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Ralf Brüggemann
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Abstract

The objective of this study is to compare alternative computerized model-selection strategies

in the context of the vector autoregressive (VAR) modeling framework. The focus is on a

comparison of subset modeling strategies with the general-to-specific reduction approach auto-

mated byPcGets. Different measures of the possible gains of model selection are considered:

(i) the chances of finding the ‘correct’ model, that is, a model which contains all necessary

right-hand side variables and is as parsimonious as possible, (ii) the accuracy of the implied

impulse-responses and (iii) the forecast performance of the models obtained with different

specification algorithms. In the Monte Carlo experiments, the procedures recover the DGP

specification from a large VAR with anticipated size and power close to commencing from the

DGP itself when evaluated at the empirical size. We find that subset strategies andPcGetsare

close competitors in many respects, with the forecast comparison indicating a clear advantage

of thePcGetsalgorithm.
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1 Introduction

Specifying a parsimonious model for the data generation process (DGP) of a set of variables is

a crucial step in econometric analysis. Typically a general model or model class is chosen at the

initial stage of the modeling exercise. If the model is found to be general enough to describe the

relevant features of the DGP well, i.e., the model is congruent, usually restrictions are imposed

to avoid overparameterization which in turn may result in inefficient estimates and forecasts as

well as poor structural analysis. Therefore many tools have been suggested which can be used in

this important part of the modeling task. Examples of such tools are statistical tests and model

selection criteria. Moreover, different algorithms have been proposed which specify the sequence

in which the tools should be used, in order to arrive at a useful model. In the context of econometric

time series models so-called subset procedures are available, for example. One of their features

is that they reduce the model along a specific path which is determined by a variable selection

criterion or a sequence of statistical tests. As an extension of these procedures, expert system type

algorithms have been developed recently for single equation models. They take advantage of the

currently available substantial computing power and consider various reduction paths using a range

of alternative model selection and model checking procedures.

The objective of this study is to compare straightforward subset modeling strategies with the

more sophisticated reduction mechanismPcGetsfor the vector autoregressive (VAR) modeling

framework. The question of primary interest is to determine whether there is any gain from and,

if so, how much can be gained by using the more sophisticated apparatus incorporated inPcGets

rather than just some standard statistical procedures. In this comparison different measures of the

possible gains will be used. Specifically, we investigate the chances of finding the ‘correct’ model,

that is, a model which contains all necessary right-hand side variables and is as parsimonious

as possible. In addition, we check the accuracy of the implied estimated impulse responses and

compare the forecast performance of the models obtained with different specification algorithms.

Our comparison is based on Monte Carlo simulations and thereby it is in particular relevant for

gaining information of the relative performance of the considered procedures in small samples.

The procedures to be compared are simple model selection strategies as discussed in Brüggemann

& L ütkepohl (2001) on the one hand and thePcGetssystem on the other hand, as mentioned pre-

viously. The subset modeling procedures are based on sequentialt-tests or model selection criteria

such as Akaike’s (1974) AIC, Hannan & Quinn’s (1979) HQ or Schwarz’s (1978) SC. Starting

from a sufficiently large VAR model, zero restrictions are placed on the coefficients sequentially

where a search for the best restriction is performed in each step. The subset procedures differ

in the way they perform the sequential search for suitable restrictions. Because Brüggemann &

Lütkepohl (2001) found little gains from considering the full system in each step we will focus

on single equation search procedures in this study. In contrast,PcGetsis a more sophisticated

computer-automated approach to econometric modeling which achieves the model reduction by a

joint selection and diagnostic testing process comparing different model reduction paths. Detailed
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descriptions of all procedures included in the comparison will be given in the following section.

Section 3 presents the Monte Carlo setup and discusses the results. Finally, conclusions are drawn

in Section 4.

2 Model Selection Procedures

The comparison will be performed in the framework of standard finite order VAR(p) processes,

yt = ν + A1yt−1 + · · ·+ Apyt−p + ut, (2.1)

whereyt = (y1t, . . . , yKt)
′ is aK-dimensional vector of observable time series variables,A1, . . . , Ap

are(K×K) VAR parameter matrices,ν is a(K×1) intercept vector andut is a white noise process

with zero mean and nonsingular, time invariant covariance matrixE(utu
′
t) = Σu.

