that the measurement

error maybe endogenous, i.e. the orthogonality between the (rational expectation) error in the

CAPM and true market index is generally violated. Prono (2015) proposes a new measure of

misspecification that not only accounts for the latency of the true market index and the resulting

imperfect correlation between market proxy and the true market index but also for the effect of

endogeneity on the CAPM estimates.

Jagannathan and Wang (1996) take a different perspective by trying to get closer to the

theoretical concept of the market return. They use a broader market proxy which also takes into

account the returns from human capital. In their empirical study of the conditional CAPM based
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on the broader concept the additional explanatory power of size and book-to-marker variables

becomes negligible. Unlike previous studies analyzing the potential impact of measurement error

in the market proxy on efficiency tests, the focus of this study is to assess its impact on the

CAPM estimates with obvious consequences for performance measures, choices of investment

strategies and outcomes of efficiency tests. Rather than defining correlation bounds we estimate

the size of the attenuation bias (possibly the size of an amplification bias in some settings)

directly. This yields new insights into the quality of different market proxies and provides

evidence for the presence of spurious abnormal returns.

The paper is organized as follows. In Section 2 we introduce the theoretical framework

under which the true return generation process of the true but infeasible market index is defined.

Various types of misspecification of the market index and their consequences for estimation

are considered as deviations from the true return generating process. Based on Monte-Carlo

simulations we provide in Section 3 a quantitative assessment on the extend of the bias caused

by different types of misspecification of the market index. In Section 4 we provide empirical

evidence for the presence of measurement error in the market index using three different data

sets and different definitions of the market returns. Section 5 concludes and gives an outlook on

future research.

2 CAPM and Measurement Error in the the Market Index

In the following we consider a well-defined CAPM where asset returns are equilibrium outcomes

from security markets with rational investors. Therefore the data generating process for the

returns and the true but unobservable market return is such that the CAPM holds by construction

and identification of the model parameters is feasible. The initial set-up is based on common

assumptions underlying the CAPM (e.g. Gourieroux and Jasiak (2001) and Fan and Yao (2017))

and is sufficiently flexible to allow for range of generalizations concerning the price process and

assumptions on the investors’ behavior. In a second step we deviate from the world of a perfect

data generating process by replacing the true market return by different proxies and derive the

conditions under which the true model parameters are feasible.

4



2.1 The Baseline Model

Let there be N risky assets and one risk-free asset. The portfolio is given by the vector

of quantities (q0, q1, . . . , qN )′ = (q0, q
′)′. The price vector for the N + 1 assets at time t

is given by
(
1, P1,t, . . . , PN,t

)′
=
(
1, P ′t

)′
, where the price of the risk-free asset is taken as

numeraire. Expected portfolio wealth for period t+ 1, Wt+1, given information up to t is given

by E [Wt+1| Ft] ≡ Et[Wt+1] = q0(1 +Rft ) + q′Et[Pt+1]. The allocation problem of investor i for

period t+ 1 is given by

max
q0,q

Et[Wt+1]− γi
2

Vt[Wt+1] s.t. Wt = q0 + q′Pt,

where Wt denotes the initial endowment in t and γi is the risk aversion parameter of investor i.

Optimal allocation for investor i takes the well-known form:

qDi,t =
1

γi
Vt[Yt+1]−1Et[Yt+1],

where Yt+1 = Pt+1 − Pt(1 +Rft+1) is the vector of excess gains. Aggregate demand for a total

number of I investors is given by

qDt =
I∑
i=1

qDi,t =
1

γ
Vt[Yt+1]−1Et[Yt+1],

with γ = [
∑I

i=1
1
γi

]−1 as the absolute risk aversion parameter of the market. Since most empirical

studies use excess returns instead of excess gains, we reformulate excess gains in terms of

excess returns such that Yt+1 = diag(Pt)rt+1, with the vector of excess returns defined as

rt+1 = Rt+1 − ιRft+1 with Rt+1 as the N × 1 vector of the return rates on the risky assets. In

terms of the excess returns aggregate demand is given by

qDt =
1

γ
diag(Pt)

−1Vt[rt+1]−1Et[rt+1]. (1)
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For the definition of the market index the assumption on the supply of assets is absolutely

crucial. In the following we assume for the supply

qSt = diag(Pt)
−1b∗, (2)

which is based on the underlying assumption that the value of each asset supplied is fixed. The

market equilibrium qSt = qDt yields a return process of the form

rt+1 = γVt[rt+1]b∗ + εt+1, (3)

where the expectation error εt+1 = rt+1 − Et[rt+1] is a martingale difference sequence. The

excess return of the market is defined as

r∗m,t+1 = b∗′ rt+1, (4)

which is a value weighted index given the fixed value assumption from (2). The asterisk on

r∗m,t+1 indicates that the true market return is an unobservable random variable depending on

the unknown parameter vector b∗. The process for the excess returns of the market takes on the

form

r∗m,t+1 = γ b∗′Vt[rt+1]b∗ + b∗′εt+1 . (5)

For our simulations we assume for simplicity a homoskedastic process for the excess returns with

Vt[rt+1] = Ω. This assumption is not crucial for the goal of our study and can easily be relaxed.

