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Abstract

In Structural Vector Autoregressive (SVAR) models, heteroskedasticity can be ex-

ploited to identify structural parameters statistically. In this paper, we propose to cap-

ture time variation in the second moment of structural shocks by a stochastic volatility

(SV) model, assuming that their log variances follow latent AR(1) processes. Esti-

mation is performed by Gaussian Maximum Likelihood and an efficient Expectation

Maximization algorithm is developed for that purpose. Since the smoothing distribu-

tions required in the algorithm are intractable, we propose to approximate them either

by Gaussian distributions or with the help of Markov Chain Monte Carlo (MCMC)

methods. We provide simulation evidence that the SV-SVAR model works well in

estimating the structural parameters also under model misspecification. We use the

proposed model to study the interdependence between monetary policy and the stock

market. Based on monthly US data, we find that the SV specification provides the

best fit and is favored by conventional information criteria if compared to other mod-

els of heteroskedasticity, including GARCH, Markov Switching, and Smooth Transition

models. Since the structural shocks identified by heteroskedasticity have no economic

interpretation, we test conventional exclusion restrictions as well as Proxy SVAR re-

strictions which are overidentifying in the heteroskedastic model.
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1 Introduction

Since the seminal contribution of Sims (1980), structural vector autoregressive (SVAR) mod-

els have been used extensively in applied macroeconomic research. Based on a reduced form

model capturing the common dynamics of time series vectors, identifying restrictions are

introduced to back out structural shocks and estimate their dynamic causal effects on the

endogenous variables. Popular identifying restrictions include short- and long-run restric-

tions on the effects of structural shocks (Sims; 1980; Bernanke & Mihov; 1998; Blanchard

& Quah; 1989), sign restrictions (Faust; 1998; Canova & De Nicoló; 2002; Uhlig; 2005) and

identification via external instruments, also known as Proxy SVARs (Mertens & Ravn; 2013;

Stock & Watson; 2012).1

Another approach for identification of SVAR models that enjoys increasing interest is

based on statistical identification and assumes heterogeneity in the second moment of struc-

tural shocks. Various specifications have been proposed to model heteroskedasticity within

SVARs, starting with a simple exogenous breakpoint model (Rigobon; 2003), Markov Switch-

ing mechanisms (Lanne, Lütkepohl & Maciejowska; 2010), a GARCH- (Normandin & Pha-

neuf; 2004) and a Smooth Transition model (Lütkepohl & Netsunajev; 2014). In this paper,

we contribute to the literature by proposing a stochastic volatility (SV) model to identify

the SVAR parameters. Specifically, we assume that the log variances of structural shocks

are latent, each following independent AR(1) processes. To the best of our knowledge, this

model has not yet been used for identification in the SVAR literature.

A stochastic volatility model for the variance of structural shocks is an attractive spec-

ification for various reasons. First, SV models enjoy increasing popularity in theoretical

macroeconomic literature. For example, within DSGE models fitted to US data, Justiniano

& Primiceri (2008) and Fernández-Villaverde & Rubio-Ramı́rez (2007) use SV models and

find substantial time variation in the second moments of their structural shocks. On the

empirical side, SV is typically used in time varying parameter VAR models and has been

found to describe the volatility of macroeconomic data very well, including the slowly decay-

ing variance of U.S. macroeconomic aggregates known as the Great Moderation (Primiceri;

2005; Koop & Korobilis; 2010). Given this context, it seems natural to exploit the model

also for identification purposes within SVAR analysis. Second, the SV model is known to be

very flexible, particularly in comparison to ARCH type of models with deterministic variance

rules. As pointed out in Kim, Shephard & Chib (1998), this additional flexibility typically

translates into superior fit than equally parameterized models from the GARCH family. We

find this to be confirmed in our empirical example where a simple SV model provides the

best model fit with a relatively small amount of parameters and therefore, is favored by

any conventional information criterion (IC). This is an important aspect, given that recent

evidence of Lütkepohl & Schlaak (2017) suggests to choose the heteroskedasticity model of

SVARs by information criteria. With the help of a simulation study, the authors find that

choosing the model by IC can “reduce the mean squared error of impulse response estimates

relative to a model that is chosen arbitrarily based on the personal preferences”. Finally,

1For an extensive review of identification methods for SVAR models we refer to Kilian & Lütkepohl

(2017).
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we find that the SV-SVAR model works very well in identifying structural parameters also

under model misspecification, and is able to capture volatility patterns generated by different

data generating processes (DGPs). In a stylized simulation study involving four different

DGPs, the SV model performs well in terms of mean squared error of impulse response

functions identified via heteroskedasticity, particularly if compared to other models designed

to capture variation in the second moments of the structural shocks.

Unfortunately, estimation of the proposed model is relatively difficult in comparison to

alternative specifications for the variance. The main obstacle is that SV models have a non-

linear state space representation and hence, standard linear filtering algorithms cannot be

applied for evaluate the likelihood function. However, many estimation methods have been

proposed in the literature to overcome this difficulty starting with Generalized Methods of

Moments (Melino & Turnbull; 1990), Quasi Maximum Likelihood (Harvey, Ruiz & Shep-

hard; 1994; Ruiz; 1994), Simulated Likelihood (Danielsson & Richard; 1993) and Bayesian

methods (Kim et al.; 1998) based on Markov Chain Monte Carlo (MCMC) simulation. In

this paper, we follow Durbin & Koopman (1997) and Chan & Grant (2016) in evaluating

the likelihood function by importance sampling (IS) in a computationally efficient way. To

maximize the likelihood function we develop two versions of an Expectation Maximization

(EM) algorithm. The first is based on a Laplace approximation for the intractable E-step

and relies on sparse matrix algorithms developed for Gaussian Markov random fields (Rue,

Martino & Chopin; 2009; Chan; 2017). Therefore, the algorithm is fast and typically con-

verges within seconds. Our second EM algorithm approximates the E-step by Monte Carlo

integration, exploiting that the error term of a log-linearized state equation can be accu-

rately approximated by a mixture of normal distributions (Kim et al.; 1998). Conditional

on simulated mixture indicators, the model is normal and linear, allowing to compute the

expectations necessary in the E-step by standard Kalman smoothing recursions. Thereby,

the Laplace approximation can be avoided at the cost of higher computational effort. How-

ever, after fitting the model to various simulated and real datasets, our experience is that

only negligible gains in the likelihood can be achieved by using the Monte Carlo based al-

gorithm. Therefore, we recommend the usage of the computational more efficient Laplace

approximation.

In an empirical application, we use the proposed model to identify the structural pa-

rameters of a VAR specified by Bjørnland & Leitemo (2009). Within conventional SVAR

analysis, they study the interdependence between monetary policy and the stock market

based on short- and long-run restrictions. We find that if compared to other heteroskedastic

models typically used to identify the SVAR parameters statistically, the SV model provides

superior fit and is favored by all conventional information criteria. Since the structural

shocks identified by heteroskedasticity cannot be interpreted without further economic nar-

rative, we follow Lütkepohl & Netšunajev (2017) and test the exclusion restrictions used

by Bjørnland & Leitemo (2009). In addition, we also test Proxy SVAR restrictions which

arise if the narrative series of Romer & Romer (2004) and Gertler & Karadi (2015) are used

as external instruments to identify a monetary policy shock. Our results indicate that the

short-run restrictions of Bjørnland & Leitemo (2009) and Proxy SVAR restrictions based
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on the shock of Gertler & Karadi (2015) are rejected by the data. However, we do neither

find evidence against imposing the long-run restriction of Bjørnland & Leitemo (2009) nor

against identifying a monetary policy shock by the Romer & Romer (2004) series.

The paper is structured as follows. Section 2 introduces the SVAR model with stochastic

volatility and discusses under which conditions the structural parameters are identified.

Section 3 considers Gaussian Maximum Likelihood estimation and presents an efficient EM

algorithm. In section 4 we go through a testing procedure which allows to assess whether

there is enough heteroskedasticity in the data to identify all structural parameters. In section

5, we present simulation evidence while in section 6 we apply the proposed model to study

the interdependence between US monetary policy and stock markets. Section 7 concludes.

2 Identification of SVAR via Stochastic Volatility

In the following section, we introduce the SVAR model subject to stochastic volatility in the

variances and discuss the conditions under which the structural parameters are identified

via heterogeneity in the second moments. Let yt be a K × 1 vector of endogenous variables.

The most general SV-SVAR model reads:

yt = ν +

p∑
i=1

Aiyt−i + ut, (2.1)

ut = BV
1
2
t ηt, (2.2)

where ηt ∼ (0, In) is assumed to be a white noise error term. Equation (2.1) corresponds to

a standard reduced form VAR(p) model for yt capturing common dynamics across the time

series data by a linear specification. Here, Ai for i = 1, . . . , p are K ×K matrices of autore-

gressive coefficients and ν a K×1 vector of intercepts. Equation (2.2) models the structural

part and is set up as a B-model in the terminology of Lütkepohl (2005). The correlated error

terms ut are decomposed into a linear function of K structural shocks εt = V
1
2
t ηt, with B a

K ×K contemporaneous impact matrix and V
1
2
t a stochastic diagonal matrix with strictly

positive elements capturing conditional heteroskedasticity in the structural shocks εt. The

specification yields a time-varying covariance matrix of the reduced form errors ut given as

Σt = E(utu
′
t) = BVtB

′. In this paper, we specify a basic SV model for the first r ≤ K

diagonal elements of Vt corresponding to the variances of the first r structural shocks:

Vt =

[
diag(exp([h1t, . . . , hrt]

′)) 0

0 IK−r

]
, (2.3)

hit = µi + φi(hi,t−1 − µi) +
√
siωit, for i = 1, . . . , r. (2.4)

We assume that ωit ∼ N (0, 1) and E(ε′tωt) = 0 for ωt = [ω1t, . . . , ωrt]
′. In words, the first r log

variances of εt contained in the diagonal elements of Vt are assumed to be latent independent

Gaussian AR(1) processes. Their unconditional first and second moments are given by

E(hit) = µi and Var(hit) = si/(1 − φ2
i ). Note that the proposed model for equation (2.2)

is very similar to the Generalized Orthogonal GARCH (GO-GARCH) model from Van der
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Weide (2002) and Lanne & Saikkonen (2007), with the major difference in the specification

of Vt. While for the GO-GARCH the first r diagonal components are modeled by observable

univariate GARCH(1,1) processes, we model their logarithms as latent AR(1)’s.