The subset procedures as well asPcGetswork on the individual equations of the model to

determine possible zero restrictions, i.e., to eliminate lags of variables. If the restricted model

is then used for impulse response analysis or prediction, a feasible GLS procedure is applied for

estimating the full system at once. In the following we first present the subset procedures and then

provide a brief description of the main features of thePcGetsapproach.

2.1 Subset Modeling Procedures

Individual parameter restrictions are placed on each system equation separately. Therefore, we

write thek-th equation of (2.1) as

ykt = x1tθ1 + · · ·+ xNtθN + ut, t = 1, . . . , T. (2.2)

All right-hand side variables are denoted byxnt including the constant. The variable selection

criteria are of the form

CR(i1, . . . , in) = log(SSE(i1, . . . , in)/T ) + cT n/T, (2.3)

whereSSE(i1, . . . , in) is the sum of squared errors obtained by includingxi1t, . . . , xint as re-

gressors in the regression model (2.2) andcT is a sequence indexed by the sample sizeT . The

following variable elimination strategies have, for instance, been considered in the literature (see,

e.g., L̈utkepohl (1991) and Brüggemann & L̈utkepohl (2001)).

Full Search (FS)

Choose the regressors which minimizeCR(i1, . . . , in) for all subsets{i1, . . . , in} ⊂ {1, . . . , N}
andn = 0, . . . , N . ¤

This procedure requires a substantial computational effort ifN is large because the set{1, . . . , N}
has 2N subsets. Consequently, 2N models have to be compared. A computationally more efficient
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procedure sequentially eliminates one variable in each step as follows. For simplicity we assume

that the remaining variables are renumbered after each step such that in stepj, N−j+1 regressors

are under consideration.

Sequential Elimination of Regressors (SER)

Sequentially delete those regressors which lead to the largest reduction of the given criterion until

no further reduction is possible. Formally:

Stepj: Deletexnt if

CR(1, . . . , n− 1, n + 1, . . . , N − j + 1)

= min
l=1,...,N−j+1

CR(1, . . . , l − 1, l + 1, . . . , N − j + 1)

and

CR(1, . . . , n− 1, n + 1, . . . , N − j + 1) ≤ CR(1, . . . , N − j + 1). ¤

It is also possible, of course, to choose individual zero coefficients on the basis of thet-ratios of

the parameter estimators. In that case, the regressors with the smallest absolute values oft-ratios

are eliminated until they are all greater than some threshold valueγ. A formal description of this

procedure follows.

Testing Procedure (TP)

Let t(j)n be thet-ratio from an OLS estimation associated withθn in thej-th step of the procedure.

Stepj: Deletexnt if |t(j)n | = mini=1,...,N−j+1 |t(j)i | and|t(j)n | ≤ γ. Stop if all |t(j)n | > γ. ¤

In each step of this procedure a single regressor is eliminated. Then newt-ratios are computed

for the reduced model. It is shown by Brüggemann & L̈utkepohl (2001) that this strategy is equiv-

alent to the sequential elimination based on model selection criteria for a suitably chosen threshold

valueγ. More precisely, ifγ = {[exp(cT /T )− 1](T −N + j − 1)}1/2 in thejth step of the elim-

ination procedure, the same final model is obtained that also results by sequentially minimizing

the selection criterion defined by the penalty termcT . Therefore it is apparent that the threshold

value depends on the sample size, the number of regressors in the model and the selection crite-

rion throughcT . The threshold values for thet-ratios correspond to the critical values of the tests.

The well-known criteria AIC, HQ and SC may be used in these procedures. TheircT values are

cT = 2, cT = 2 log log T andcT = log T , respectively. Figure 1 shows the implied significance

level of TP as a function of the sample sizeT for a model withN = 10 regressors. For example,

choosing a model by TP-AIC, TP-HQ or TP-SC withT = 100 observations roughly corresponds

to eliminating all regressors witht-values which are not significant at the 18%, 10% or 5% level,

respectively. Because SER and TP are equivalent, we only use TP in the Monte Carlo experiments

with the critical values implied by the three selection criteria AIC, HQ and SC.

An alternative subset modeling strategy proceeds by checking the variables sequentially from
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the last to the first. Formally it may be described in the following way.