Under homoskedasticity the processes for the returns and the market return simplifies to

rt+1 =µ+ εt+1, (6)

r∗m,t+1 =µ∗m + b∗′εt+1, (7)

with µ = γΩb∗ and µ∗m = b∗′µ = γb∗′Ωb∗. Without loss of generality we can define the CAPM

as the set of linear predictor equations of the excess returns rt+1 on the excess market return
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r∗m,t+1:

rt+1 = α+ β r∗m,t+1 + ut+1. (8)

By definition the vector of CAPM betas is given by

β =
Cov

[
rt+1, r

∗
m,t+1

]
V
[
r∗m,t+1

] =
Ωb∗

b∗′Ωb∗
, (9)

where the second equality follows from the homoskedasticity assumption. Note, that the true

CAPM betas are a function of the true, unobservable weighting scheme, b∗, and the variance-

covariance matrix of the vector of returns of the entire asset universe Ω. The vector of intercepts

of the linear predictor equations (CAPM alphas) vanishes, since α = E [rt+1]− β E
[
r∗m,t+1

]
= 0.

Moreover, since ut+1 and r∗m,t+1 are orthogonal β can be consistently estimated by least squares.

2.2 Misspecified Index Weights

The true CAPM is basically given by the relationship between the two processes defined in (6)

and (7). In the following we consider the linear relationships between the return process and

alternative specifications of the index based on an observable weighting vector b 6= b∗. As shown

below, the specific assumptions on b and its relationship to the true weighting index lead to

different identification conditions concerning alpha and beta.

Weights with Random Measurement Errors

Consider first the case where the actual weights used to construct the market index deviate

randomly from the true weights such that the actual weighting scheme b differs randomly from

b∗:

b = b∗ + ν, (10)

where ν is random vector of error terms with E [ν] = 0 and V [ν] = σ2
ν IN .2 The market index

based on the mis-measured weighting scheme (10) yields a process for the observable proxy of

2The model may also be derivable under the general assumption V [ν] = Σ2
ν . This generalization can easily be

introduced but does not add any additional new insights for identification problem.
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the market return of the form

rm,t+1 = r∗m,t+1 + ν ′rt+1, (11)

such that the return of the market index varies randomly around the true market return. The

CAPM equation based on the observable index (11) is given by

rt+1 = β rm,t+1 + ωt+1, (12)

with ωt+1 = ut+1 − βν ′rt+1. Contrary to the true market return its proxy does not satisfy the

orthogonality condition with the error term, E [ωt+1rm,t+1] = −σ2
ν tr(µµ

′ + Ω)β 6= 0, so that

least squares estimation of (12) yields inconsistent parameter estimates. Model (12) shares

similar properties with a classical linear errors-in-variables (EIV) model (e.g. Fuller (1987)).

However, contrary to the classical EIV model lagged market proxies rm,t−j cannot serve as

instruments. They are orthogonal to ωt+1, but they are not autocorrelated.

Although IV estimation is infeasible the parameters of the CAPM can nevertheless be

identified by exploiting the information on the first and second moments of the market proxy.

In order to detect the relationship between identifiable estimable parameters and the true model

parameters consider first the linear projection of r∗m,t+1 on rm,t+1:

r∗m,t+1 = λ0 + λ1 rm,t+1 + ζt+1,

with

λ1 =
Cov

[
r∗m,t+1, rm,t+1

]
V [rm,t+1]

=
b∗′Ωb∗

σ2
ν

(
µ′µ+ trΩ

)
+ b∗′Ωb∗

,

λ0 = E
[
r∗m,t+1

]
− λ1 E [rm,t+1] = (1− λ1) E [rm,t+1] .

Inserting the linear predictor function in the CAPM equation yields :

rt+1 = αν + βν rm,t+1 + ũt+1 , (13)

with αν = β(1 − λ1)µm and βν = βλ1. The error term ũt+1 = ut+1 + βζt+1 is orthogonal to
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rm,t+1 so that consistent estimates of αν and βν can be obtained.

Note that 0 < λ1 < 1, which is the usual reliability ratio in EIV models. The estimation of

parameters leads to the well-known attenuation bias for the slope coefficient, i.e. the estimates

of CAPM betas are driven towards zero, i.e. under the presence of measurement error the least

squares estimates mimic a too small dependence on the market risk.

Moreover, the EIV-CAPM yields positive intercepts, αν > 0. Thus in the absence of abnormal

returns (α = 0), the EIV-CAPM mimics spurious abnormal returns, even if the CAPM holds

true. Consequently in the presence of measurement error tests on the existence of abnormal

returns ignoring the measurement error are jointly testing the validity of the CAPM and the

absence of measurement error.