In order to conduct structural analysis with the proposed model, the contemporaneous

impact matrix B must be identified. Following Sentana & Fiorentini (2001) and Lanne

et al. (2010), we show that identification via heteroskedasticity depends crucially on the

number of heteroskedastic shocks r. For that purpose, let B = [B1, B2] with B1 ∈ RK×r and

B2 ∈ RK×(K−r). In Proposition 1 of Appendix A, we show that B1 is identified up to sign

changes, given that the r heteroskedastic shocks have some heterogeneity in their variance

which allows to discriminate amongst them.2 This means that for all i ∈ {1, . . . , r} and

j 6= i ∈ {1, . . . , K} there must be a t ∈ {1, . . . , T} such that hit 6= hjt, where hjt = 1 for

j ∈ {r + 1, . . . , K}. Orthogonality constraints of the structural shocks also yield that B2 is

identified if r = K − 1 (Corollary 1). This means that for full identification of B, all but

one structural shock must be heteroskedastic. In case that r < K − 1, B is only partially

identified and further identifying restrictions are necessary.3

Note that some normalizing constraints are needed to ensure that the scale of the elements

in B and hi is unique. Similar to the GO-GARCH, we normalize the expected unconditional

variance of the structural shocks to unity, that is E(ε2
it) = 1. Note that from the properties

of a log-normal distribution, E(exp(hit)) = exp
(
µi + si

2(1−φ2i )

)
. Therefore, we simply set

µi = − si
2(1−φ2i )

and impose the linear constraint on the first sample moment:

Ahhi = µi, (2.5)

where Ah = 1T
′/T and hi = [hi1, . . . , hiT ]′. To initialize the latent variables, we assume that

at t = 1, hi1 ∼ N (µi, si/(1 − φ2
i )) which corresponds to the unconditional distribution of

hit. Note that an alternative normalization constraint would be to set E(hi1) = Var(hi1) = 0

which implies E(u1u
′
1) = BB′ as imposed e.g. by Markov Switching SVAR models (Lanne

et al.; 2010; Herwartz & Lütkepohl; 2014). However, the latter would require additional r

free parameters to capture nonzero means in the log variances. Furthermore, we find the

linear constraint of equation (2.5) to yield numerically stable results at trivial computational

extra costs.

3 Maximum Likelihood Estimation

Let φ = [φ1, . . . , φr]
′ and s = [s1, . . . , sr]

′. In order to estimate the parameter vector θ =

[vec([ν,A1, . . . , Ap])
′, vec(B)′, φ′, s′]′, we recur to Gaussian maximum likelihood estimation.

Assuming normality of ηt, the likelihood function based on the prediction error decomposition

is given as follows:

L(θ) =
T∑
t=1

[
−K

2
log(2π)− 1

2
log |BVt|t−1B

′| − 1

2
u′t(BVt|t−1B

′)−1ut

]
,

2Also column permutations are allowed if B and Vt are permuted jointly.
3We discuss possibilities to estimate the model under partial identification in section 4.
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where ut = yt − ν −
∑p

i=1Aiyt−i and Vt|t−1 = E[Vt|Ft−1] are one-step ahead predicted

variances conditional on information at time t− 1. Since the SV model implies a nonlinear

state space model, the predictive distributions p(hit|yt−1, θ) necessary to compute Vt|t−1 are

not available in closed form. Therefore, the likelihood is intractable and standard Kalman

based estimation algorithms cannot be applied. Fortunately, many estimation methods have

been proposed in the literature to overcome this difficulty starting with Generalized Methods

of Moments (Melino & Turnbull; 1990), Quasi Maximum Likelihood (Harvey et al.; 1994;

Ruiz; 1994), Simulated Likelihood (Danielsson & Richard; 1993) and Bayesian methods

(Kim et al.; 1998) based on Markov Chain Monte Carlo (MCMC) simulation.4 We follow

Durbin & Koopman (1997) and Chan & Grant (2016) in evaluating the likelihood function

by importance sampling in a computational efficient way. In order to reach a maximum, we

develop an Expectation Maximization algorithm that leads to fast and reliable results.

3.1 Evaluation of the Likelihood

To evaluate the likelihood by importance sampling, we further simplify the likelihood func-

tion:

L(θ) =− T log |B|+
T∑
t=1

n∑
i=1

[
−1

2
log(2π)− 1

2
log(vit|t−1)− 1

2
ε2
it/vit|t−1

]
,

=− T log |B|+
n∑
i=1

log p(εi|θ),

where εt = B−1ut. Therefore, given autoregressive coefficients and contemporaneous impact

matrix, likelihood evaluation of the SV-SVAR model reduces to the evaluation of K univari-

ate densities for each structural shock εi. Note that for the last (K−r) shocks these densities

are trivial to compute since vit|t−1 = 1. However, log p(εi|θ) for i ≤ r is not tractable. We

follow Chan & Grant (2016) and use importance sampling to evaluate these densities. Note

that the likelihood evaluation of a heteroskedastic shock reduces to the problem of evaluating

the high-dimensional integral:

p(εi|θ) =

∫
p(εi|θ, hi)p(hi|θ)dhi (3.1)

for i = 1, . . . , r. Let q(hi) be a proposal distribution from which independent random

numbers h
(1)
i , . . . , h

(R)
i can be generated, and further let q(hi) dominate p(εi|θ, hi)p(hi|θ).

An unbiased importance sampling estimator of the integral in equation (3.1) is then:

p̂(εi|θ) =
1

R

R∑
j=1

p(εi|θ, h(j)
i )p(h

(j)
i |θ)

q(h
(j)
i )

. (3.2)

Note that in order to be able to assess the precision of the likelihood estimator given in

equation (3.2) and assure
√
R-convergence, the variance of the importance weights must

exist. For likelihood evaluation of stochastic volatility models with their high-dimensional

integrals, this is not clear a-priori. Based on extreme value theory, Koopman, Shephard &

4For an extensive review we recommend the paper of Broto & Ruiz (2004).
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Creal (2009) develop formal tests to check the existence of the variance. We recommend

their usage and in addition, to assess the Monte Carlo error by re-estimating the likelihood

several times and reporting a range of possible values.

In the following, we discuss in detail the choice of the importance density q(hi) critical

to the success of the IS estimator in equation (3.2). Note that the zero variance importance

density is given by the smoothing distribution p(hi|θ, εi) ∝ p(εi|θ, hi)p(hi|θ). However, the

normalizing constant is unkown which is why we need the IS estimator after all. We follow

Durbin & Koopman (1997, 2000) and rely on a Gaussian importance density πG(hi|εi, θ)
centered at the mode with precision equal to the curvature at this point. For computational

reasons we rely on fast algorithms that exploit the sparse precision matrices of Gaussian

Markov random fields as used e.g. in Rue et al. (2009) for a broad class of models and Chan

& Grant (2016) for stochastic volatility models in particular.

To derive πG(hi|εi, θ), note that the normal prior for hi implies the following explicit form

of the zero variance IS density:

p(hi|εi, θ) ∝ exp

(
−1

2
(hi − δi)′Qi(hi − δi) + log p(εi|hi, θ)

)
,

where Qi = H ′iΣ
−1
hi
Hi,

Hi =


1 0 0 . . . 0

−φi 1 0 . . . 0

0 −φi 1 . . . 0
...

. . . . . . . . .
...

0 0 . . . −φi 1

 ,

and Σhi = diag([
s2i

1−φi , s
2
i , . . . , s

2
i ]
′). Furthermore, it is δi = H−1

i δ̃i with δ̃i = [µi, (1 −
φi)µi, . . . , (1 − φi)µi]

′ (Chan & Grant; 2016). The Gaussian approximation is based on a

second order Taylor expansion of the nonlinear density log p(εi|hi, θ) around h̃
(0)
i :

log p(εit|hit, θ) ≈ log p(εit|h̃(0)
it , θ) + bithit −

1

2
cith

2
it, (3.3)

where bit and cit depend on h̃
(0)
it . Based on the linearized kernel, the approximate smoothing

distribution takes the form of a Normal distribution πG(hi|εi, θ) with precision matrix Q̄i =

Qi +Ci and mean δ̄i = Q̄−1
i (bi +Qiδi), where Ci = diag([ci1, . . . , ciT ]′) and bi = [bi1, . . . , biT ]′.

The T -dimensional density has a tridiagonal precision matrix which allows for very fast

generation of random samples and likelihood evaluation. The approximation is fitted around

the mode of log p(εi|hit, θ) obtained by a Newton Raphson method and typically converges

in few iterations. Details on the Newton Raphson and on explicit expressions for bit and cit

are given in Appendix B. Finally, to account for the linear restriction Ahhi = µi, the mean

is corrected by:

δ̄ci = δ̄i − Q̄−1
i A′h(AhQ̄

−1
i A′h)

−1(Ahδ̄i − µi), (3.4)

which is known as conditioning by kriging (Rue et al.; 2009) and yields the correct ex-

pected value of πG(hi|εi, θ) under the linear constraint. Note that the corrected covariance
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Cov(hi|εi, θ, Ahhi=µi) = Q̄−1
i − Q̄−1

i A′h(AhQ̄
−1
i A′h)

−1AhQ̄
−1
i is a full matrix of rank T − 1 so

that sparse algorithms cannot be exploited anymore for direct sampling and density evalu-

ation. Following Rue & Martino (2007), sampling and evaluation of the importance density

under linear constraints can still be implemented at trivial extra costs. Specifically, first a

random sample h̃
(j)
i is generated from the unconstrained distribution N (δ̄i, Q̄

−1
i ), exploiting

the sparse precision Q̄−1
i . In a second step, the draw is corrected for the linear constraint

by setting h
(j)
i = h̃

(j)
i − Q̄−1

i A′h(AhQ̄
−1
i A′h)

−1(Ahh̃
(j)
i − µi). Also evaluation of the restricted

density can be achieved efficiently by applying Bayes Theorem:

πcG(hi|εi, θ) =
πG(hi|εi, θ)π(Ahhi|hi)

π(Ahhi)
, (3.5)

where πG(hi|εi, θ) ∼ N (δ̄ci , Q̄
−1
i ), log π(Ahhi|hi) = −1

2
log |AhA′h| as well as π(Ahhi) ∼

N (Ahδi, AhQ̄
−1
i A′h).

3.2 EM Algorithm

To reach an optimum of the likelihood function, we exploit the derivative free Expectation

Maximization algorithm first introduced by Dempster, Laird & Rubin (1977). The EM

procedure is particularly suitable for maximization problems under the presence of hidden

variables. Let h = [h1, . . . , hr] denote the hidden variables, then the goal is to maximize:

L(θ) = log p(y|θ) = log

∫
p(y|h, θ)p(h|θ)dh.