Top Down Procedure (TD)

Forn = N, N − 1, . . . , 1, deletexnt if

CR(1, . . . , n− 1, n + 1, jn, . . . , Nn) ≤ CR(1, . . . , jn, . . . , Nn),

whereNn is the largest lag remaining in the equation whenxnt is checked andxjnt is the last

previously checked regressor which remains in the equation. ¤

Notice that the final outcome of this procedure may depend on the order in which the regressors

are included in the model. Clearly, this introduces some arbitrariness into the procedure. In the

present time series context it makes sense to check the higher order lags first before proceeding

to smaller lags. Of course, there may be good arguments for alternative orderings in specific

situations. For example, one may check the lags of one of the variables first and then turn to

another variable and so on. In fact, this type of procedure was proposed by Hsiao (1979, 1982) for

causality analysis. All subset procedures used in the Monte Carlo study have been implemented

using Gauss and a convenient graphical user interface is provided by the software JMulTi.2

2.2 PcGets

PcGetsdeveloped by Hendry & Krolzig (2001) implements automatic general-to-specific (Gets)

modeling for linear, dynamic, single-equation models based on the theory of reduction (see,inter

alia, Hendry (1995)). First, an initial general statistical model is tested for the absence of mis-

specification (denoted congruence), which is then maintained throughout the selection process by

diagnostic checks, thereby ensuring a congruent final model. The diagnostic tests require careful

choice to ensure they characterize the salient attributes of congruency, are correctly sized, and do

not overly restrict reductions. Next statistically insignificant variables are eliminated by selection

tests, both in blocks and individually. Many reduction paths are searched, to prevent the algorithm

from getting stuck in a sequence that inadvertently eliminates a variable which matters, and thereby

retains other variables as proxies. Path searches inPcGetsterminate when no variable meets the

pre-set criteria, or any diagnostic test becomes significant. Non-rejected models are tested by

encompassing: if several remain acceptable and so are congruent, undominated, mutually encom-

passing representations, the reduction process recommences from their union, providing that is

a reduction of the general unrestricted model (GUM), till a unique outcome is obtained: other-

wise, or if all selected simplifications re-appear, the search is terminated using the Schwarz (1978)

information criterion. Lastly, sub-sample insignificance seeks to identify ‘spuriously significant’

regressors.

An overview of the algorithm is shown in Table 1 (for a detailed description see Hendry &

Krolzig (1999), Krolzig & Hendry (2001) and Hendry & Krolzig (2001)). In the following we
2The software package JMulTi can be downloaded at: www.jmulti.de.
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briefly discuss the econometrics of the different stages of thePcGetsmodel-selection algorithm

relevant for VAR modeling.

2.2.1 Statistical analysis of the GUM (Stage 0)

The starting point forGetsmodel selection is the GUM, so the key issues concern its specification

and congruence. In the case of the VAR, the researcher only has to specify the variables of interest.

An overallF-test of all regressors checks that there is something to model, misspecification tests

check the congruence of the model. The initial maximum lag length can be given by the researcher

or set automatically. The algorithm then determines the lag order of the process; the lag order

pre-selection consists ofF-tests on the longest-lag blocks till the null is rejected.

2.2.2 Pre-search reduction tests (Stage I)

PcGetsthen undertakes various ‘pre-search’ simplificationF-tests to exclude variables from the

GUM. Since variables found to be irrelevant by such tests are excluded from later analyses, this

step uses a loose significance level (such as 50%). The first step analyses whether a block of

regressors associated with a particular lag or variable can be eliminated from the system without

losing relevant information. The next step consists of block (F) tests of groups of regressors,

ordered by theirt2-values in the GUM. In thetop-downreduction sequence thet2-test statistics

are ordered from the smallest up, with cumulativeF-tests on increasing block sizes till the null

is rejected; the model size decreases until rejection. Thebottom-upreduction sequence involves

F-tests on decreasing block sizes from the largestt2-tests down till the model is congruent. The

model size increases until no misspecifications are found. According to the outcome of a blockF

test,PcGetswill continue to work with one of the reductions.

2.2.3 Recursive multiple-path encompassing search (Stage II)

ThePcGetsreduction path relies on a classical, sequential simplification and testing approach de-

signed to reduce the complexity of the model by ensuring the congruency of the reduction. Many

possible paths from that GUM are investigated: reduction paths considered include both multiple

deletions as well as single, sot and/orF test statistics are used as simplification criteria. Along

each path the least significant variables havingt-values less than the critical value is eliminated.