The sparse parametrization of the standard CAPM model and the parsimonious parametriza-

tion of the measurement error reflected only by the unknown parameter σ2
ν yields an overidentified

model with only N + 1 unknown parameters compared to 2N identifiable reduced form parame-

ters given by αν and βν . The strong degree of overidentification simply results from the fact that

i) the measurement error effects all N equations in the same way through the reliability ratio

and ii) the asset specific intercepts are nonlinear functions of the reliability ratio and the true

betas. Even without exploiting the nonlinear cross-equation restrictions the true beta and the

reliability ratio can be identified by a single equation estimate provided the CAPM holds true.

Consider the nonlinear restriction for the model parameters for a single equation j with

βνj = λ1βj and ανj = βj(1− λ1)µm. Then the reliability ratio is identified as the solution of the

two equations as

λ1 =
µm
( βνj
ανj

)
µm
( βνj
ανj

)
+ 1

. (14)

A simple estimate of the reliability ratio can be obtained by replacing the unknown parameters

in (14) by the least squares estimates from (13), while µm can be estimated by the mean of the

excess returns. Since this simple procedure generates estimates for every equation j, it seems

meaningful to take the average over the single equation estimates in order to stabilize the results.

Once λ1 is determined βj and αj are identified.

Obviously, estimation of the system of equations (13) by ML, GMM or Minimum Distance

estimation yield asymptotically more efficient estimates. In Section 4 we present an empirical
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application of this identification strategy based on the minimum distance estimation.

The EIV-CAPM can be generalized to the case where only M < N assets define the market

index and the remaining N −M assets are ignored and do not enter the market proxy with a

weighting vector given by:

b =

 b∗M + νM

0

 ,
where b∗M is the sub-vector of b∗ of dimension M and νM is the corresponding vector of

measurement errors. The relationship between the true market return and the market proxy

becomes rm,t+1 = r∗m,t+1 + wt+1 with E [wt+1] 6= 0. In this case the mean of the market proxy

deviates from the mean of the true market return. A linear projection representation is feasible,

but identification can only be obtained under additional assumptions. For instance, (i) the mean

return of the assets ignored has to be equal to the mean of the market proxy’s return and (ii)

the overall measurement error wt+1 should be uncorrelated with ut+1.

Weights with Fixed Measurement Error

Consider now the case where the differences between weights for the market index and the true

market return are fixed such that

b = b∗ + ∆ , (15)

where ∆ denotes the vector of fixed deviations from the true weights. This case includes a

number of interesting special cases. For instance, if the equally weighted index, b = ιN
1
N , is used

instead of b∗ the market proxy is simply the average over all return rates in the asset universe.

If the proxy is based only on a subset of M < N assets the deviation of the weights of the proxy

from the true weights take the form ∆′ = (∆1, . . . ,∆M ,−b∗M+1, . . . ,−b∗N )′, such that the first M

assets receive some positive (most likely erroneous) weights, while the weights of the remaining

assets are ignored. The return of the observable market index takes the form:

rm,t+1 = b′rt+1 = r∗m,t+1 + ∆′rt+1 . (16)
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Replacing r∗m,t+1 in (8) by rm,t+1 gives a system of CAPM equations based on the fixed error

market proxy:

rt+1 = α∆ + β rm,t+1 + ωt+1, (17)

with ωt+1 = ut+1 −∆′εt+1 and α∆ = −β∆′µ . Contrary to the random error case given by (12)

the observable system of CAPM equations contains nonzero intercepts, such that a test for the

existence of abnormal returns would be misleading. Also contrary to the random error case

the market proxy is no longer orthogonal to the error term, E [ωt+1rm,t+1] = (I − βb′)Ωb 6= 0.

Therefore, estimation approaches based on the orthogonality assumption between the market

proxy and the error term are inconsistent.

Replacing the latent market index by its linear projection on the observed index does not

help, since the overall error term would also be correlated with the market proxy. Last but not

least the size of the coefficient in the projection equation cannot be derived in the fixed error

case, so that no ex-ante statements on the direction of the bias for the estimates of beta can be

derived.

3 Monte Carlo Evidence

3.1 Simulation design

By means of Monte Carlo simulations for returns generated from an artificial capital market we

illustrate in this section how and to what extend different proxies of the market index influence

the quality of the CAPM parameter estimates. By simulating from a well-defined artificial

capital market, for which the CAPM holds, we can define market proxies as the outcome of the

true data generating process combined with misspecified weights rather than imposing arbitrary

stochastic assumptions on the error process.

