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Abstract

In this paper we analyze the sources of German unemployment within a structural vec-

tor error correction model (SVECM) framework. For this purpose we estimate a VECM

model using data for unified Germany. The cointegration analysis reveals a long run re-

lationship between real wages, productivity and unemployment which is interpreted as a

wage setting relation. Based on the reduced form VECM we identify structural shocks

and assess their importance for unemployment by impulse response analysis, forecast error

variance and historical decompositions. We supplement the analysis with results from a

subset SVECM, a SVECM with restrictions on the reduced form parameters. In contrast to

previous studies for West Germany, we find that technology, labor supply and labor demand

shocks are important sources of unemployment in the long run.
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1 Introduction

Persistently high unemployment is one of the major economic problems in Germany. Ever

since the mid 70s the unemployment rate has been increasing. While this development has been

observed in most European countries, the German reunification in 1990:3 has boosted the unem-

ployment rate to new record levels. This increase has stimulated economists to investigate the

sources of unemployment more closely. A particularly interesting question from a macroeco-

nomic point of view is whether unemployment is mainly determined by structural factors such

as technology, labor supply, or wage setting shocks or by cyclical such as aggregate demand

or labor demand shocks. The answer to this question has, of course, important policy impli-

cations. If unemployment is only determined by structural factors, demand side management

policies cannot successfully reduce unemployment.

In this paper we try to answer this question by identifying macroeconomic shocks for the

German labor market and assess their importance for unemployment within a structural vector

error correction model (SVECM) by impulse response functions (IRF), forecast error variance

decompositions (FEVD) as well as historical decompositions. The structural VAR (SVAR)

modeling framework has been previously used to analyze the labor market of different coun-

tries. Dolado & Jimeno (1997) investigate the sources of Spanish unemployment using a VAR

in first differences. They find that unemployment is explained by a mixture of supply and de-

mand shocks. Jacobson, Vredin & Warne (1997) use a common trends model to compare the

labor markets of Scandinavian countries and conclude that the only common source of unem-

ployment in Denmark, Norway and Sweden is shocks to wage setting. Hansen & Warne (2001)

conclude from their analysis that labor supply shocks are the primary source for unemployment

in Denmark. Similarly, Fabiani, Locarno, Onetto & Sestito (2000) find that most of the rise in

Italian unemployment can be attributed to productivity and labor supply shocks. Carstensen &

Hansen (2000) analyze the West German labor market and find that unemployment is equally

determined by technology and labor supply shocks in the long run. The present study differs

from Carstensen & Hansen (2000) in two important respects. First, we use a model similar

to the one in Jacobson et al. (1997) to derive the identifying assumption, because it implies a

smaller set of variables and avoids the somewhat arbitrary concept of a goods market equation.

Second, we use data for the unified Germany from the third quarter of 1990 onwards rather than

West German data only. Over ten years after German reunification it seems natural to use data

for the whole country even though this may imply some extra problems.

The structural VECM used in this analysis employs both, contemporaneous and long-run

restrictions on the effects of structural shocks for identification. As suggested by Vlaar (1998)

both restriction types can be written as linear restrictions and the usual Maximum Likelihood

(ML) estimation procedure (see Breitung (2000) and Amisano & Giannini (1997)) can be em-

ployed. This setup can also be used to estimate SVECMs with restrictions on the short run

parameters. These so-called subset SVECMs can be used as additional modeling tools to avoid
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the problems related to the large number of parameters in VAR and VECM models.

The paper is structured as follows. In Section 2 we present the econometric modeling frame-

work and discuss briefly the estimation of SVECMs. Section 3 presents a small macroeconomic

model of the labor market, which is used to derive the identifying assumptions for the structural

analysis. In Section 4 we conduct the cointegration analysis before the labor market shocks are

identified in Section 5, which also contains the impulse response analysis, the FEVD and the

historical decompositions. Section 6 concludes.