Following the exposition of Neal & Hinton (1998) and Roweis & Ghahramani (2001), let p̃(h)

be any distribution of the hidden variables, possibly depending on θ and y. Then a lower

bound on L(θ) can be obtained by:

L(θ) = log

∫
p(y|h, θ)dh = log

∫
p̃(h)

p(y|h, θ)p(h|θ)
p̃(h)

dh

≥
∫
p̃(h) log

(
p(y|h, θ)p(h|θ)

p̃(h)

)
dh

=

∫
p̃(h) log (p(y|h, θ)p(h|θ)) dh−

∫
p̃(h) log p̃(h)dh

= F (p̃, θ),

where the inequality arises by Jensen’s inequality. The EM algorithm starts with some initial

guess θ(0), and proceeds by iteratively computing:

E-step: p̃(l) = arg max
p̃

F (p̃, θ(l−1)), (3.6)

M-step: θ(l) = arg max
θ

F (p̃(l), θ). (3.7)

Under mild regularity conditions the EM algorithm converges reliably towards a local opti-

mum.5 It is easy to show that the maximum of the E-step in (3.6) is given by the smoothing

5For details on convergence, we refer to the textbook treatment in McLachlan & Krishnan (2007).
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distribution p(h|θ(l−1), y) since then F (p̃, θ) equals L(θ). The M-step in equation (3.7) re-

duces to maximizing the criterion function:

Q(θ; θ(l)) = Eθ(l−1) (log p(y|h, θ)p(h|θ)) ,

where the expectation is taken with respect to p̃(l)(h). Maximization of the complete data

likelihood Lc(θ) = log p(y|h, θ)p(h|θ) is easy in the heteroskedastic SVAR model. Unfortu-

nately, a straightforward application of the EM principle is not possible for the SV model

since the smoothing density p(h|θ(l−1), y) necessary in the E-step is not tractable. We pro-

pose two approaches to approximate this density, one based on an analytical approximation

and the other based on Monte Carlo integration. Our analytical approximation uses:

p̃(l)(h) = πcG(hi|εi, θ(l−1)), (3.8)

which is the Gaussian approximation of the smoothing distribution that we already intro-

duced as importance density. As highlighted by Neal & Hinton (1998), it is not necessary

to work with the exact smoothing distribution to get monotonic increases in the likelihood

function L(θ). Neal & Hinton (1998) show that in fact, F (p̃, θ) = L(θ)−DKL (p̃(h)||p(h|y, θ))
where DKL(·||·) is the Kullback - Leibler (KL) divergence measure. Therefore, if the Gaus-

sian approximation is close to the smoothing density in a KL sense, iteratively optimizing

F (p̃, θ) will yield convergence to a point very close to the corresponding local maximum of

L(θ). In the following, we refer to this algorithm as EM-1 and for more details we refer to

Appendix C.1.

The second approach is based on Monte Carlo integration in the E-step, drawing on results

of Kim et al. (1998).6 It is based on the linearized state equation of the r heteroskedastic

structural shocks:

log(ε2
it) = hit + log(η2

t ), (3.9)

where ηt ∼ N(0, 1), E (log(η2
t )) = −1.2704 and Var(log(η2

t )) = π2

2
. Kim et al. (1998) propose

to approximate the logχ2-distribution of the linearized state equation by a mixture of seven

normal distributions. The mixture is specified as:

p(log(η2
t )|zit = k) ≈ N (log(ε2

it);mk, v
2
k), (3.10)

p(zit = k) = pk, (3.11)

with mixture parameters pk,mk, v
2
k tabulated in Table 5 of Appendix C.2. In the following,

this mixture representation is exploited to get a Monte Carlo approximation of the E-step.

Therefore, let zt = [z1t, . . . , zrt]
′ and z = [z1, . . . , zT ]′ be the collection of mixture indicators.

Given R random samples of z(j), a Monte Carlo smoothing distribution is given as:

p(hi|θ, y) ≈ 1

R

R∑
j=1

p(hi|θ, y, z(j)
i ), (3.12)

6See also Mahieu & Schotman (1998) for a similar Monte Carlo EM algorithm to estimate a univariate

SV model.
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where p(hi|θ, y, z(j)
i ) is Gaussian with tractable mean and variance. The random samples of

z are generated efficiently by MCMC, involving iteratively sampling between p(hi|zi, θ(l−1))

and p(zi|hi, θ(l−1)). For computational reasons, we rely on the precision sampler of Chan &

Jeliazkov (2009) which exploits the sparsity in the precision matrix and allows for straight-

forward extension to implement the linear normalizing constraint on hi. The M-step for the

Monte Carlo EM algorithm reduces to maximizing the criterion function:

Q̃(θ; θ(l)) =
1

R

R∑
j=1

Ez(j),θ(l−1)Lc(θ),

where expectation is taken with respect to p(hi|θ(l−1), y, z
(j)
i ). In the remainder, we call the

Monte Carlo based algorithm EM-2. For details on the MCMC algorithm and the M-steps,

we refer to Appendix C.2.

3.3 Standard Errors

We compute standard errors for the model parameters θ based on the estimated observed

information matrix. For algorithm EM-1, we evaluate the likelihood in closed form based on

the Gaussian approximation used in the E-step. Based on Bayes Theorem:

log p(εi|θ) ≈ log p(εi|hi, θ) + log p(hi|θ)− log πcG(hi|θ, εi), (3.13)

which can be evaluated for any hi. For convenience, the r likelihoods for the heteroskedastic

structural shocks are evaluated at the mean hi = δ̄ci , such that the exponential term in

πcG(hi|θ, εi) drops out. Therefore, based on (3.13) the complete log likelihood is approxi-

mately given as:

L(θ) ≈ −T log |B|+
K∑
i=1

[log p(εi|hi, θ) + log p(hi|θ)− log πG(hi|θ, εi)] ,

which is numerically differentiated twice with respect to the parameter vector θ to obtain the

estimated observed information matrix I(θ̂) = −∂2L(θ)
∂θ∂θ′

∣∣
θ=θ̂

. Based on standard asymptotic

theory for ML estimation, Cov(θ̂) ≈ I(θ̂)−1.

For the Monte Carlo based algorithm EM-2, the computation of standard errors is more

involved. We use Louis Identity (Louis; 1982) for the observed information matrix:

I(θ̂) = E
[
Ic(θ̂)|y

]
− Cov(Sc(θ)|y)

∣∣
θ=θ̂

, (3.14)

where Ic(θ̂) = −∂2Lc(θ)
∂θ∂θ′

∣∣
θ=θ̂

, Sc(θ) = ∂Lc(θ)
∂θ

.

Note that the integrals in the expected value and variance of (3.14) are with respect to

the smoothing distribution at the ML estimator p(h|y, θ̂) which is intractable for the SV

model. However, based on simulated values of the mixture indicators z(j)(j = 1, . . . , R),

Monte Carlo integration is feasible with:

E
[
Ic(θ̂)|y

]
≈ 1

R

R∑
j=1

−E

[
∂2Lc(θ)
∂θ∂θ′

∣∣∣ z(j)

]
θ=θ̂

,

Cov(Sc(θ)|y)
∣∣
θ=θ̂
≈ 1

R

R∑
j=1

E

[
∂Lc(θ)
∂θ

∂Lc(θ)
∂θ′

∣∣∣ z(j)

]
θ=θ̂

,
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where the second approximation holds since E(Sc(θ)|y)
∣∣
θ=θ̂

= 0. The integrals required

to compute the expected values are with respect to p(h|θ̂, z(j)) which are a collection of

Gaussian distributions. Therefore, their moments can be computed by standard Kalman-

smoother recursions. The derivatives necessary to compute the Louis Method are available

in Appendix C.3.

4 Testing for Identification

As discussed in section 2, the structural impact matrix B is fully identified by heteroskedas-

ticity if at most one structural shock is homoskedastic, that is if r ≥ K − 1. If the goal

is to identify the structural parameters by the proposed SV-SVAR, one has to ensure that

r ≥ K − 1 for the dataset at hand. In the following, we discuss a testing strategy in order

to determine whether there is enough heteroskedasticity in the data for full identification

of B. We closely follow Lanne & Saikkonen (2007) and Lütkepohl & Milunovich (2016)

who discuss tests for identification in GARCH-SVAR models. Specifically, they consider the

following sequence of hypotheses:

H0 : r = r0 vs H1 : r > r0, (4.1)

for r0 = 0, . . . , K − 1. If all null hypothesis can be rejected including r0 = K − 2, there is

evidence for sufficient heteroskedasticity in the data to fully identify B.

The testing problem given in (4.1) is nonstandard since parts of the B matrix are identified

only under the alternative. Therefore, we follow Lanne & Lütkepohl (2008) who suggest a

testing procedure which requires estimation only under H0. In particular, suppose that r0 is

the true value, and divide the structural shocks εt = B−1ut = [ε′1t, ε
′
2t]
′ where ε1t ∈ Rr0 and

ε2t ∈ RK−r0 . Then, under the null hypothesis the first r0 structural shocks ε1t are allowed to

be heteroskedastic while all other shocks ε2t are assumed to be white noise.

Lanne & Saikkonen (2007) propose the following test statistics to check for remaining

heteroskedasticity in ε2t. The first statistic is denoted by Q1 and tests the autocovariances

up to a prespecified horizon H of the following time series vector:

ξt = ε′2tε2t − T−1

T∑
t=1

ε′2tε2t.

Their corresponding test statistic is given as:

Q1(H) = T

H∑
h=1

(
γ̃(h)

γ̃(0)

)2

,

where γ̃(h) = T−1
∑T

t=h+1 ξtξt−h. Lanne & Saikkonen (2007) show that Q1(H) is asymptot-

ically χ2(H)-distributed if the null is true. The second test statistic denoted as Q2 is based

on the autocovariance matrices of the time series vector

ϑt = vech(ε2tε
′
2t)− T−1

T∑
t=1

vech(ε2tε
′
2t),

10



where vech(·) is the half-vectorization operator as defined e.g. in Lütkepohl (2005). The test

statistic is given as:

Q2(H) = T
H∑
h=1

tr
[
Γ̃(h)′Γ̃(0)−1Γ̃(h)Γ̃(0)−1

]
,

where Γ̃(h) = T−1
∑H

t=h+1 ϑtϑ
′
t−h. According to Lanne & Saikkonen (2007), Q2 is asymptot-

ically χ2
(

1
4
H(K − r0)2(K − r0 + 1)2

)
-distributed under the null hypothesis.

Note that in practice, ε2t is replaced by the estimated residual from the model under H0,

where ε̂t = B̂−1ût. Recall that given B = [B1
K×r

, B2
K×(K−r)

], B2 is not identified for r < K − 1.

Therefore, to uniquely identify B under the sequence of H0’s where r0 < K − 1, we impose

zero constraints on B2. In particular, let B2 =

(
B21

B22

)
, we estimate the model under H0

imposing a lower triangular structure on the (K − r)× (K − r) dimensional block B22. As

we show in Corollary 2 of Appendix A, this suffices to uniquely identify B if r < K − 1.