Our simulation study is based on 10, 000 Monte Carlo samples of monthly excess return

series for an asset universe of N = 205 assets over 10 years. The data generating process for the

excess returns is given by

rt+1 = γΩb∗ + εt+1, with εt+1
iid∼ N (0,Ω) .
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The variance-covariance matrix Ω was chosen to be equal to the sample variance-covariance

matrix calculated from monthly data on excess returns of 205 components of S&P500 index

from January 1, 1974 till May 1, 2015. In order to use realistic values for the true weight vector

b∗ we use their empirical counter parts. More precisely, for each of the 205 stocks of the S&P500

index we compute the mean value of the market capitalization based on monthly data from

January 1, 1974 till May 1, 2015 and define the true market weights as a proportion of the total

market capitalization of the 205 stocks. Finally, the coefficient of risk-aversion γ was chosen

to be equal to 0.04. Following our baseline model we assume a fixed supply of assets, so that

r∗m,t+1 is generated according to (4).

In a second step we generate proxies of the true market index under different types of

measurement error. Table 1 summarizes the five different weighting strategies for the market

proxy used in the Monte Carlo study.

Table 1: Functional form of misspecified weights b of market indices.

b Weight Description

bEW ιN
1
N equally weighted index,

the asset universe is correctly defined

bRE b∗ + ν, ν ∼ N(0, σ2
νIN ) weights with random error,

the asset universe is correctly defined

bI1 b∗ + ∆, index with true weights,
∆′ = (0, . . . , 0,−b∗M+1, . . . ,−b∗N )′ subset of M assets is considered

bI2
bI1

ι′M b
I
1

normalized version of bI1 such that

weights sum up to unity

bI3 ιM
1
M equally weighted index,

subset of M assets is considered

For the case of random measurement errors we consider three different choices for the variance

of the measurement error, σν = 0.05, 0.025, and 0.01. For our analysis of the market proxies

based on the subsets of the asset space we choose subsets covering 25% and 75% of the total

number of assets. For these subsets only assets with the largest weights are selected, so that the

indices are more comparable to real world market indices. We estimate the CAPM parameters

for 15 randomly drawn assets by the seemingly unrelated regression (SUR) method. Table 2

summarizes our findings for market proxies based on the total asset space, while Table 3 contains

12



the results for indices based on specific subsets. Both tables summarize our findings by reporting

the means of the estimates for 15 selected assets. The detailed results for each of the 15 assets

are given in Table 5 in Appendix A.2.

For reasons of comparison column 2 of Table 2 contains the results of the CAPM when the

true market return is feasible. Since these estimates are obtained under the true data generating

process they only differ from the true model parameters by the sampling error. Therefore these

estimates can serve as a benchmark for the estimates using market proxies. Under the true data

generating process the CAPM alphas are on average close to their theoretical value of zero. The

empirical rejection rate for α̂j is close to the 5 % significance level, which indicates that the

sample size of T = 120 chosen for the Monte-Carlo simulations is sufficiently large to produce

estimates that come close to the true parameters given the distributional assumptions and the

true market index.

Only for the case of a small measurement error, σν = 0.01, the EIV-CAPM shows negligible

distortions of the parameter estimates. The empirical correlation between the true market

returns and the proxy is 0.96 and the attenuation bias reflected by λ̂1 is small. However, even

for this mild case of measurement error, we find an empirical rejection rate of the null of no

abnormal returns of 8%. The situation deteriorates for larger measurement errors. For the

intermediate case with σν = 0.025 the correlation between true market return and the market

proxy appears to be rather high with ρ̂(r∗m,t, rm,t) = 0.81. However, for more than 47% of our

estimates we find abnormal returns mimicking the existence of potential profits from trading.

For the case of a large measurement error, the situation deteriorates even more, although the

correlation between true market return and the proxy still remains 0.5. The three scenarios

demonstrate that the correlation between the true market return and the market proxy provides

insufficient information to make any conclusion about the bias in the CAPM estimates. After

all what matters is the coefficient on the linear projection λ1, which consists of the product of

the square root of the reliability ratio and the correlation coefficient.3

3For the case of random errors this relationship is given by:

λ1 =
Cov

[
rm,t, r

∗
m,t

]
V [rm,t]

=
(V

[
r∗m,t

]
V [rm,t]

)1/2

ρ(r∗m,t, rm,t) =
( b∗′Ωb∗

(b∗′Ωb∗ + σ2
ν(µ′µ+ trΩ)

)1/2

ρ(r∗m,t, rm,t).
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Table 2: MC-results for the CAPM with random measurement error (EIV-CAPM)

r∗m,t rm,t
σν = 0.05 σν = 0.025 σν = 0.01

RR(r∗m,t, rm,t) 0.1997 0.4995 0.8618

ρ̂(r∗m,t, rm,t) 0.5357 0.8125 0.9694

λ̂1 0.3025 0.7002 0.9585

α̂ -0.0060 5.0250 2.6637 0.5024
RMSE(α̂) 5.8412 23.0157 14.1939 6.4369
ERR(.05) 0.0513 0.8122 0.4755 0.0797