If any diagnostic tests fail, that path is terminated, and the algorithm returns to the last accepted

model of the search path: if the last accepted model cannot be further reduced, it becomes the

terminal model of the particular search path; otherwise, the last removed variable is re-introduced,

and the search path continues with a new reduction by removing the next least-insignificant vari-

able of the last accepted model. If all tests are passed, but one or more variables are insignificant,

the least significant variable of those is removed. If that specification has already been tested on

a previous path, the current search path is terminated. Finally, if all diagnostic tests are passed,
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and all variables are significant, the model is the terminal model of that search path. Should mul-

tiple congruent contenders eventuate after a reduction round, encompassing can be used to test

between them, with only the surviving non-nested specifications retained. If multiple models sur-

vive the‘testimation’process, their union forms a new general model, and selection path searches

recommence. Such a process is repeated till a unique contender emerges, or the previous union

is reproduced, then it stops. In the latter case a final selection is made using information criteria,

otherwise a unique congruent and encompassing reduction has been located.

2.2.4 Sub-sample evaluation (Stage III)

As a check for potential over-selection inStage II, PcGetsexploits sub-sample information by in-

vestigating split samples for significance (as against constancy). This mimics the idea of recursive

estimation: Since non-central ‘t’-values diverge with increasing sample size, whereas central ‘t’s

fluctuate around zero, the latter have a low probability of exceeding any given critical value in two

sub-samples, even when those samples overlap. Thus, adventitiously significant variables may be

revealed by their insignificance in one or both of the sub-samples. Consequently, a progressive re-

search strategy can gradually eliminate ‘adventitiously significant’ variables and tilt the size-power

balance favorably. The sub-sample information is used to accord a ‘reliability’ score to variables,

which investigators may use to guide their model choice.

2.2.5 Calibration

Balancing the objectives of small size and high power still involves a trade-off, but one that is de-

pendent on the algorithm. The‘testimation’process ofPcGetsdepends on a number of decisions

regarding the specification of the algorithm. Krolzig & Hendry (2001) investigate the calibration

of PcGetswith regard to the operational characteristics of the diagnostic tests, the selection proba-

bilities of DGP variables, and the deletion probabilities of non-DGP variables. Based on intensive

Monte-Carlo studies, Hendry & Krolzig (2001) propose a‘liberal’ and a‘conservative’strategy

which aim to provide maximum power at a controlled empirical size. Figure 1 illustrates the sig-

nificance level of the strategies relative to AIC, SC and HQ (for 10 variables). The liberal strategy

seeks to minimize the chances of omitting variables that matter, so uses a relatively loose signifi-

cance level (with HQ as its upper and SC as its lower bound), whereas the Conservative uses a very

stringent significance level (much tighter than SC) to minimize the chances of retaining variables

that do not matter. The built-in strategies ofPcGets 1.1will be used in the following Monte Carlo

experiments.
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3 Simulation Comparison

3.1 Monte Carlo Design

We have considered the following DGPs:
[
y1t

y2t

]
=

[
ν1

ν2

]
+

[
α11,1 α12,1

α21,1 α22,1

][
y1,t−1

y2,t−1

]
+

[
0 0

α21,2 0

][
y1,t−2

y2,t−2

]
+

[
u1t

u2t

]
(3.1)

with identity white noise covariance matrix,Σu = I2, and




y1t

y2t

y3t


 =




ν1

ν2

0


+




α11,1 0 0

0 α22,1 0

0 0 α33,1







y1,t−1

y2,t−1

y3,t−1


+




α11,2 α12,2 0

α21,2 0 0

0 0 0







y1,t−2

y2,t−2

y3,t−2


+




u1t

u2t

u3t


 (3.2)

with white noise covariance matrix

Σu =




σ2
1 0 0

0 1 0

0 0 1




Theν andα coefficients are nonzero and assume values to be discussed shortly. A process similar

to (3.1) was also used in simulations by Lütkepohl (1991), Br̈uggemann & L̈utkepohl (2001) and

Krolzig (2001). It is very simple and may in fact be too simple for our purposes. It is expected to

give an advantage to the TD strategy because all nonzero coefficients are concentrated at the lowest

lags. Whenever a nonzero coefficient appears, there is no zero coefficient at a corresponding lower

lag. This feature contrasts with DGP (3.2), where nonzero coefficients appear, e.g., at lag 2 when

the corresponding lag 1 coefficient is zero (seeα12,i andα21,i). The process may also be more

difficult to specify correctly due to its higher dimension.