5 Monte Carlo Comparison

In the following, we provide simulation evidence that the proposed SV-SVAR model works

very well in estimating the structural parameters also under model misspecification. There-

fore, we set up a stylized comparative Monte Carlo experiment where we simulate datasets

from four different heteroskedastic DGPs. For each dataset, we estimate the structural pa-

rameters by the SV-SVAR model as well as by the main alternative models: a Breakpoint

SVAR (BP-SVAR), a Markov Switching model (MS-SVAR) and a GARCH model (GARCH-

SVAR).7 To compare their performance, we study cumulated Mean Squared Error (MSE) of

the structural impulse response functions which are probably the most widely used tool in

SVAR analysis.

In our Monte Carlo design we closely follow Lütkepohl & Schlaak (2017) who study model

selection of heteroskedastic SVARs by information criteria. Specifically, we simulate time

series of length T ∈ {200, 500} generated by the bivariate VAR(1) process:

yt = A1yt−1 + ut,

with E(utu
′
t) = Σt = BΛtB

′ for t = 1, . . . , T and

A1 =

(
0.2 0.1

0.1 0.4

)
, B =

(
1 0

−1 10

)
.

For the diagonal matrix Λt, we specify four different heteroskedastic processes listed below.

1. Breakpoint DGP: In the first DGP, we model a one time shift in the variance. In

particular, Λt = IK for t = 1, . . . T/2 and Λt = diag([2, 7]′) for t = T/2 + 1, . . . T .

7For computational reasons, the SV-SVAR model is estimated by EM-1. The breakpoint is estimated

by maximizing the likelihood function over a grid of possible breakdates. The GARCH model is based on

univariate GARCH(1,1) processes and is estimated as discussed in Lanne & Saikkonen (2007).
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2. Markov Switching DGP: In the second DGP, we simulate a MS model with two

regimes and transition probability matrix:

P =

(
.9 .1

.2 .8

)
.

Based on simulated states s1, . . . , sT ∈ {1, 2}, Λst=1 = IK and Λst=2 = diag([2, 7]′).8

The shifts in variances are therefore of equal magnitude than in the Breakpoint DGP.

3. GARCH DGP: For the GARCH DGP, we set Λt = diag([λ1t, λ2t]
′). Each diagonal

entry follows a univariate GARCH(1,1) process, that is:

λit = ci + αiε
2
i,t−1 + βiλi,t−1, i ∈ {1, 2},

where εit =
√
λitηit is the i-th structural shock at time t and ηit ∼ N (0, 1). To ensure

that the structural shocks have an unconditional variance of one, we set the intercept

to ci = (1 − αi − βi). For the remaining GARCH parameters, we set αi = 0.05 and

βi = 0.94 (i = 1, 2) which correspond to values typically estimated for empirical data.9

4. SV DGP: In the last DGP, Λt = diag([exp(h1t), exp(h2t)]
′), with

hit = µi + φi(hi,t−1 − µi) +
√
siωit,

where ωit ∼ N (0, 1). We set µi = 0.5si/(1 − φ2
i ) to ensure that E(ε2

it) = 1, φi = 0.95

and si = 0.04 (i = 1, 2).10

The number of simulated series is set to M = 2000. For each of the models we estimate A1

and B based on the m-th simulated series. Based on these estimates, we compute impulse

response funcions Θ̂i(m) = Â1(m)iB̂(m) for i ≥ 0. Consequently, following the notation

of Lütkepohl (2005), the elements of Θ̂i(m), θ̂jk,i(m) (j, k ∈ {1, 2}), denote the estimated

impulse response functions in variable j caused by a structural innovation k after i periods

based on simulation m. The true impulse response functions θjk,i are calculated in the

same fashion using the true parameter values. Based on these quantities, we compute the

cumulated MSE of response functions up to horizon h:

MSE (θjk)h =
1

M

M∑
m=1

(
h∑
i=0

(
θ̂jk,i(m)− θjk,i

)2
)
. (5.1)

Due to unequal normalizing constraints among the volatility models, we rescale the impulse

responses functions always considering unit shocks.

8To ensure identification through heteroskedasticity, we only accept simulation draws where
T∑

t=1
1{st=i} ≥

0.25T for i = 1, 2.
9Note that the choice of GARCH parameters corresponds to an unconditional kurtosis of εit equal to

four. To ensure sufficiently heteroskedastic structural shocks we only accept draws with a sample kurtosis

of εi of at least 3.5.
10This choice corresponds to a fairly persistent time series with an expected kurtosis of around 4.5. To

ensure sufficiently heteroskedastic structural shocks we only accept draws with a sample kurtosis of at least

3.5.
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Table 1: Cumulated MSEs at horizon h = 5

T=200 T=500

θ11 θ12 θ21 θ22 θ11 θ12 θ21 θ22

B
P

-D
G

P BP 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

MS 1.17 1.17 2.95 2.18 1.03 1.03 2.39 1.19

GARCH 1.11 1.13 4.48 2.24 1.09 1.11 1.73 1.14

SV 0.98 0.95 3.39 1.52 1.01 1.02 3.09 1.22

M
S
-D

G
P BP 1.37 1.49 5.37 3.43 2.30 2.71 15.95 7.20

MS 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

GARCH 1.27 1.38 7.68 4.29 1.74 1.95 7.79 4.25

SV 0.91 0.92 1.32 0.98 1.02 1.01 1.49 1.21

G
A

R
C

H
-D

G
P

BP 1.05 1.13 1.51 1.13 1.25 1.40 2.43 1.62

MS 1.22 1.24 1.58 1.06 1.32 1.38 2.42 2.18

GARCH 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

SV 0.88 0.87 0.39 0.52 1.02 1.03 1.08 1.09

S
V

-D
G

P BP 1.19 1.27 3.53 1.78 1.67 1.92 15.05 3.37

MS 1.31 1.32 2.52 1.70 1.45 1.66 10.48 2.72

GARCH 1.04 1.06 1.56 1.30 1.07 1.10 1.66 1.17

SV 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Note: MSEs of Impulse Response Functions calculated as in (5.1) and displayed

relative to true model MSEs.

In Table 1, the results of the simulation study are provided for a horizon of h = 5.

For improved readability, we report relative MSEs in comparison to the correctly specified

model. We find that the SV-SVAR model performs pretty well regardless of the true DGP

or the sample size. The relative MSEs of this model are close to or even below the correctly

specified model for almost all θjk’s, time series lengths and DGPs. One exception, however,

are the relative MSEs for θ21 with data simulated from a Breakpoint DGP.

If the SV-SVAR is compared to other misspecified models for a certain DGP, we find it

to perform better in two out of three DGPs. For a MS DGP as well as a GARCH DGP,

all impulse responses estimated by a SV-SVAR have lower cumulative MSE than if they

were estimated by the other misspecified models.11 Only in the BP DGP there is no clear

advantage with respect to the other misspecified models.

Summing up, our small simulation study yields promising results indicating that choosing

a SV-SVAR model can be a good idea if the heteroskedasticity pattern is smoothly chang-

ing. However, one might want to be more careful if there is data with a sudden shift in

the variance. For those cases, one should also think about a simpler breakpoint model. Al-

ternatively, allowing for a unit root in the log variances could help as well. We leave this

11For the GARCH-DGP with T = 200, it even performes better than the correctly specified model. This

is likely be driven by the difficulty to estimate the GARCH parameters with few observations.
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specification for future research.

6 Interdependence between Monetary Policy and Stock

Markets

Since the seminal contribution of Sims (1980), structural VAR models represent a frequently

applied instrument to investigate the dynamic causal of monetary policy.12 To identify the

corresponding structural shock, the most simple way involves a Cholesky decomposition

of the reduced form VAR covariance matrix with the policy variable ordered last in the

VAR model (Christiano, Eichenbaum & Evans; 1999; Bernanke, Boivin & Eliasz; 2005).

In accordance with theoretical economic models featuring nominal rigidities (Christiano,

Eichenbaum & Evans; 2005), this implies that only the central bank is allowed to respond

to all movements in the economy on impact, while all variables ordered above react with at

least one lag to the monetary policy shock. While this seems reasonable for slowly moving

real macroeconomic aggregates, such a recursivity assumption becomes unrealistic once fast

moving financial variables are part of the SVAR analysis.

Over the last years, many other identification schemes have been developed to study the

effects of monetary policy shocks avoiding the use of a recursiveness assumption. Bjørnland

& Leitemo (2009) propose a way to identify a monetary policy shock in the presence of stock

market returns in their model. More specifically, they identify a monetary policy shock with

a combination of short- and long-run restrictions on the effects of the policy shock. Besides

zero impact restrictions on real variables, a monetary policy shock is not allowed to have a

long-term impact on stock market returns in their model. This additional restriction allows

to disentangle the monetary policy from financial shocks.

Another promising way to address identification in presence of fast moving variables are

Proxy SVARs based on external instruments (Mertens & Ravn; 2013; Stock & Watson; 2012).

If there is an external time series that is correlated with the structural shock to be identified

and uncorrelated with all other shocks in the system, no exclusion restrictions are necessary

at all. Recently, many narrative measures have been proposed to identify monetary policy

shocks. Widely used are proxies constructed based on either readings of Federal Open Market

Committee (FOMC) minutes (e.g. Romer & Romer (2004) or Coibion (2012)) or changes

in high frequency future prices in a narrow window around FOMC meetings (e.g Faust,

Swanson & Wright (2004); Nakamura & Steinsson (2013); Gertler & Karadi (2015)).13

Finally, heteroskedasticity can be exploited to identify the interdependence between mon-

etary policy and financial variables. For example, Rigobon & Sack (2003) combine identifi-

cation via heteroskedasticity and economic narratives to estimate the reaction of monetary

policy to stock market returns. Also Wright (2012) links economic and statistical identi-

fication within a daily SVAR, assuming that monetary policy shocks have higher variance

12See e.g. Ramey (2016) for an extensive overview of the literature.
13Yet another branch of the literature relies on sign restrictions of the impulse response functions (Faust;

1998; Canova & De Nicoló; 2002; Uhlig; 2005) or on a combination of sign restrictions and information in

proxy variables (Braun & Brüggemann; 2017).
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around FOMC meetings. Even if no economic narrative is available for the statistically iden-

tified structural parameters, the heteroskedastic SVAR model can be used to formally test

conventional identifying restrictions. For example, Lütkepohl & Netšunajev (2017) review

various SVAR models subject to conditional heteroskedasticity and use them to test the

combination of exclusion restrictions employed by Bjørnland & Leitemo (2009).14

In the remainder of this section, we follow Lütkepohl & Netšunajev (2017) and revisit the

analysis of Bjørnland & Leitemo (2009) using the proposed SV-SVAR model. Besides testing

the short- and long-run restrictions used by Bjørnland & Leitemo (2009), we additionally

test Proxy SVAR restrictions that arise if the narrative series of Romer & Romer (2004) and

Gertler & Karadi (2015) are used as instruments for a monetary policy shock.