β̂ 0.9526 0.2834 0.6600 0.9110

RMSE(β̂) 0.5878 2.9080 1.5124 0.7997

ŜR 0.1233 0.0491 0.0845 0.1166

T̂R 9.0642 21.9288 12.5479 9.6945

Mean estimates for 10,000 replications and the parameter estimates for the different assets.
The dimension of the asset universe is N = 205, the number of assets in the regression model
equals 15. Column 2 contains the average estimates based on the true (excess) market return.
Columns 3 - 5 contain estimation results for the EIV-CAPM with the proxies for market returns
based on weights containing random errors. RR(r∗m,t, rm,t) = V

[
r∗m,t

]
/V [rm,t] is the theoretical

reliability ratio of the market proxy. λ̂1 is the mean estimate of the linear projection parameter.
ERR(.05) denotes the average empirical rejection rate for the null of no abnormal returns (single
equation test) for a significance level of 5 %. SR and TR denote the mean Sharpe ratio and
the mean Treynor ratio across all Monte Carlo estimates and assets. True values: β = 0.9520,
SR = 0.1175, TR = 8.8070.

Note also, the impact of measurement error on the precision of the estimates. Compared to

the RMSE for the benchmark model, the RMSE for beta increases by 36% in the case of a

small measurement error and almost triple for the medium size measurement error. Besides the

attenuation bias affecting all betas uniformly the larger MSE due to the measurement error also

increases the risk of a faulty sorting into defensive and aggressive stocks.

Table 3 contains the results for the case where the errors are fixed and the market proxies are

based on a subset of the asset universe. Using a market proxy based on equal weights generates

the expected distortions. We consider seven different scenarios with fixed measurement errors.

The first two cases (columns 2 and 3) capture the case where the market proxy is based on

the true weights for the 25 percent and the 75 percent largest assets and the corresponding

smaller assets are ignored. Note, that in this case where the true weights of the smaller assets

are ignored the active weights do not add up to one. We therefore also report in columns 3 and
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4 the results based on the same index as before, but with normalized weights such that they

satisfy the adding up constraint. This simply changes the dimensionality of the market proxy

and has a scaling effect on the betas.

Table 3: MC-results for the CAPM with fixed measurement error

true weights normalized weights equal weights

M 0.25N 0.75N 0.25N 0.75N 0.25N 0.75N M=N

RR(r∗m,t, rm,t) 1.8371 1.0821 0.9745 1.0008 0.8895 0.9801 0.9497

ρ̂(r∗m,t, rm,t) 0.9934 0.9998 0.9934 0.9998 0.9908 0.9806 0.9730

λ̂1 1.3465 1.0401 0.9807 1.0002 0.9343 0.9709 0.9481

α̂ 0.2954 0.0273 0.2954 0.0273 0.2700 0.0205 0.0872
RMSE(α̂) 6.1324 5.8448 6.1324 5.8448 6.0944 6.1449 6.2817
ERR(.05) 0.0620 0.0528 0.0620 0.0528 0.0638 0.0778 0.0903

β̂ 1.2530 0.9872 0.9125 0.9494 0.8769 0.9587 0.9434

RMSE(β̂) 1.4764 0.6271 0.6248 0.5876 0.6439 0.6343 0.6454

SR 0.1207 0.1237 0.1207 0.1237 0.1182 0.1214 0.1197

TR 6.9287 8.7436 9.5136 9.0915 10.0315 9.0675 9.2609

Mean estimates for 10,000 replications and the parameter estimates for the different assets. The
dimension of the asset universe is N = 205, the number of assets in the regression model equals
15. Columns 2 - 8 contain estimation results for the CAPM with the proxies for market returns
based on weights containing fixed measurement errors. ERR(.05) denotes the average empirical
rejection rate for the absence of abnormal returns (single equation test) for a significance level
of 5 %. SR and TR denote the mean Sharpe ratio and the mean Treynor ratio across all Monte
Carlo estimates and assets. True values: β = 0.9520, SR = 0.1175, TR = 8.8070.

The last three columns of Table 3 contain the estimates for models where the true weighting

scheme is replaced by equal weights. In the last column the estimation results are given when

the index is based on the all assets but equal weights of size 1/205 are used instead of b∗. These

estimates come rather close to the ones obtained when the true market index is used. Both the

reliability ratio as well as the correlation between true index and the proxy are close to one.

However, this particular finding should not be overemphasized because it is strongly based on

the underlying Monte-Carlo design. The true weights and the equal weights of size 1/205 do

not differ very much, so that the fixed measurement error turns out to be rather small. More

interesting is the non-monotonicity of the quality of the estimates in terms of the number of

assets used. The estimates where the index represents the 75 percent largest assets are slightly
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superior compared to the two other scenarios. If the index represents only the capitalization of

25 percent largest assets the estimates reveal the largest biases. For all scenarios we find a slight

over-rejection of the null of no abnormal returns.