We generatedM = 1000 sets of time series and applied the single equation strategies from

Section 3 to the generated time series. To be more precise, we fitted VAR(4) models and then

applied the model specification strategies. Of course, the coefficient matricesA3 andA4 of the

true DGPs contain zeros only. We are interested in determining the ability of different procedures

to detect the zero coefficients correctly without replacing too many parameters by zero. In other

words, we are interested in the size and power of the procedures. Therefore, controlling thet-ratios

is useful in our simulation comparison because a coefficient with a small populationt-ratio is more

likely to be restricted to zero than one with a largert-ratio, given that the choice of restrictions in

all model selection procedures to be compared is based to some extent on these quantities. For this

reason we have chosen parameter values with preassigned absolutet-ratios.

Notice that in a regression modely = Xθ + u, thet-ratio of thekth coefficient is

tk =
θ̂k

σ̂θk

=

√
T θ̂k

σ̂u

√
(T−1X ′X)−1

kk

.
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The corresponding population statistic is

t∗k =
θk

σθk

=

√
Tθk

σu

√
Q−1

kk

,

whereQ = plim T−1X ′X andQ−1
kk is thekth diagonal element of the inverse ofQ. For our VAR(2)

processes it can be shown that

Q =

[
1 µ̃′

µ̃ Γ + µ̃µ̃′

]
,

whereµ̃ = (1, 1)′ ⊗ µ. Hereµ = (IK − A1 − · · · − Ap)
−1ν is the mean of the VAR andΓ is

the covariance matrix of(yt, yt−1). Hence, it is easy to work out the populationt-ratios of the

parameters in our DGPs. We have chosen the parameter values such that prespecifiedt-ratios of

the nonzero coefficients are ensured. The actual parameter values for the DGPs are given in Tables

2 and 3. We also give the corresponding moduli of the nonzero reverse characteristic roots of the

autoregressive polynomialsdet(IK − A1z − · · · − Apz
p) in the tables. For example, for each of

the DGPs (3.1) there are roots with two different nonzero moduli and there are also roots which

are zero. Obviously, the larger thet-ratios, the closer the roots are to the unit circle. As these

processes are closer to the nonstationarity region, we cannot expect that the selection properties

of the reduction approaches will be monotonous functions of the underlyingt-values. These and

other characteristics of the DGPs will be of importance for the outcome of our experiment.

3.2 Evaluation of the Monte Carlo Results

3.2.1 Selection properties

The results for the DGPs (3.1) and (3.2) are summarized in Figures 2 - 7. In Figures 2 and 3

the average size and power of the different procedures are depicted. Here the average size is

determined as the average relative frequency of including a zero coefficient. That is, the average

rejection frequency of all coefficients which are actually zero is determined. The average power

is the corresponding probability of including the nonzero coefficients. The average size is plotted

on the horizontal axis whereas the power is shown on the vertical axis. For instance, in the upper

left-hand panel of Figure 2, which shows results for the first equation of the DGP, the FS procedure

combined with the SC criterion is seen to have a size of about 4% and a power of about 40%. For

each of the procedures using model selection criteria, SC results in the smallest and AIC in the

largest sizes whereas HQ is in between. To be able to assess the results, the theoretical power of

a t-test of a coefficient with theoreticalt-value corresponding to the one of the underlying DGP

is shown by a solid line in the figures. That line is a power envelop because we cannot hope to

do better than the nonsequentialt-tests with our procedures. It is obvious that all the procedures

are doing quite well in this respect. There are, however, some notable differences with respect to

the empirical size. For example, subset procedures using the AIC criterion typically have a size

around 20%, the size of HQ based algorithms is around 10% while the size of SC based strategies
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is between 4 and 8%. The difference between FS, TP and TD is very small when the same selection

criterion is used. The size of the conservativePcGets(PcGets-CON) algorithm is smallest of all

selection methods, while the size of the liberal variant (PcGets-LIB) is typically very close to the

SC based subset procedures, which is in line with the predictions of Figure 1.

In Figures 4 and 5 the overall size and power of the procedures are shown. The horizontal

axis shows the estimated probability that at least one of the zero coefficients is included whereas

the vertical axis shows the probability that all nonzero coefficients are included. The solid line is

based on selecting the nonzero coefficients by multiplet-tests. Thus, it may again be regarded as a

power envelop. In this case all procedures are a bit away from this envelop for DGPs witht-ratios

less than 5. For the two-dimensional DGPs the TD strategy is slightly superior to the other subset

modeling procedures which may be a consequence of the specific type of DGP, as mentioned

earlier. Consequently, the ordering reverses in some cases when the three-dimensional DGPs are

considered. In addition, fort-ratios less than 5 there is a clear trade-off between the probability of

retaining irrelevant variables and selecting DGP variables. The liberal strategies based on AIC and

HQ have the highest probability of including DGP variables but at the same time the probability

of including non-DGP variables is also very high. In contrast, for|t| > 5 moving from AIC to

SC based algorithms is associated with almost no loss in power (selection probability) while the

probability of including non-DGP variables decreases drastically.