6.1 Model and Identifying Constraints

The VAR model of Bjørnland & Leitemo (2009) is based on the following variables: yt =

(qt, πt, ct,∆st, rt)
′, where qt is a linearly detrended index of log industrial production, πt

the annualized inflation rate based on consumer prices, ct the annualized change in log

commodity prices as measured by the World Bank, ∆st are S&P500 real stock returns and

rt the federal funds rate. For detailed description of the data sources, transformations and

time series plots see Appendix E. We follow Lütkepohl & Netšunajev (2017) in using an

extended sample period including data from 1970M1 until 2007M6, summing up to a total

of 450 observations. To make our results comparable, we also choose p = 3 lags which is

supported by the AIC applied within a linear VAR model.

In our analysis, we test the following set of short- and long-run constraints used by

Bjørnland & Leitemo (2009):

B =


∗ 0 0 0 0

∗ ∗ 0 0 0

∗ ∗ ∗ 0 0

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗

 and Ξ∞ =


∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ 0

∗ ∗ ∗ ∗ ∗

 , (6.1)

where Ξ∞ = (IK − A1 − . . . − Ap)
−1B is the long-run impact matrix of the structural

shocks on yt. Note than an asterisk means that the corresponding entries in B and Ξ∞

matrix are left unrestricted. The last column of B corresponds to the reaction of yt to a

monetary policy shock. Economic activity, consumer and commodity prices are only allowed

to respond with one lag to a monetary policy shock, while the stock markets are allowed to

move contemporaneously. However, in the long run, a monetary policy shock is assumed to

have a neutral effect on the stock market. The fourth column of B corresponds to a stock

price shock which is constrained to have no contemporaneous impact on activity and prices

while the central bank is allowed adjust the interest rates within the same period. The

remaining shocks do not have an economic interpretation. To uniquely identify the model,

Bjørnland & Leitemo (2009) disentangle these shocks by a simple recursivity assumption.

14See also Lütkepohl & Netsunajev (2014) for a similar analysis based on a Smooth Transition SVAR

model only.
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To be in line with Lütkepohl & Netšunajev (2017), the following restrictions are tested since

they are overidentifying in a heteroskedastic model:

R1: Both, B and Ξ∞ restricted as in (6.1).

R2: Only the last two columns of B and Ξ∞ are restricted as in (6.1).

R3: Only B is restricted as in (6.1).

R4: Only Ξ∞ is restricted as in (6.1).

In addition to test R1 against R3 as in Lütkepohl & Netšunajev (2017), we add R4 as a

more natural way to test the reasonability of the long-run restriction. We further contribute

to the literature by testing Proxy SVAR restrictions that arise if an external instrument

zt is used for identification of a structural shock. The identifying assumptions are that

the instrument is correlated with the structural shock it is designed for (relevance) and

uncorrelated with all remaining shocks (exogeneity). Without loss of generality, assume that

the first shock is identified by the instrument. Then, Mertens & Ravn (2013) show that the

relevance and exogeneity assumption can be translated into the following linear restrictions

on β1, denoting the first column of B:

β21 = (Σ−1
zu′1

Σzu′2
)′β11. (6.2)

where β1 = [β11, β
′
21]′ with β11 scalar and β21 ∈ R

K−1. Furthermore, Σzu′ = Cov(z, u′) =

[Σzu′1
,Σzu′2

] with Σzu′1
scalar and Σ′zu′2

∈ RK−1. In practice, elements of Σzu′ are estimated

by the corresponding sample moments.15 To identify a monetary policy shock, we use the

narrative series constructed by Romer & Romer (2004) (RR henceforth) and Gertler &

Karadi (2015) (GK henceforth). We test the following Proxy SVAR restrictions that arise if

the first column of B is identified via either RR’s or GK’s instrument:

R5rr: IV moment restrictions (6.2) based on the RR shock.

R5gk: IV moment restrictions (6.2) based on the GK shock.

We use the RR series extended by Wieland & Yang (2016) which is available for the whole

sample. The GK shock is only available for a subsample starting in 1990M1. We use their

baseline series which is constructed based on the 3 months ahead monthly fed funds futures.16

Time series plots of both series are available in Appendix E.

6.2 Statistical Analysis

Before we start testing the aforementioned restrictions, we conduct formal model selection

for the variance specification of the structural shocks. By means of information criteria and

15In particular, at each M-step we compute Σ̂zu′ = N−1z

∑T
t=1Dtûtz

′
t where Dt is a dummy indicating

whether the instrument is available at time t and Nz =
∑T

t=1Dt.
16We repeat our analysis for the other instruments available in Gertler & Karadi (2015). The results do

not change qualitatively.
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Table 2: Model Selection by Information Criteria

Linear SV EM1 SV EM2 GARCH STVAR MS2 MS3

lnL −3159.34 −2692.24 −2692.34 −2762.57 −2878.25 −2827.39 −2775.23

AIC 6508.69 5614.48 5614.68 5755.14 5980.51 5878.79 5792.46

BIC 6898.43 6086.27 6086.52 6226.94 6439.99 6338.27 6288.87

Note: lnL - log-likelihood function, AIC=−2 lnL+ 2× np and BIC=−2 lnL+ ln(T )× np with np

the number of free parameters. For SV EM1 and SV EM2 importance sampling gives a range of

[−2692.29,−2692.21] and [−2692.38,−2692.28] for lnL, respectively.

residual plots, we compare a SV, a GARCH, a Markov Switching and a Smooth Transition

(ST) model. Since we use exactly the same data set as Lütkepohl & Netšunajev (2017) we

can directly compare the results except for the SV-SVAR model.

Table 2 reports log likelihood values, Akaike information criteria (AIC) and Bayesian

information criteria (BIC) for a linear VAR and all heteroskedastic models. First of all,

we highlight that it does not matter for the likelihood value of the SV model whether we

use the deterministic approximation (EM-1) or a Monte Carlo based E-step (EM-2). Both

algorithms yield almost identical likelihood values. To assess the Monte Carlo error of the

estimates, we also report a range of values that arise by re-estimating the likelihood 20

times based on R = 30 000 draws of the importance density.17 Comparing the different

models, our results suggest that including time-variation in the second moment is strongly

supported by all information criteria. Moreover, among the heteroskedastic models we find

that particularly models also used in finance are favored, that is the GARCH and SV model.

This might not be surprising given that stock market returns are included in the system.

Among these two, the SV model performs slightly better in terms of information criteria.

Our results deviate from those of Lütkepohl & Netšunajev (2017) who find that a MS(3)

model provides the best description for this dataset. The difference is likely due to the

maximization procedures used for the challenging GARCH likelihood. While Lütkepohl &

Netšunajev (2017) rely on a sequential estimation procedure we take this to provide starting

values and further attempt to compute a local maximum (see Lanne & Saikkonen (2007) for

details). Overall, model selection by IC suggests that the SV-SVAR model provides the best

description of the data.

In accordance with Lütkepohl & Netšunajev (2017), we also look at standardized residuals

as an additional model checking device. Figure 1 provides a plot for the reduced form

residuals ût from the linear model, as well as standardized residuals from all models computed

as ûit/σ̂ii,t where σ̂2
ii,t is the i-th diagonal entry of the estimated covariance matrices Σ̂t.

These plots clearly suggest that none of the other methods is fully satisfactory in yielding

standardized residuals that seem homoskedastic and approximately normally distributed.

17A formal test of Koopman et al. (2009) indicates that the variance of the importance weights is finite

which further supports the validity of our likelihood estimates.
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Figure 1: Reduced form residuals for linear VAR model and standardized Residuals of ST-, MS(2)-,

MS(3)-, GARCH- and SV-SVAR model.
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Table 3: Tests of Identification in SV-SVAR Model

Q1(1) dof p-value Q2(1) dof p-value

r0 = 0 15.02 1 0.00 596.60 225 0.00

r0 = 1 23.82 1 0.00 250.03 100 0.00

r0 = 2 29.40 1 0.00 140.62 36 0.00

r0 = 3 18.31 1 0.00 43.79 9 0.00

r0 = 4 17.27 1 0.00 17.27 1 0.00

Q1(3) dof p-value Q2(3) dof p-value

r0 = 0 52.34 3 0.00 1433.73 675 0.00

r0 = 1 39.67 3 0.00 528.79 300 0.00

r0 = 2 32.70 3 0.00 221.40 108 0.00

r0 = 3 20.21 3 0.00 60.93 27 0.00

r0 = 4 19.83 3 0.00 19.83 3 0.00

Note: Sequence of tests to check the number of heteroskedastic

shocks in the system as introduced in section 4 (Lanne & Saikkonen;

2007).

However, for the SV-SVAR model, standardized residuals seem well behaved with no ap-

parent heteroskedasticity, most of the residuals located between -2 and 2 and virtually no

outliers.18 We conclude that the proposed SV model seems to be the most suitable for our

application and continue our analysis based on this model.

In order to be able to test restrictions R1-R5 as overidentifying, it is necessary to have

enough heteroskedasticity in the data for full identification of B. Recall that for this to hold,

we need at least r = K − 1 structural shocks with time-varying variances. As described in

section 4, we apply a testing strategy based on a sequence of tests with H0 : r = r0 against

H1 : r > r0 for r0 = 0, 1, . . . K − 1. The results of the tests are reported in Table 3. We find

that both tests indicate that there is enough heteroskedasticity in the data, and given that

each null hypothesis is rejected there is substantial evidence that r equals K in our analysis.

Because of the strong statistical evidence for full identification through heteroskedasticity,

we continue our analysis and test the economically motivated restrictions R1-R5 as overi-

dentifying. In Table 4 we provide Likelihood Ratio (LR) test statistics for the restrictions

introduced previously.19 Note that if B is identified under H0, they have a standard asymp-

totic χ2(nr) distribution with nr being the number of restrictions. Since we estimate the

likelihood values with the help of importance sampling, we assess the Monte Carlo error by

re-estimating the likelihoods 20 times and report a range of corresponding p-values.