3.2 Effects on Performance Measures

CAPM parameter estimates are frequently used to compute performance measures for single

assets or portfolios. Obviously the bias in the parameter estimates directly passes on to biases

in these performance measures. Consider, for instance, the Sharpe ratio and the Treynor ratio

for asset j = 1, . . . , N :

SRj =
E [rj ]

σj
=
βj E [rm]

σj
and TRj =

E [rj ]

βj
= E [rm] .

In last two rows of Table 2 and Table 3 we report the estimates of average Sharpe ratios and

Treynor ratios under the different regimes of misspecification. The attenuation bias for beta also

leads to an attenuation bias for the Sharpe ratio, while for the Treynor ratio the attenuation bias

leads to a strong upward bias because the too small estimates for beta enter the denominator of

the Treynor ratio.

Figure 1 depicts the box plots for the estimated Treynor ratio for each of the 15 selected

assets. As implied by the theory the mean estimates are the same for all 15 assets and are equal

to the true value of the expected excess return of the market indicated by the blue horizontal

line. Note that due to the large sampling variation the Treynor ratio can only be estimated with

low precision, even in the absence of measurement error.
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Figure 1: Estimates of the Treynor Ratio for 15 assets based on r∗m,t

Figure 2 depicts the box plots for the Treynor ratio based on equal weights and weights with

random measurement error. With measurement error in the market return we find an even

stronger variation in the performance across assets although the CAPM holds true. The presence

of measurement error mimics investment opportunities where none exist.

Figure 2: Estimates of the Treynor Ratio in the case of known asset universe and equally
weighted market index (left) or with random measurement error with σν = 0.05 (right)

The consequences of measurement error in the market return for investment decisions based

on CAPM estimates can also be seen for the security market line (SML). Figure 3 depicts the

unbiased CAPM estimates based on true market return (green dots) and the biased estimates

based on equal weights (blue dots). If the market return is measured correctly the estimates are

scattered closely around the SML indicating no need for reshuffling the portfolio. However, with

measurement error the estimates indicate investment opportunities due the spurious abnormal

returns. Note, that the case depicted here is based on the true SLM, i.e its slope is given by

µ∗. Since in the case of random measurement errors, µ∗ = µ the sample mean of the excess

return rm,t can serve as an unbiased estimate for the slope of the SML. However, in all other
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cases considered µ∗ 6= µ, and the mean excess return of the market proxy does not yield a

consistent estimate of the slope. In this case the CAPM estimates deviate systematically from

the true SML as can be seen from Figure 9 in Appendix A.3. The biased estimated SML and

the attenuated CAPM beta estimates mimic investment opportunities with assets lying above

and below the estimated SML.

Figure 3: Security Market Line and CAPM estimates with and without Measurement Error.
Green dots: estimates based on true market return. Blue dots: estimates based on equal weights.

4 Empirical Evidence in the Presence of Measurement Error

In the following we present empirical evidence on the relevance of measurement error in market

returns using our cross-equation identification strategy presented in Section 2.2. We use minimum

distance estimation (see Appendix A.1 for details) to estimate and test for attenuation bias and

the presence of abnormal returns for various datasets and alternative measures of the market

index. The effect of different market proxies on the beta estimates provides insights into the

robustness of CAPM estimates and the quantitative relevance of the measurement error problem.

In the first stage we estimate a CAPM system of regression equations by the seemingly unrelated

regression (SUR) approach. We call this system of regression equations CAPM linear projection

model (CAPM-LP) as it basically imposes no structure on the parameters implied by theory and

can be taken as a pure statistical concept. Alternatively, one may regard this model as a general
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one-factor model with measurement error and/or abnormal returns, since non-zero intercepts

as a consequence of measurement error and abnormal returns are not separately identifiable.

The CAPM-LP, however, parametrically nests the standard CAPM (no abnormal returns, no

measurement error, N true betas) and the CAPM with measurement error (CAPM-ME) (λ1 6= 1,

N true betas and intercepts resulting solely from the presence of measurement error).

In the second estimation stage we impose the parametric structure implied either by the

CAPM-ME or the standard CAPM. For all the second stage estimates we use the inverse of the

first-stage variance covariance estimates as an optimal weighting matrix, so that the distance

statistics at the minimum are asymptotically χ2-distributed (see Appendix A.1). Tests for nested

specifications can then be obtained by comparing the distance statistics of the restricted model

against the less restricted specification. Thus the difference in the distance statistics of the

CAPM-ME against the CAPM-LP is χ2
(N−1)-distributed and tests whether the intercepts can

solely be explained by the intercepts of the CAPM-ME. This test therefore circumvents the

problem of identifying the true from spurious alphas.

Assuming the CAPM-ME holds and imposing in addition the absence of any measurement

error, λ1 = 1, yields the minimum distance statistics for the standard CAPM. The difference

between the two corresponding distance statistics yields a χ2
(1)-distributed test for the null

hypothesis that the CAPM holds against the more general CAPM-ME.