Finally, Figures 6 and 7 show the relative frequencies of finding precisely the true DGP, that is,

all zero coefficients are deleted and all nonzero coefficients are included. In this respect the subset

procedures are doing quite well relative toPcGetsfor processes witht-values smaller than 4 for

the process types considered here. In fact, there are many cases when the simple subset strategies

have a higher probability of finding the true DGP, however, the chance to find the DGP is very

limited in any case. This has to be expected given the probability to find the DGP if one starts with

it. However, fort-values larger than 4, the conservative variant ofPcGetsconsistently selects the

true DGP with highest probability, although some subset procedures, especially the parsimonious

SC based methods, are close competitors.

3.2.2 Impulse response analysis

We now check how the selection properties of the proposed selection strategies are translated into

the accuracy of the impulse responses implied by the empirical model.

The infinite-order vector moving-average representation of the VAR model in (2.1) is

yt = µ +
∞∑

j=0

Ψjut−j, (3.3)

whereµ = (IK − ∑p
i=1 Ai)

−1ν andΨ0 = IK . The matrix power seriesΨ(L) =
∑∞

j=0 ΨjL
j is

the inverse lag polynomial toA(L) = IK − ∑p
j=i AiL

i. The (k, l)-th elementψkl,j of the MA

matrixΨj can be interpreted as the reaction of variablek in response to a unit shock in variablel,

j periods ago.
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Figure 8 displays the mean squared error (MSE) of the impulse responses of the system for the

11 reduction approaches and the true VAR relative to theMSE for the full VAR(4). Let ψh =

vec(Ψh) collect the response of the system to shocksh periods ago, then the graphs report for the

various DGPs, each associated with a certaint-value, the relativeMSE:

MSEM(h)

MSE(4)(h)

for h = 1 and 5, whereM is the reduction method,ψh is the theoretical response of the sys-

tem given the specification of the DGP, andψ̂h is the estimated response of the system given the

estimated VAR:̂Ψ(L) = Â(L)−1. TheMSE is defined as

MSE(h) =
1
M

M∑
m=1

(
ψh − ψ̂h,m

)′
Σ−1

ψh

(
ψh − ψ̂h,m

)

whereΣψh
has been estimated using the simulated impulse-responses for the full VAR(4) andM

is the number of replications in our simulation experiments.

Not surprisingly, using the true model always results in the smallestMSE. Obviously, using the

reduction procedures may lead to substantial distortions for the initial impulse responses (h = 1,

DGP (3.1)). Clearly they may impose false zero restrictions which in turn leads to a substantial

bias in the corresponding estimated impulse responses towards zero and may result in relatively

largeMSEs. The problem diminishes when the coefficients have larger populationt-ratios because

in that case the reduction procedures are less likely to restrict them to zero. Also for larger lags

the relativeMSEs improve (seeh = 5). For stationary processes the impulse responses taper off

to zero as the lag goes to infinity. Therefore, imposing a false zero restriction and thereby forcing

some estimated impulse responses to be zero at large lags may result in a more precise estimator

with smallerMSE than an unconstrained full VAR model. This feature is clearly reflected in Figure

8, where the normalizedMSEs of impulse responses based on restricted models are smaller than 1

for h = 5. Generally, when shrinking to zero helps improving the estimators, the more restrictive

methods have an advantage over more liberal procedures and criteria.

3.2.3 Forecasting

To assess the forecasting power of the selected models relative to the full VAR(4) model we com-

pare mean squared prediction errors (MSPEs) of 1- and 5-step ahead out-of-sample forecasts. More

precisely, we compute theMSPE as

MSPE(h) =
1
M

M∑
m=1

(yT+h,m − ŷT (h)m)′ Σ−1
h (yT+h,m − ŷT (h)m) (3.4)

whereyT+h,m is the generated vector of them-th K-variate time series for which the forecast is

made,̂yT (h)m denotes the correspondingh-step ahead forecast at originT from the model specifi-

cation under consideration andΣh is the covariance matrix of the corresponding theoreticalh-step
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prediction error obtained when the forecast is based on the true DGP with known parameters.