In line with the findings of Lütkepohl & Netšunajev (2017), our results suggest that R1,

the restrictions of Bjørnland & Leitemo (2009) are rejected by the data. To make sure that

18Formal Jarque-Bera tests on the standardized residuals indeed provide no evidence against normality.
19The likelihood ratio test statistic is given as LR = 2(lnLuc − lnLc) where lnLc is the log likelihood

value under the restrictions (H0), and lnLuc is the unconstrained log likelihood under the alternative (H1).
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Table 4: Test for Overidentifying Restrictions

H0 H1 LR dof p-value pmin pmax

R1 UC 25.854 10 0.005 0.005 0.006

R2 UC 22.982 7 0.002 0.002 0.002

R3 UC 24.245 9 0.004 0.004 0.004

R1 R3 1.609 1 0.205 0.189 0.240

R4 UC 0.701 1 0.402 0.350 0.460

R5rr UC 6.398 4 0.171 0.164 0.183

R5gk UC 256.505 4 0.000 0.000 0.000

Note: For details about overidentifying restrictions see sub-

section 6.1. Likelihood ratio test statistics are computed as

2 (lnLH1
− lnLH0

) and are χ2-distributed under H0.

this result does not come from the lower triangular block corresponding to the non-identified

shocks, Lütkepohl & Netšunajev (2017) also propose to test R2, which are the restrictions in

B corresponding to the impact of monetary policy and stock market shocks. Within the SV

model, these restrictions are also rejected. Testing for the zero restrictions in B in isolation

(R3) also results in a rejection. However, in contrast to Lütkepohl & Netšunajev (2017), we

find that the long-run restriction is not rejected at any conventional significance level if R1 is

tested against R3. This indicates that the long-run restriction is less of a problem, but rather

are these in the short run. To confirm this result, we also test R4 which corresponds to the

long-run restriction on its own. Again, it cannot be rejected which confirms the previous

finding.

With respect to the Proxy SVAR restrictions, we find that identifying a monetary policy

shock with the shock series of Gertler & Karadi (2015) is strongly rejected by the data

with a likelihood ratio statistic exceeding 250. In turn, identification via the narrative

series of Romer & Romer (2004) cannot be rejected at any conventional significance level.

To further understand these results, we compute sample correlations of the instruments zt

with ε̂t, the estimated orthogonal shocks of the unconstrained SV-SVAR model. For GK,

we find Corr(zGKt , ε̂t) = (0.039,−0.066, 0.048,−0.242, 0.430), while for RR, Corr(zRRt , ε̂t) =

(0.042, 0.004, 0.028,−0.017, 0.453). While both shocks are subject to a strong correlation

with one of the statistically identified shocks, the instrument of GK is highly correlated with

at least one more shock. This clearly violates the exogeneity condition of the instrument.

Thereby, our results support the argument of Ramey (2016) who questions the exogeneity of

the GK instrument finding that it is autocorrelated and predictable by Greenbook variables.

In turn, for the RR shock we find that there is little correlation with the remaining structural

residuals of the SVAR. This clearly explains why identification via the RR shock is not

rejected.

Since the Proxy SVAR restrictions based on RR cannot be rejected, we can interpret the

last shock of the unconstrained model as a monetary policy shock for which Corr(zRRt , ε̂5t) =

0.45. In Figure 2 we plot impulse response functions (IRFs) up to 72 months (6 years) of
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Figure 2: IRFs up to a horizon of 72 months of a monetary policy shock with 68% confidence

bounds. The first row plots estimates based on EM-1 (solid line) and EM-2 (dashed line) with

corresponding asymptotic confidence intervals. The second row compares asymptotic (solid line)

and wild bootstrap (dotted line) confidence bounds both computed based on EM-1.

the system variables in response to a monetary policy shock. Besides mean estimates, we

provide 68% asymptotic confidence intervals as well as bounds based on a fixed design wild

bootstrap that preserves the second moment properties of the residuals. For details on their

computation we refer to Appendix D. Again, we note that there is virtually no difference

in using EM-1 or EM-2 to compute the estimates and corresponding standard errors. The

IRFs and their asymptotic confidence bounds coincide for all variables at all horizons. In line

with the IRFs computed by Lütkepohl & Netšunajev (2017) based on other heteroskedastic

models, an unexpected tightening in monetary policy is associated with a puzzling short-

term increase in activity and prices before they reach negative values on the medium and

long term. In turn, commodity prices as well as stock market returns are found to react

significantly negative in the short run, which seems reasonable given that one would expect

a shift in demand towards risk free assets.

7 Conclusion

In this paper, we propose to use a stochastic volatility model to identify parameters of

SVAR models by heteroskedasticity. In particular, we assume that the log variance of each

structural shock is random and evolves according to an AR(1). Conditions for full and

partial identification of the SV-SVAR model are discussed and in order to check whether

they are satisfied for a given dataset, a formal testing procedure is provided. With respect

to estimation, we develop two EM algorithms for Maximum Likelihood inference. The first

algorithm is based on a Laplace approximation of the intractable E-step, while the second

is based on Monte Carlo integration. While we leave the choice of algorithm to individual
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preferences, we experience that in practice little can be gained by using the Monte Carlo

based method. For computational reasons, we therefore recommend the usage of the former.

In a small Monte Carlo study, we compare cumulative MSEs of impulse response functions

estimated by the proposed model with those obtained by other possible specifications for

the variance. The results are promising, and we find that the SV model is very flexible

and works comparatively well in identifying the structural parameters also under model

misspecification.

In an empirical application, we revisit the model of Bjørnland & Leitemo (2009) who

rely on a combination of short- and long-run restrictions to identify monetary policy and

stock market shocks. For their dataset, formal model selection supports a SV specification

in the variance if compared to other heteroskedastic SVARs. We use the SV-SVAR model

to test the identifying restrictions of Bjørnland & Leitemo (2009) as overidentifying. In line

with findings of Lütkepohl & Netšunajev (2017) who test the same restrictions based on

various existing heterosekdastic SVAR models, all types of short-run restrictions considered

are rejected. However, in contrast to Lütkepohl & Netšunajev (2017), we do not reject

the long-run restriction. Besides these exclusion restrictions, we also test the idea of using

external instruments to identify the monetary policy shock. We find that identification by

the instrument of Gertler & Karadi (2015) is rejected in our model. In turn, there is no

evidence against identification via the narrative series of Romer & Romer (2004).
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A Identification

To ensure identification of B in (2.2) we show that under sufficient heterogeneity in the

second moments, there is no B∗ different from B except for column permutations and sign

changes which yields an observationally equivalent model with the same second moment in

ut for all t = 1, . . . , T .

Proposition 1. Let Σ1 = BB′ and Σt = BV ∗t B
′ (t = 2, . . . , T ), where B = [B1, B2]

with B1 ∈ R
K×r, B2 ∈ R

K×(K−r) and V ∗t = diag (v1t, . . . , vrt, 1K−r) be nonsingular K × K
covariance matrices. If for r < K

∀i ∈ {1, . . . , r} : ∀j 6= i ∈ {1, . . . , K} : ∃t ∈ {2, . . . , T} : vit 6= vjt (A.1)

holds, matrix B1 is unique up to multiplication of its columns by −1.

Proof. SupposeQ =

(
Q1 Q3

Q2 Q4

)
, whereQ1 ∈ Rr×r, Q2, Q

′
3 ∈ R(K−r)×r andQ4 ∈ R(K−r)×(K−r)

satisfies Σ1 = BB′ = BQQ′B and (A.2)

Σt = BV ∗t B
′ = BQV ∗t Q

′B′ (t = 2, . . . , T ). (A.3)

From (A.2) directly follows that Q is an orthogonal matrix, i.e. QQ′ = IK what implies

Q1Q
′
1 +Q3Q

′
3 = Ir, (A.4)

Q2Q
′
1 +Q4Q

′
3 = 0, (A.5)

Q2Q
′
2 +Q4Q

′
4 = IK−r. (A.6)

Furthermore, as V ∗t =

(
Λt 0

0 IK−r

)
with Λt = diag (v1t, . . . , vrt), (A.3) yields

Q1ΛtQ
′
1 +Q3Q

′
3 = Λt

(A.4)
=⇒ Q1 (Ir − Λt)︸ ︷︷ ︸

=:Λ∗t

Q′1 = Λ∗t , (A.7)

Q2ΛtQ
′
1 +Q4Q

′
3 = 0

(A.5)
=⇒ Q2ΛtQ

′
1 = Q2Q

′
1. (A.8)

Let q1i (i = 1, . . . , r) be the rows of Q1. Due to (A.7), q1iΛ
∗
t q
′
1i = 1 − vit has to hold for

all i and t. Because of (A.1) for all i there exists a t ∈ {2, . . . , T} with vit 6= 1, so q1i 6= 0

has to hold for all i = 1, . . . , r. Moreover, because q1iΛ
∗
t q
′
1j = 0 holds for all i 6= j and t

due to (A.7), q1i 6= c · q1j has to hold for all c 6= 0. Therefore, the rows of Q1 are linearly

independent so that Q1 has full rank and is thus invertible.
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With (A.8) and the invertibility of Q′1 it follows Q2Λt = Q2 for all t why Q2 equals the zero

matrix because for any i there exists a t such that vit 6= 1 due to (A.1) . Using Q2 = 0 and

(A.6) directly yields Q4Q
′
4 = IK−r, so Q4 is an orthogonal matrix and therefore invertible.

In addition, because of (A.5), Q2 = 0 and the invertibility of Q4, Q3 has to be the zero

matrix. Following to that, (A.4) delivers Q1Q
′
1 = Ir, i.e. Q1 is an orthogonal matrix.

Consequently, (A.7) reduces to Q1ΛtQ
′
1 = Λt for all t ∈ {2, . . . , T}. Using assumption (A.1)

one can show equivalent to Proposition 1 in Lanne et al. (2010) that Q1 is a diagonal matrix

with ±1 entries on the diagonal. This proves the uniqueness of B1 apart from sign reversal

of its columns.

Using Proposition 1 with V ∗t = V −1
1 Vt (cf. (2.3)) for t = 1, . . . , T such that V ∗1 = IK shows

that an observationally equivalent model with the same second moment properties can be

obtained by B∗ = BQ with Q =

(
Q1 0

0 Q4

)
, Q1 ∈ Rr×r a diagonal matrix with ±1 entries

on the diagonal and Q4 ∈ R
(K−r)×(K−r) any orthogonal matrix. Thus, the decomposition

B = [B1, B2] with B1 ∈ R
K×r and B2 ∈ R

K×(K−r) yields uniqueness of B1 apart from

multiplication of its columns by −1. Furthermore, joint column permutations of B1 and V ∗t
for all t = 1, . . . , T obviously keep the second moment properties.

Corollary 1. Assume the setting from Proposition 1 for the special case r = K − 1. Then,

the entire matrix B ∈ RK×K is unique up to multiplication of its columns by −1.

Proof. For r = K−1 matrix Q4 is a scalar with Q2
4 = 1⇒ Q4 = ±1. So, full Q is a diagonal

matrix with ±1 entries on the diagonal. This proves the uniqueness of the full matrix B

apart from sign reversal of it columns.