2 Econometric Methodology

Vector Autoregressive (VAR) models have become increasingly popular after Sims’s (1980)

critique of the simultaneous equation approach. However, the standard VAR is a reduced form

model and economic interpretation of the results is often impossible, unless the reduced form

VAR is linked to an economic model. If economic theory is used to provide the link between

forecast errors and fundamental shocks, we call the resulting model a SVAR. Models of this type

have become an important tool in macroeconomics and have been used to analyze the effects

of monetary shocks (see Christiano, Eichenbaum & Evans (1999)), the effects of technology

shocks (Galı́ (1999)) and the effects of fiscal shocks (see Rotemberg & Woodford (1992)), for

example. It is also possible to apply the SVAR technique to vector error correction models

(VECM) with cointegrated variables and we describe the relation between structural and re-

duced form VECM more precisely in the following.

The SVECM analysis starts from the reduced form standard VAR(p) model

yt = A1yt−1 + · · ·+ Apyt−p + ΞDt + ut, (2.1)

whereyt is aK × 1 vector of time series,Dt a vector of deterministic terms, andA1, . . . , Ap

areK ×K coefficient matrices.Ξ is the coefficient matrix associated with deterministic terms,

such as a constant, trend and seasonal dummies. The reduced form disturbanceut is aK × 1

unobservable zero mean white noise process with covariance matrixΣu. The VAR (2.1) has a

vector error correction representation denoted as VECM(p)

∆yt = Πyt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + ΞDt + ut, (2.2)

which is obtained by subtractingyt−1 from both sides of (2.1) and rearranging terms (see

Lütkepohl (2001) for precise formulas). In cointegrated modelsΠ has reduced rankr =

rk(Π) < K and can be decomposed asΠ = αβ′, whereα andβ areK × r matrices con-

taining the loading coefficients and the cointegration vectors, respectively. We are interested

in the effects of the fundamental shocksεt on the system variablesyt. These shocks can be

expressed in terms of the structural form VECM

K∆yt = Πyt−1 + Γ1∆yt−1 + · · ·+ Γp−1∆yt−p+1 + Ξ̄Dt + εt, (2.3)
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where theK × 1 vectorεt contains the unobservable structural disturbances and has the covari-

ance matrixΣε. Thus, to compute the responses to the economic shocksεt, we have to link the

forecast errorsut to the structural shocksεt. Premultiplying the system (2.3) byK−1 gives the

reduced form (2.2) withΓ1 = K−1Γ1, . . . , Γp−1 = K−1Γp−1, Ξ = K−1Ξ̄ and

ut = K−1εt = A0εt, (2.4)

which relates the reduced form disturbanceut to the underlying structural shock. For notational

convenience we express the model in terms of the contemporaneous impact matrixA0 = K−1.

To analyze the effects of the underlying structural shocks, we need to recover theK2 ele-

ments ofA0. For this purpose we need identifying restrictions coming from economic theory.

To see this more clearly, we use the relation (2.4) to write

Σu = E[utu
′
t] = A0E[εtε

′
t]A

′
0 = A0ΣεA

′
0 (2.5)

and use the standard assumption that the structural shocks are uncorrelated and have unit vari-

ances, i.e.Σε = IK , to get

Σu = A0A
′
0. (2.6)

The symmetry ofΣu and the normalization of the structural variances imposeK(K + 1)/2

nonlinear restrictions on theK2 parameters ofA0. To exactly identify the elements ofA0 we

need to imposeK(K − 1)/2 additional, linearly independent restrictions. Since economic

theory has more to say about the long run, we prefer to impose long run restrictions rather than

contemporaneous restrictions. From Granger’s representation theorem (see Johansen (1995))

we know that the VECM (2.2) can be represented as a Vector Moving Average (VMA) process

yt = C(1)
t∑

i=1

(ui + ΞDi) + C1(L)(ut + ΞDt) + y0, (2.7)

wherey0 depends on the initial conditions andC(1) is the total impact matrix computed as

C(1) = β⊥(α′⊥(IK − ∑p−1
i=1 Γi)β⊥)−1α′⊥. β⊥ andα⊥ represent the orthogonal complements

of β andα, respectively. Note thatC(1) has reduced rankrk(C(1)) = K − r. From (2.7) it

follows that the long run effects of structural shocksεt can be written as

C(1)A0. (2.8)