HereM is the number of replications of our simulation experiments. Now forecast precision is

measured relative to the full VAR(4) as

MSPEM(h)

MSPE(4)(h)
, (3.5)

whereMSPE(4) denotes theMSPE of the full VAR(4) model andMSPEM is theMSPE of the

selected model.

In Figure 9 we give the 1- and 5-step ahead forecastMSPEs relative to the full VAR(4) model

according to equation (3.5). The forecasts based on the ‘true model’ are obtained by estimating

all nonzero coefficients of the DGP. In other words, the forecasts are affected by estimation uncer-

tainty whereas the model selection uncertainty is removed. Therefore their precision is expected

to be at the lower end of the forecasts based on model selection procedures. For DGPs (3.1) with

populationt-values 2 and 3 the subset procedures FS, TP and TD are associated with a loss in

forecasting performance of up to 2%, while thePcGetsselection gives a gain of 3.9-6.5% relative

to a full VAR(4) model and is about as good as the precision of the ‘true model’ forecasts. With

increasing populationt-values the gain in forecasting performance increases only slightly but for

|t| > 3 all model selection methods lead to improved forecasts relative to the full VAR(4) model.

A similar pattern can be observed for the 5-step forecasts. For|t| = 2 all subset procedures and the

conservativePcGetsmethod are associated with a small loss (< 1%) in forecasting power. Only

the liberal variant ofPcGetsimproves the forecasting power by 1.5%. Again, for|t| > 3 model

selection pays off, although gains are typically much smaller than for the 1-step ahead forecast

(< 3.7%). In all considered cases,PcGetsselected models are better at forecasting than the subset

procedures, although in some cases the differences are not very large. The difference between the

subset strategies FS, TP and TD is usually fairly small. In fact, we often observe that for a given

information criterion, FS, TP and TD lead to improvements with the same order of magnitude.

Moreover, we typically observe that using the most parsimonious criterion (i.e. SC) leads to the

largest improvement, especially for large populationt-values.

In Figure 9 we also give results for the forecasting experiment for the 3-dimensional DGP (3.2).

Similar to the results in the bivariate case, we find thatPcGetsconsistently leads to the largest

improvements in forecasting performance and again provides forecasts of similar precision as the

‘true model’. Relative to a full VAR(4) model the improvement is 14.2% forh = 1 and 7.5% for

h = 5, which compares to 10% (h = 1) and 5.8% (h = 5) for the best subset method available.

From all subset methods the most parsimonious ones (with SC as an information criterion) work

best. Consistent with the size and power results, TD often seems to have the edge when compared

to FS and TP. As before, the gain for 1-step ahead forecasts is larger than for 5-step forecasts. In

contrast to the bivariate case, all selected models now lead to improved forecastMSPEs, which

might be an indication that model selection is especially useful in models with larger dimensions.

Overall the forecast comparison indicates a clear advantage of thePcGetsalgorithm with the pos-

sible improvements being clearly DGP dependent.
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4 Conclusions

In this paper we have evaluated alternative computerized model selection strategies for VAR mod-

els. In particular, we compared single path subset strategies based on information criteria (or

sequential testing procedures) with the more sophisticatedPcGetsalgorithm. The latter provides a

computer automation of general-to-specific (Gets) modeling of linear, dynamic, regression models

using multiple search paths along which the reduction of the model is conducted.

To assess the performance of alternative reduction methods we compared different measures

of possible gains associated with model selection. Using Monte Carlo experiments, we first in-

vestigated the size and power properties. Moreover, we analyzed the chances of finding the ‘cor-

rect’ model, that is, a model which contains all right-hand side variables of the DGP and is as

parsimonious as possible. Then the accuracy of the implied impulse-responses and the forecast

performance of the models obtained with different specification algorithms were compared.

One aim of the paper was to evaluate alternative reduction strategies, to see if they worked well,

indifferently, or failed badly. The results come much closer to the first. In fact, results from our

Monte Carlo experiments show that the procedures recover the DGP specification from a large

VAR with anticipated size, and power close to commencing from the DGP itself when evaluated

at the empirical size. Results for the impulse response accuracy indicate many situations where

model selection can successfully increase the precision relative to the full VAR model. However,

there are also some cases (when the populationt-value is small), where model selection strategies

delete too many relevant variables and hence, adversely affect the impulse response accuracy. We

find a similar picture for the forecasting exercise, where the largest gain from model selection is

found in the trivariate systems.