Corollary 2. Assume the setting from Proposition 1 with B =

(
B11 B21

B12 B22

)
with B11 ∈ Rr×r,

B12 ∈ R
(K−r)×r, B21 ∈ R

r×(K−r) and B22 ∈ R
(K−r)×(K−r) a lower triangular matrix for

r ≤ K − 2. Then, the full matrix B is unique up to multiplication of its columns by −1.

Proof. Let Q =

(
Q1 0

0 Q4

)
be a K ×K matrix such that BQ =

(
B11Q1 B21Q4

B12Q1 B22Q4

)
has the

same structure as B, i.e. B22Q4 is still a lower triangular matrix. Thereby, it directly follows

that Q4 is a lower triangular matrix itself. Moreover, because Q4 is orthogonal, it is also

normal and therefore diagonal. Any diagonal and orthogonal matrix has ±1 entries on the

diagonal. So, full matrix Q is diagonal with ±1 entries on the diagonal. This proves the

uniqueness of B apart from sign reversal of its columns.

B Importance Density

To derive the Gaussian approximation πG(hi|εi, θ) for i = 1, . . . , r of the importance density

we start with Bayes theorem for the true importance density (Chan & Grant; 2016):

log p(hi|εi, θ) ∝ log p(εi|hi, θ) + log p(hi). (B.1)
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The prior for the log variances hi ∼ N
(
δi, Q

−1
i

)
gives the kernel

log p(hi) ∝ −
1

2
(hi − δi)′Qi (hi − δi) . (B.2)

Moreover, the conditional distribution of the structural shocks εit|hit, θ ∼ N (0, exp(hit))

yields log p(εit|hit, θ) ∝ −1
2

(
hit + ε2

ite
−hit
)
, so the partial derivatives are

∂ log p(εit|hit, θ)
∂hit

= −1

2
+

1

2
ε2
ite
−hit =: fit ⇒ fi = (fi1, . . . , fiT ) ,

−∂
2 log p(εit|hit, θ)

∂h2
it

=
1

2
ε2
ite
−hit =: cit ⇒ Ci = diag (ci1, . . . , ciT ) .

Using that, the nonlinear density log p(εi|hi, θ) can be approximated by a second order Taylor

approximation around h̃
(0)
i :

log p(εi|hi, θ) ≈ log p(εi|h̃(0)
i , θ) +

(
hi − h̃(0)

i

)′
fi −

1

2

(
hi − h̃(0)

i

)′
Ci

(
hi − h̃(0)

i

)

= −1

2

h′iCihi − 2h′i

(
fi + Cih̃

(0)
i

)
︸ ︷︷ ︸

=:bi

+ constant.
(B.3)

Combining (B.1), (B.2) and (B.3) provides the normal kernel

log p(hi|εi, θ) ∝ −
1

2

h′i (Ci +Qi)︸ ︷︷ ︸
=:Q̄i

hi − 2h′i (bi +Qiδi)


for the smoothing density which gives the its Gaussian approximation:

πG (hi|εi, θ) ∼ N
(
δ̄i, Q̄

−1
i

)
, with δ̄i = Q̄−1

i (bi +Qiδi) .

Newton-Raphson method:

The Newton-Raphson method to evaluate πcG(hi|εi, θ) at its mode is implemented as follows:

hi is initialized by some vector h
(0)
i satisfying the linear constraint, i.e. Ahh

(0)
i = µi. Then,

h
(l)
i is used to evaluate Q̄i, δ̄i and to iterate

h̃
(l+1)
i = h

(l)
i + Q̄−1

i

(
−Q̄ih

(l)
i + δ̄i

)
= Q̄−1

i δ̄i

h
(l+1)
i = h̃

(l+1)
i − Q̄−1

i A′h
(
AhQ̄

−1
i A′h

)−1
(
Ahh̃

(l+1)
i − µi

)
for l ≥ 0 until convergence, i.e. until

∥∥∥h(l+1)
i − h(l)

i

∥∥∥ < ε for a specified tolerance level ε.
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C EM Algorithm

To fix notation, define the following quantities:

Y 0 := (y1, . . . , yT ) K × T,
A := (ν,A1, . . . , Ap) K ×Kp+ 1,

Y 0
t :=

yt−1

...

yt−p

 Kp× 1,

xt :=

(
1

Y 0
t

)
Kp+ 1× 1,

X := (x1, . . . , xT ) Kp+ 1× T,
y0 := vec(Y 0) KT × 1,

α := vec(A) K(Kp+ 1)× 1,

U := (u1, . . . , uT ) K × T,
u := vec(U) KT × 1,

V −1 := (exp(−h1), . . . , exp(−hT )) K × T.

Then, the VAR can be compactly written as:

y0 = Zα + u,

with Z = (X ′ ⊗ IK), E(uu′) = Σ̃u. Note that its inverse is given by Σ̃−1
u = ([B−1]

′ ⊗
IT )Σ−1

e (B−1 ⊗ IT ) where Σ−1
e = diag(vec(V −1)′).

This yields the following compact representation of the complete data log likelihood:

Lc(θ) ∝− T ln |B| − 1

2

(
y0 − Zα

)′ ([
B−1

]′ ⊗ IT)Σ−1
e

(
B−1 ⊗ IT

) (
y0 − Zα

)
+

r∑
i=1

{
−T

2
ln(si) +

1

2
ln
(
1− φ2

i

)
− 1

2si

([
1− φ2

i

]
[hi1 − µi]2 +

T∑
t=2

([hit − µi]− φi[hi,t−1 − µi])2

)}
.

(C.1)

Starting values are set in the same way for both algorithms. That is

α̂ =
([

(XX ′)−1X
]
⊗ Ik

)
y0,

B̂ = (T−1Û Û ′)
1
2Q with Û = Y 0 − ÂX,

where Q is a K ×K orthogonal matrix uniformly drawn from the space of K-dimensional

orthogonal matrices. Furthermore, we set the r × 1 vectors

φ̂ = [0.9, . . . , 0.9]′,

ŝ = [0.05, . . . , 0.05]′,

which correspond to persistent heteroskedasticity with initial kurtosis of about four for the

structural shocks εi, i = 1, . . . , r.
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C.1 EM-1

Based on starting values θ(0) = [α̂′, vec(B̂)′, φ̂′, ŝ′]′, the EM algorithm iteratively cycles

through the following steps for l ≥ 1:

1. E-step:

For i = 1, . . . , r, compute the approximate smoothing densities πcG(hi|θ(l−1), εi) as de-

scribed in Appendix B with mean δ̄ci and variance Q̄−1
i − Q̄−1

i A′h
(
AhQ̄

−1
i A′h

)−1
AhQ̄

−1
i .

Note that directly inverting Q̄−1
i is unnecessary costly since we only need the marginal

variances Var(hit|θ(l−1), εi) and the first off-diagonal corresponding to Cov(hit, hi,t−1|θ(l−1), εi).

Similar to the Kalman Smoother recursions, they can be obtained without computing

the whole inverse using sparse matrix routines (Rue & Martino; 2007).

2. M-step: Taking expectation with respect to the approximations of p(hi|θ(l−1), εi) for

i = 1, . . . , r and maximizing yields:

(a) Update φi and si for i = 1, . . . , r:

φ
(l)
i =

Sixy
Sixx

,

s
(l)
i =(T − 1)−1

(
Siyy − 2φ

(l)
i S

i
xy +

(
φ

(l)
i

)2

Sixx

)
,

with:

Sixx =
T−1∑
t=1

[
Var(hit|θ(l−1), εi) +

(
E(hit|θ(l−1), εi)− µi

)2
]
,

Siyy =
T∑
t=2

[
Var(hit|θ(l−1), εi) +

(
E(hit|θ(l−1), εi)− µi

)2
]
,

Sixy =
T∑
t=2

[
Cov(hit, hi,t−1|θ(l−1), εi)

+
(
E(hit|θ(l−1), εi)− µi

) (
E(hi,t−1|θ(l−1), εi)− µi

)]
.

(b) Update α. Let Z = (X ′ ⊗ IK), then:

α(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

with Σ̃−1
u =

(
[B−1]

′ ⊗ IT
)

Σ̂−1
e (B−1 ⊗ IT ) and Σ̂−1

e = diag(vec(V̂ −1)). Further-

more, it is:

V̂ −1 =E(V −1|θ(l−1), ε) = (v̂−1
1 , . . . , v̂−1

T ) ∈ RK×T , with

v̂−1
t = exp

(
−E(ht|θ(l−1), εt) +

1

2
Var(ht|θ(l−1), εt)

)
.

The latter is based on the properties of a log-normal distribution. Note that for

i = r + 1, . . . , K, v̂−1
it = 1.

(c) Update B. Therefore, define Û = Y 0 − Â(l)X, then:

B̂(l) = arg max
B∈RK×K

E
[
Lc(B)|y, φ̂(l), ŝ(l), Â(l)

]
∝ −T ln |B|− 1

2
vec(B−1Û)′Σ̂−1

e vec(B−1Û).
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3. Set θ(l) =

[(
α̂(l)
)′
, vec

(
B̂(l)

)′
,
(
φ̂(l)
)′
,
(
ŝ(l)
)′]′

, l = l + 1 and return to step 1.

We iterate between steps 1.-3. until the relative change in the expected complete data

likelihood becomes negligible. Note that strictly spoken, the algorithm is a Generalized EM

algorithm since the M-step of vec(B) depends on α.

C.2 EM-2

In EM-2, the expectations in the E-step are computed based on MCMC integration. Based

on starting values, θ(0), the algorithm iterates between the following steps:

1. E-Step: in order to compute E(h|θ(l−1), ε), we recur to Monte Carlo integration. In

particular, for i = 1, . . . , r we simulate random draws of the mixture indicators z
(j)
i

for j = 1, . . . , R by MCMC using the methodology of Kim et al. (1998) implemented

based on the precision sampler of Chan & Jeliazkov (2009). Note that to break the

autocorrelation of the chain, we only keep every 50th draw. Based on these draws, a

Monte Carlo E-step is given as:

E(hi|θ(l−1), εi) =
1

R

R∑
j=1

E(hi|θ(l−1), εi, z
(j)
i ),

where the expectation is taken with respect to the Gaussian distribution p(hi|θ(l−1), εi, z
(j)
i )

with tractable mean and variance given as:

Σ−1
ij = H ′iΣ

−1
hi
Hi +Gij,

δ̄ij = Σij

(
H ′iΣ

−1
hi
Hiδi +Gij(y

∗
i −mij)

)
,

where y∗i = (ln(ε2
i1), . . . , ln(ε2

iT ))′, and

Gij = diag
(
v2(z

(j)
i1 ), . . . , v2(z

(j)
iT )
)−1

,

mij = diag
(
m(z

(j)
i1 ), . . . ,m(z

(j)
iT )
)
.