Finally, the χ2
(N)-distributed Wald test on the zero intercepts tests in the tradition of the

CAPM against any alternative which implies non-zero intercepts (CAPM-ME, abnormal returns,

CAPM-ME including abnormal returns).

Table 4 summarizes the minimum distance estimates for three data sets consisting of different

securities: (i) 25 Fama-French portfolios formed on size (market capitalization) and book-to-

market ratio4, (ii) a set of 20 randomly selected stocks from the S&P 500 (iii) 30 stocks of

the Dow-Jones Industrial Average Index (DJIA). Our estimates are based on monthly data

of size T = 60 and three different definitions of the market return. As market index we use

the value-weighted return of all CRSP firms incorporated in the US and listed on the NYSE,

AMEX, or NASDAQ as provided on Kenneth French’s website, the S&P 500 value weighted

index and the Dow-Jones Industrial Average Index (DJIA). By construction the CRSP index is

the broadest index in terms of the asset space covered, while the DJIA is the crudest proxy of

4see http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
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the true market index. Therefore we would expect the lowest linear projection coefficient for the

DJIA and the strongest attenuation bias for the beta estimates.

Table 4: Minimum Distance Estimates and Tests under Measurement Error

French Fama S&P500 stocks DJ stocks

Market Index CRSP S&P500 DJIA CRSP S&P500 DJIA CRSP

CAPM vs. 61.98 32.72 38.28 28.18 61.88 100.47 30.94
CAPM-LP (0.00) (0.04) (0.01) (0.11) (0.00) (0.00) (0.42)

CAPM-ME vs 39.16 26.23 26.12 26.95 32.03 31.99 30.90
CAPM-LP (0.03) (0.12) (0.13) (0.11) (0.32) (0.32) (0.87)

CAPM vs 22.82 6.5 12.16 1.24 29.85 68.49 0.043
CAPM-ME (0.00) (0.01) (0.00) (0.27) (0.00) (0.00) (0.84)

λ1 0.97 0.690 0.579 1.25 0.65 0.55 1.023

N 25 20 20 20 30 30 30
T 60 60 60 60 60 60 60

Minimum distance estimates of the linear projection parameter λ1 and MD-based tests for
different data sets and measures of the market proxies, p-values in brackets. N denotes here
the number of assets in the regression model. Sampling period: 2010:06-2015:05 for all data
sets.

Consider first the results of Wald test for the absence of intercepts (CAPM vs CAPM-LP).

Our findings are in accordance with many previous empirical studies rejecting the null of no

intercepts. However, note that in the presence of measurement error this test provides no

information whether the non-zero intercepts result from true abnormal returns or are spurious

due to measurement error. More interesting are the outcomes tor our test of the CAPM-ME

against the CAPM-LP. Except for the FF-data we find that the measurement specification is

sufficient to explain the presence of intercepts. Our test results indicate that the rejection of no

abnormal returns often found for many data sets are likely to be the outcome of measurement

error.

Note, that the linear projection coefficient λ1 can only be interpreted as reliability ratio in

the case of the EIV model. Only for this case the projection coefficient is bounded between by

construction zero and one and implies an attenuation bias in the betas. Using the S&P500 and

the DJIA as market proxies we find for all datasets significant evidence for an attenuation bias.

The situation for the CRSP index as market proxy is somewhat different: The null of λ1 = 1 for
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the Dow-Jones and the S&P500 stocks cannot be rejected, while it has to be rejected for the FF

data. But for this case the attenuation bias is rather small.

5 Conclusions

In this paper we take a closer look at the consequences of a misspecified market index in the

capital asset pricing model. Our focus is on two major sources of misspecification: (i) the use of

inaccurate weights and (ii) the use of only a subset of the asset universe to construct the index.

The consequences resulting from the use of badly chosen market proxy reach from inconsistent

parameter estimates to a misinterpretation of tests on the existence of abnormal returns. High

correlations between market proxies and the true market return are shown to be an insufficient

to indicate that the choice of a particular market proxy is negligible. What matters is the

predictive quality of the market proxy for the true market index in terms of a linear projection.

The estimation problems arising from measurement error in the market proxy deviate

substantially from the ones typically found in errors-in-variable models for linear regressions.

Unlike the true market index, market proxies are no longer orthogonal to the error in the CAPM.

Instrumental variable estimation generally becomes infeasible, unless additional identifying

assumptions are introduced.

For the the EIV-CAPM model, where the errors in the weights of the market index are

assumed to be random, we present a new identification strategy. This strategy accounts for

nonlinear cross-equation identifying restrictions which exploit the property that all CAPM

equations are effected by the same attenuation bias for beta. Our estimation strategy allows

us to test the linear projection based asset pricing model incorporating abnormal returns and

measurement error against the EIV-CAPM as well as to test the CAPM with measurement error

against the conventional Sharpe-Lintner CAPM without abnormal returns and measurement

error. Our empirical findings indicate for three different datasets and different market proxies,

that regardless of the assets under investigation the use of a more accurate proxy is rewarding

and reduces the estimation bias. Moreover, our estimates indicate that the existence of abnormal

returns in the conventional CAPM is spurious and can largely be explained by measurement

error. In this sense Roll’s (1977) fundamental critique can somewhat be mitigated.