Long run zero restrictions as implied by economic theory can now be imposed easily by setting

elements of (2.8) to zero. The common trends literature (see for example King, Plosser, Stock

& Watson (1991)) distinguishes between permanent and transitory effects. In particular, we

know that in a system withr cointegration relations, onlyk = K − r shocks can have perma-

nent effects. To exactly identify permanent shocks we needk(k − 1)/2 additional restrictions.
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Similarly, r(r−1)/2 restrictions identify the transitory shocks. Setting elements of (2.8) to zero

can be written in implicit form as

Rlvec(C(1)A0) = 0,

whereRl is an appropriate restriction matrix. Following Vlaar (1998) in using the rules of the

vec operator these restrictions can be reformulated as

Rl(IK ⊗ C(1))vec(A0) = R∗
l vec(A0) = 0,

such that the restrictions are linear in the elements ofA0. ReplacingC(1) by an estimator ob-

tained from the reduced form,R∗
l = Rl(IK ⊗ Ĉ(1)) is a stochastic restriction matrix. These

implicit restrictions can be translated into the explicit form and then be used in the maximization

procedure of the SVECM. Moreover, the long-run restrictions can be combined with contem-

poraneous restrictions on the elements ofA0 in the form vec(A0) = RA0γA0. Estimates for the

contemporaneous impact matrix can be found by maximizing the concentrated log-likelihood

function given by

ln l(A0) = constant− T

2
log |A0|2 − T

2
tr

(
(A′

0)
−1A0Σ̃u

)
, (2.9)

with respect to the free structural parametersγA0 subject to the identifying restrictions, where

Σ̃u is the estimated residual covariance matrix from the reduced form VECM. Note that con-

temporaneous and long-run restrictions on the effects of shocks are written linearly. Therefore,

the estimation procedure described in Amisano & Giannini (1997) and implemented for SVAR

models inMalcom by Mosconi (1998) can be modified to obtain ML estimates. Concentrating

the log-likelihood with respect to the reduced form parameters is no longer possible if additional

restrictions forα, Γ1, . . . , Γp−1 are imposed. Nevertheless, residuals from a subset VECM may

still give a reasonable estimate ofΣu (see Hamilton (1994, Chapter 11)). In other words, an

expression similar to (2.9) can be obtained based on VECMs with restrictions on the reduced

form parameters. To be precise (2.9) is then no longer the concentrated likelihood function.

Nevertheless, the same estimation technique as before can be used to form reasonable estimates

for A0.

Based on the preceding discussion the econometric analysis of the German labor market data

involves the following steps: First, we determine the cointegration rank of the system of inter-

est and impose over-identifying restrictions on the cointegrating vectors using the ML method

proposed by Johansen (1995). The identified cointegration relations can be used to setup a full

VECM, where no further restrictions are imposed. Residuals from the VECM are used to form

an estimate forΣu. Second, long-run and contemporaneous identifying restrictions derived from

the model presented in the next section are used to form estimates ofA0. Using the estimated

contemporaneous impact matrix, the structural shocks can be recovered and their impact can be

analyzed using an impulse response analysis. Moreover, the importance of different shocks is
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measured by FEVD and historical decompositions of forecast errors. As an additional modeling

tool we also use a subset VECM as a basis for the structural analysis. Before we turn to the

empirical analysis in Section 4, the theoretical model used to derive identifying assumptions is

considered next.

3 A Small Labor Market Model

In this section we briefly describe a simple macroeconomic model of the labor market which is

very similar to the one used by Jacobson et al. (1997). The model is the basis for the identifying

restrictions imposed in the structural analysis of Section 5. It consists of a production function,

a labor demand relation, a labor supply, and a wage setting relation. All variables are expressed

in natural logarithms.

The production function relates output (gdpt) to employmentet

gdpt = ρet + θ1,t, (3.1)

whereρ measures the returns to scale.θ1,t is a stochastic technology trend that follows a random

walk

θ1,t = θ1,t−1 + εgdp,t

andεgdp,t is the pure technology shock. Labor demand relates employment to output and real

wages(w − p)t:

et = λgdpt − η(w − p)t + θ2,t, (3.2)

with

θ2,t = φdθ2,t−1 + εd,t.