For the mixture distribution values see Table 5. Note that again, the moments are

corrected for the linear constraint, that is δ̄cij = δ̄ij − ΣijA
′
h(AhΣijA

′
h)
−1(Ahδ̄ij − µi)

and Cov(hi|εi, θ(l−1), z
(j)
i , Ahhi=µi) = Σij − ΣijA

′
h(AhΣijA

′
h)
−1AhΣij .
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2. M-steps:

(a) Update φi and si for i = 1, . . . , r:

φ
(l)
i =

S̃ixy

S̃ixx
,

s
(l)
i =(T − 1)−1

(
S̃iyy − 2φ

(l)
i S̃

i
xy +

(
φ

(l)
i

)2

S̃ixx

)
,

with:

S̃ixx =R−1

R∑
j=1

T−1∑
t=1

[
Var

(
hit|θ(l−1), εit, z

(j)
it

)
+
(

E
(
hit|θ(l−1), εit, z

(j)
it

)
− µi

)2
]
,

S̃iyy =R−1

R∑
j=1

T∑
t=2

[
Var

(
hit|θ(l−1), εit, z

(j)
it

)
+
(

E
(
hit|θ(l−1), εit, z

(j)
it

)
− µi

)2
]
,

S̃ixy =R−1

R∑
j=1

T∑
t=2

[
Cov

(
hit, hi,t−1|θ(l−1), εit, εi,t−1, z

(j)
it , z

(j)
i,t−1

)
+
(

E
(
hit|θ(l−1), εit, z

(j)
it

)
− µi

)(
E
(
hi,t−1|θ(l−1), εi,t−1, z

(j)
i,t−1

)
− µi

)]
.

(b) Update α. Let Z = (X ′ ⊗ IK), then:

α(l) = (Z ′Σ̃−1
u Z)−1(Z ′Σ̃−1

u y0),

where everything is as in EM-1 but

v̂−1
t =R−1

R∑
j=1

exp

(
−E

(
ht|θ(l−1), εt, z

(j)
t

)
+

1

2
Var

(
ht|θ(l−1), εt, z

(j)
t

))
.

(c) Update B as in EM-1.

3. Set θ(l) =

[(
α̂(l)
)′
, vec

(
B̂(l)

)′
,
(
φ̂(l)
)′
,
(
ŝ(l)
)′]′

, l = l + 1 and return to step 1.

We recommend to set the starting values based on the results of EM-1, which are quickly

available. We set R adaptively as proposed by Caffo, Jank & Jones (2005). In particular, if

it becomes unlikely that the expected complete data likelihood is increased by an additional

cycle of M-steps, R is increased by 100. Furthermore, the algorithm is stopped if a very large

R > R∗ is needed to get a significant increase in the expected complete data likelihood. We

set R∗ = 3000.

33



Table 5: Mixture Components

k Pr(zit = k) mk v2
k

1 0.00730 −10.12999 5.79596

2 0.10556 −3.97281 2.61369

3 0.00002 −8.56686 5.17950

4 0.04395 2.77786 0.16735

5 0.34001 0.61942 0.64009

6 0.24566 1.79518 0.34023

7 0.25750 −1.08819 1.26261

Note: Seven Normal Mixture components

to approximate a log
(
χ2
(1)

)
distribution ad-

justed by its mean −1.2704.

C.3 Derivatives complete data likelihood

The respective derivatives are given in the following. Let h̃it = hit − µi for i = 1, . . . , r and

t = 1, . . . , T . First and second derivatives of the complete data log-likelihood (C.1) with

respect to state equation parameters φi and si are given as follows:

∂Lc(θ)
∂si

= − T

2si
+

1

2s2
i

([
1− φ2

i

]
h̃2
i1 +

T∑
t=2

(
h̃it − φih̃i,t−1

)2
)
,

∂Lc(θ)
∂φi

= − φi
1− φ2

i

+
1

si

(
φih̃

2
i1 +

T∑
t=2

h̃i,t−1

(
h̃it − φih̃i,t−1

))
,

∂2Lc(θ)
∂φi∂si

= − 1

s2
i

(
φih̃

2
i1 +

T∑
t=2

h̃i,t−1

(
h̃it − φih̃i,t−1

))
,

∂2Lc(θ)
∂φ2

i

= − 1 + φ2
i

(1− φ2
i )

2 +
1

si

(
h̃2
i1 −

T∑
t=2

h̃2
t−1,i

)
,

∂2Lc(θ)
∂s2

i

=
T

2s2
i

− 1

s3
i

([
1− φ2

i

]
h̃2
i1 +

T∑
t=2

(
h̃it − φih̃i,t−1

)2
)
.

Furthermore, let Σt = BVtB
′, β = vec(B), α = vec(A), X̃t = (x′t ⊗ IK), such that

vec(Axt) = X̃tα and K(K,K) be the K2 × K2 commutation matrix. Then, the first and

second derivatives of (C.1) with respect to α and β are given as:
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∂Lc(θ)
∂α′

=

(
T∑
t=1

y′tΣ
−1
t X̃t

)
− α′

(
T∑
t=1

X̃ ′tΣ
−1
t X̃t

)
,

∂Lc(θ)
∂β′

= −T vec
([
B−1

]′)′
+ vec

(
T∑
t=1

[
B−1

]′
V −1
t B−1utu

′
t

[
B−1

]′)′
,

∂2Lc(θ)
∂α′∂β

=
T∑
t=1

[(
ε′t ⊗ X̃ ′t

[
B−1

]′
V −1
t B−1

)
+
(
ε′tV

−1
t B−1 ⊗ X̃ ′t

[
B−1

]′)
K(K,K)

]
,

∂2Lc(θ)
∂α′∂α

= −

(
T∑
t=1

X̃ ′tΣ
−1
t X̃t

)
,

∂2Lc(θ)
∂β∂β′

= T
(
B−1 ⊗

[
B−1

]′)
K(K,K)

−
T∑
t=1

(
IK ⊗

[
B−1

]′
V −1
t

) (
K(K,K) + IK2

) (
B−1utu

′
t

[
B−1

]′ ⊗B−1
)

−
T∑
t=1

(
B−1utu

′
t

[
B−1

]′
V −1
t B−1 ⊗

[
B−1

]′)
K(K,K).

Note that the other cross derivatives ∂2Lc(θ)
∂φi∂α

, ∂2Lc(θ)
∂φi∂β

, ∂2Lc(θ)
∂si∂α

and ∂2Lc(θ)
∂si∂β

are equal to zero

due to the structure of (C.1).

D Impulse Response Functions

Structural impulse responses of an SVAR are contained in the structural vector moving-

average (SV-MA) representation:

yt =
∞∑
j=0

ΦjB︸︷︷︸
Θj

V
1
2
t ηt︸ ︷︷ ︸
εt

,

where Φj K ×K is a sequence of exponentially decaying matrices given as:

Φj =

j∑
i=1

Φj−iAi, for j ≥ 1,

and Φ0 = IK .

D.1 Asymptotic Distribution

For the ease of exposition, assume that there is no intercept included into the SV-SVAR

model. For confidence intervals of IRFs based on the asymptotic distribution, let

θ = [vec(A)′, vec(B)′, φ′, s′]′. From Maximum Likelihood theory:

√
T (θ̂ − θ) d→ N (0,Σθ),
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with Σθ = I(θ)−1 where I(θ) = E
[
−∂2 logL(θ)

∂θ′∂θ

]
. Let α = vec(A), β = vec(B), then

Σθ =


Σα

Σα,β Σβ

Σα,φ Σβ,φ Σφ

Σα,s Σβ,s Σφ,s Σs

 .

An application of the delta method yields (Brüggemann, Jentsch & Trenkler; 2016) the

asymptotic distribution of the structural impulse responses:

√
T (Θ̂i −Θi)

d→ N (0,ΣΘ̂i
), i = 0, 1, 2, . . . ,

where

ΣΘ̂i
= Ci,αΣαC

′
i,α + Ci,βΣβC

′
i,β + Ci,αΣ′α,βC

′
i,β + Ci,βΣα,βC

′
i,α,

with C0,α = 0, Ci,α = ∂ vec(Θi)
∂α′

= (B′ ⊗ IK)Gi and Gi = ∂ vec(Φi)
∂α′

=
i−1∑
m=0

[J(A′)i−1−m] ⊗ Φm

for i ≥ 1, J = (IK , 0, . . . , 0) be a K × Kp matrix and A the companion matrix. Finally,

Ci,β = ∂ vec(Θi)
∂β′

= (IK ⊗ Φi) for i ≥ 0.

D.2 Fixed Design Wild Bootstrap

The fixed-design wild bootstrap (Gonçalves & Kilian; 2004) relies on the set of residuals:

ût = yt − ν̂ − Â1yt−1 − . . .− Âpyt−p, t = 1, . . . , T.

Let ξt be i.i.d. random variables with E(ξt) = 0, E(ξ2
t ) = 1 and E(ξ4

t ) <∞. Then, bootstrap

time series y∗t are constructed as:

y∗t = ν̂ + Â1yt−1 + . . .+ Âpyt−p + ξtût, t = 1, . . . , T. (D.1)

We choose ξt to be from the Rademacher distribution with outcomes−1 or 1 and probabilities

p(ξt = 1) = 1
2

= p(ξt = −1). For Nbs time series generated as in equation (D.1), we fit the

model and compute θ̂∗ = vec(Θ̂∗). We compute IRFs based on Hall’s percentile intervals

given as:[
θ̂ − c∗(1−α/2), θ̂ − c∗α/2

]
,

where c∗γ denotes the γ quantile of [θ̂∗ − θ̂].

E Data

The time series data used in section 6 is based on yt = (qt, πt, ct,∆st, rt)
′, where

• qt is the logarithm of industrial production (linearly detrended),

• πt is the growth rate of the consumer price index (in %),
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• ct denotes the annualized change in the logarithm of the World Bank commodity price

index (in %),

• ∆st is the first difference of the logarithm of the CPI deflated real S&P500 index,

• rt is the Federal Funds rate.

As Lütkepohl & Netsunajev (2014) and Lütkepohl & Netšunajev (2017), we use the sam-

ple period 1970M1-2007M6. Except ct the data can be downloaded from the FRED. The

commodity price index is provided by the World Bank. The transformed data set is read-

ily available at http://sfb649.wiwi.hu-berlin.de/fedc/discussionPapers_formular_

content.php.

The monetary policy instruments of Gertler & Karadi (2015) and Romer & Romer (2004)

are obtained from the homepage of Valerie Ramey: http://econweb.ucsd.edu/~vramey/

research.html#data. Note that the RR series used in our analysis is the one extended by

Wieland & Yang (2016).
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Figure 3: Time Series Data
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