However, the claim of this study is a rather moderate one. We do not intend to give an
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answer to the ongoing question of whether the CAPM is dead or alive. Our study simply points

out that if we want the CAPM to give a chance to survive as a workhorse in academic finance

and business, we should take it more seriously and try to account for the latency of the market

return as best as possible. In particular, this includes taking on a more skeptical view on the

evidence for the existence of abnormal returns in the presence of measurement error. Future

research should consider other types of measurement error (e.g. multiplicative errors) as well

as the consequences of measurement error in other multi-factor asset pricing models. In the

light of our findings it seems also rewarding to reconsider the construction of popular market

proxies which generally are characterized by a local bias contradicting the assumption that a

large fraction of the investors follow a global investment strategy and ignore returns from other

important tangible or non-tangible assets.
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A Appendix

A.1 Minimum Distance Estimation of the CAPM

Consider the stochastic form of the linear predictor equation for the j-th excess return on the

(observable) excess return of the market rm,t including an intercept:

rj,t = X ′t πj + uj,t+1, j = 1, . . . , N,

where πj = (πj,1, πj,2)′ contains the reduced form parameters of a CAPM with measurement

error and X ′t = (1, rm,t). The collection of reduced form parameters into the so-called Π-matrix

of dimension N × 2 is given by

Π =



π′1

π′2
...

π′N


=



µm(1− λ1)β1 λ1β1

µm(1− λ1)β2 λ1β2

...
...

µm(1− λ1)βN λ1βN


.

With Yt = rt = (rt1, rt2, . . . , rtN )′ as the vector of excess returns system of CAPM reduced for

regressions is given by

Yt = ΠXt + ut,

where Π = E[YtX
′
t]
−1E[XtX

′
t]
−1 is the matrix of linear predictor coefficients with its sample

counterpart

Π̂ =

(
T∑
t=1

YtX
′
t

)(
T∑
t=1

XtX
′
t

)−1

.
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The Pi-matrix stacked into a row vector

π ≡ vec(Π′) = g(θ) =



µm(1− λ1)β1

λ1β1

µm(1− λ1)β2

λ1β2

...

µm(1− λ1)βN

λ1βN


relates the 2N -vector of reduced form parameters to a vector g(·) of nonlinear functions of

the structural parameter vector θ = (β′, λ1) of the same dimension, where π can be estimated

consistently by single equation least squares without loss of efficiency:

π̂ = vec
(

Π̂′
)

=



π̂1

π̂2

...

π̂N


=



(X ′X)−1X ′Y1

(X ′X)−1X ′Y2

...

(X ′X)−1X ′YN


.

Under standard assumptions about the return process

√
T (π̂ − π)

d−→ N (0,Ω)

In the case of a homoskedastic error term vector with covariance matrix V [ut] = Σ, the

asymptotic variance-covariance matrix of π̂ takes the well-known form

Ω = V [π̂] = Σ⊗ E
[
XtX

′
t

]−1

assumed for seemingly unrelated regression models. Generalizations of Ω for the case of het-

eroskedasticity and autocorrelation can be easily derived.
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The minimum distance estimator θ̂ based on the restriction π = g(θ) is defined by

θ̂(WT ) = arg min
θ∈Θ

[π̂ − g(θ)]′WT [π̂ − g(θ)],

where WT converges asymptotically to the positive definite matrix weighting matrix W0. The

optimal feasible weighting is given by WT = [ 1
T Ω̂]−1, where Ω̂ is a consistent estimate of the

asymptotic variance covariance matrix of π̂. Note, that g(·) depends on the unknown parameter

µm. In our empirical application, we replace µm by its sample mean.
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A.2 Detailed Monte Carlo Results
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A.3 Figures

(a) σν = 0.05

(b) σν = 0.025

(c) σν = 0.01

Figure 4: Sharpe Ratios of 15 assets based market indices with random measurement error
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(a) 25%

(b) 75%

Figure 5: Sharpe Ratios of 15 assets based on market indices based on the subset of assets with
true weights
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(a) 25%

(b) 75%

Figure 6: Sharpe Ratio of the assets from the CAPM with market proxies based on the subsets
of assets with true normalized weights
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(a) 25%

(b) 75%

(c) 100%

Figure 7: Sharpe Ratio of the assets from the CAPM with market proxies based on the subsets
of assets with equal weights
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Figure 8: Security Market Line and estimated betas in the case of random measurement error in
the weights of the market portfolio
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(a) true weights for M stocks

(b) normalized true weights for M stocks

(c) equal weights for M stocks

Figure 9: Security Market Line and estimated betas in the case of misspecified index based on
the subset of assets
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