If |φd| < 1 the labor demand is stationary. In that case the pure labor demand innovationεd,t

has only temporary effects on employment. Jacobson et al. (1997) do not allow for a possible

nonstationary labor demand in their model and assume a prioriφd = 0. This restriction implies

that the labor demand shock has no long-run effects. Clearly, this is a very strong assumption.

To relax this assumption at this stage of the analysis, we use the slightly more general form

of the model. The cointegration analysis in Section 4 will show, whether labor demand is

stationary.

Labor forcelt is assumed to be related to real wages according to

lt = π(w − p)t + θ3,t. (3.3)

The exogenous labor supply trendθ3,t follows a random walk

θ3,t = θ3,t−1 + εs,t,
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whereεs,t is the underlying labor supply shock. Finally, we have the wage setting relationf:fevd

(w − p)t = δ(gdpt − et)− γ(lt − et) + θ4,t, (3.4)

stating that real wages are a function of productivity and unemployment. The wage setting trend

θ4,t can be stationary or nonstationary depending onφw in

θ4,t = φwθ4,t−1 + εw,t.

If |φw| < 1, the wage setting trend is stationary. Again, we use results from the empirical

analysis to determine whether wage setting is stationary. To close the model we assume that

εgdp,t, εd,t, εs,t, andεw,t are identically and independently distributed with zero mean and vari-

ancesσ2
gdp, σ

2
d, σ

2
s , andσ2

w, respectively. The solution of the model (3.1) – (3.4) in terms of the

variables used in the empirical analysis is given by



gdpt − et

et

lt − et

(w − p)t


 =ψ




(1− λ)(1 + γπ) + ηγ

λ(1 + γπ)− ηδ

ηδ − λ + (1− λ)πδ

λγ + δ(1− λ)


 θ1,t + ψ




(ρ− 1)(1 + γπ)

1 + γπ

(ρ− 1)δπ − 1

γ − δ(1− ρ)


 θ2,t

+ ψ




(ρ− 1)ηγ

ηγ

1− ρλ + (ρ− 1)δη

(ρλ− 1)γ


 θ3,t + ψ




η(1− ρ)

−η

η + (1− ρλ)π

1− ρλ


 θ4,t

(3.5)

with

ψ =
1

(1− ρλ)(1 + γπ) + ηγ + (ρ− 1)ηδ
.

From (3.5) we see that productivity, employment, unemployment and real wages are driven by

two random walks in productivity and labor supply. As explained above, the labor demand and

the wage setting component can be stationary or nonstationary. In terms of the common trends

literature, there are at least two and at most four common trends in this model. This implies at

most two cointegration relations: a labor demand relation and a wage setting relation.

4 Cointegration Analysis of the German Labor Market

In this paper we use quarterly, seasonally unadjusted data for the unified Germany constructed

from the Deutsches Institut für Wirtschaftsforschung (DIW) database for the period from 1970

until 1998. Prior to 1970 the German labor market was characterized by full employment,

which we see as a different economic regime. Accordingly, we choose the estimation start date

1970:1, because starting in the early 70s unemployment became a major problem. All data refer

to West Germany until 1990:2 and to unified Germany afterwards.
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Figure 1: Labor Market Time Series Analyzed

In the empirical analysis we use four series: hourly productivitygdpt − et, employmentet,

the unemployment rateut ≈ lt− et and hourly real wageswt− pt. Appendix A gives a detailed

description on how the series have been constructed. The vector we use in the cointegration

analysis therefore includes

yt = [(gdpt − et), et, ut, (wt − pt)]
′. (4.1)

The time seriesyt are shown in Figure 1. The productivity and the employment series exhibit

are clear level shift due to the German reunification that took place in the third quarter of 1990.

As expected the productivity series shows a considerable downward shift, while employment

(measured in hours) increases. In the unemployment series we observe a strong upward trend

starting in 1990. There is also a level shift, which is not as obvious as in the other series. The

hourly real wage series has a level shift as well. It is however comparably small, because the

increase in hours of employment is partly offset by the increasing nominal wage bill.