The comparison of subset methods withPcGetsrevealed some interesting results: The simple

subset methods are close competitors to the more sophisticatedPcGetsalgorithm. In fact, in some

cases a simple top down procedure has the best power-size trade-off. Moreover, for|t| < 4 there

are some cases when subset strategies have the highest probability of finding the true DGP. On the

other hand, for absolutet-values larger than 4, the conservative variant ofPcGetsconsistently se-

lects the true DGP with highest probability. Overall, for the DGPs considered here, the differences

betweenPcGetsand SC based subset methods are surprisingly small given the fact thatPcGetsis

based on multiple search paths. But searching over multiple search paths obviously pays in some

situations: The forecast comparison indicates a clear advantage of thePcGetsalgorithm for the

DGPs considered in our Monte Carlo experiment.

In this study we only considered stationary DGPs. A natural extension will therefore include the

investigation of different model selection methods in the presence of integrated and cointegrated

time series.
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Table 1: ThePcGetsalgorithm

Stage 0. Statistical analysis of the GUM

1. Estimation and test of the GUM;

2. Outlier correction;

3. Adjust significance level of diagnostics;

4. Lag order pre-selection.

Stage I. Pre-search reductions

1. Lags and variables pre-selection;

2. Sequential block reduction

• Sort regressor in order of theirt2 values

• Two-step top-down reduction and bottom-up reduction pathes;

• Encompassing.

Stage II. Recursive multiple-path encompassing search

1. Sequential estimation and test of reductions

(a) Remove insignificant variables.

(b) Model reductions are subjected to a wide range of diagnostic tests:

• Chow tests for structural stability;

• residual autocorrelation;

• ARCH effects in the residuals;

• normality;

• heteroscedasticity.

2. Encompassing

(a) If a unique valid model survives, it becomes the selected model;

(b) If there is a new set of non-dominated valid reductions, their union becomes

the new general model and the search recommences;

(c) If the algorithm converges to a particular set, no further reduction is feasible.

Stage III. Sub-sample evaluation

1. Test the significance of every selected variable in two overlapping sub-samples;

2. Penalize variables accordingly.
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Table 2: Parameters for the 2-dimensional DGP (3.1) andT = 100

ν1 ν2 a11,1 a21,1 a12,1 a22,1 a21,2 Σu modulusa

|t| = 2 0.213 0.214 0.192 0.196 -0.185 0.191 0.202IK .43; .20

|t| = 3 0.352 0.353 0.276 0.289 -0.250 0.267 0.307IK .57; .23

|t| = 4 0.531 0.538 0.348 0.379 -0.286 0.323 0.419IK .68; .26

|t| = 5 0.748 0.787 0.407 0.467 -0.298 0.358 0.538IK .76; .28
aModulus of nonzero reverse characteristic roots of VAR process.

Table 3: Parameters for the 3-dimensional DGP (3.2) andT = 100

ν1 ν2 a11,1 a22,1 a33,1 a11,2 a21,2 a12,2 σ2
1 modulusa

|t| = 2 0.212 0.214 0.193 0.192 0.196 0.193 0.192 -0.187 0.951 .53; .36; .20

|t| = 3 0.320 0.360 0.279 0.275 0.287 0.280 0.299 -0.237 0.745 .65; .41; .29

|t| = 4 0.502 0.575 0.357 0.346 0.371 0.363 0.366 -0.287 0.706 .75; .43; .37

|t| = 5 0.598 0.930 0.429 0.403 0.447 0.448 0.535 -0.244 0.389 .82; .45; .44
aModulus of nonzero reverse characteristic roots of VAR process.
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Figure 1: Significance level oft-tests used by the liberal (αLIB) and conservative (αCON ) strategy

of PcGetsand implied by the information criteria AIC, HQ and SC
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Figure 2: DGP (3.1): Power – size trade-off
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Figure 3: DGP (3.2): Power – size trade-off
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Figure 4: DGP (3.1): Selection versus non-deletion probabilities
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Figure 5: DGP (3.2): Selection versus non-deletion probabilities
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Figure 6: Probability of finding the DGP (3.1)
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Figure 7: Probability of finding the DGP (3.2)
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Figure 8: NormalizedMSE of impulse-responses relative to the unrestricted VAR(4)
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Figure 9: NormalizedMSE of predictions relative to the unrestricted VAR(4)
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