Before we continue with the system analysis we investigate the integration properties of the

four time series. Clearly, we have to account for the level shifts and do so by applying two types

of unit root tests suggested by Perron (1989) and Lanne, Lütkepohl & Saikkonen (2002).

For the Perron test, the third column of Table 1 reports the deterministic terms used in an

auxiliary regression. We use the residuals from that regression and apply an augmented Dickey-
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Table 1: Unit Root Tests
Perron / ADF Tests τ Tests

var. lags det. statistic 5% crit. det. τ 5%

gdp− e 4 C, T, SD, s90q3 -2.72 -3.80 (a) C, T,f (3)
t -0.69 -2.80

∆(gdp− e) 4 C, SD, i90q3 -6.41** -2.89 C, SD, i90q3 -3.51* -2.94

e 4 C, T, SD, s90q3 -2.29 -3.80 (a) C, T,f (3)
t -1.63 -2.80

∆e 3 C, SD, i90q3 -8.79** -2.89 C, SD, i90q3 -6.68** -2.94

u 5 C, T, SD, DT, s90q3 -3.02 -4.04 (c) C, T,f (2)
t -2.73 -2.80

∆u 4 C, T, SD, s90q3 -4.44** -3.80 (a) C, SD, i90q3 -4.40** -2.94

(w − p) 5 C, T, SD, s90q3 -2.31 -3.80 (a) C, T,f (2)
t -0.14 -2.80

∆(w − p) 4 C, SD, i90q3 -3.56** -2.89 C, SD, i90q3 -4.11** -2.94

Note: (a) and (c) denote model A and C from Perron (1989). Column 2 indicates the number of lagged
differences determined according to the highest significant lag. * and ** denote significance at 5% and
1% respectively. ADF critical values are from MacKinnon (1991). Theτ test statistic isτ+

int for the
levels andτ+0

int for the first differences as proposed by Lanne et al. (2002). Critical values are from

Table 1 in Lanne et al. (2002).f (i)
t are shift functions defined in Table 3 of Lanne et al. (2002)

Fuller test (ADF) with the number of lags indicated by the second column of Table 1. We choose

the model A from Perron (1989) for productivity, employment and real wages, as this model

allows for a level shift. For the unemployment series, the model C which allows for a break in

the trend and in the constant seems to be more appropriate. For some of the first differences, we

have applied the standard ADF test. In these cases, the third column reports the deterministic

terms included in the Dickey-Fuller regression.

In addition, we also use unit root tests that allow a more flexible shift to the new level of the

series. The basic idea of the tests proposed by Lanne et al. (2002) is to estimate the deterministic

part including a shift function in a first step, adjust the series for these terms and apply a Dickey-

Fuller type test to the adjusted series. In this study we use the test versionτ+
int that allows for

a linear trend and a shift function when applied to the original series.1 We choose the shift

function by visual inspection of the adjusted series, such that the level shift is captured in the

best possible way. For the first differences we computeτ+0
int , which includes a constant and an

impulse dummy only. Table 1 lists results of unit root tests applied to the levels as well as to

the first differences of the series.2 Results of both test types suggest thatgdpt − et, et, ut, and

wt − pt are integrated of order one, i.e. I(1).

To test for the number of cointegration relations, we set up an initial VAR and include a

constant and seasonal dummies as deterministic terms.3 To account for the level shift, we also

include a step dummys90q3t, which is one from the third quarter of 1990 and zero elsewhere

and an impulse dummyi90q3t that is one in the third quarter of 1990 and zero elsewhere. We

1Theτ+
int-test performed relatively well in comparison to other test variants (see Lanne et al. (2002)).

2The unit root tests have been computed byEviews 3.1 andGAUSS.
3PcFiml by Doornik & Hendry (1997) has been used for the cointegration analysis.
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Table 2: Cointegration Tests

Johansen Trace Test S&L Test

H0: H1 : LRJ&N 95% DisCo 95% LRS&L 90% 95%

r = 0 r > 0 60.2** 47.2 55.9 42.5* 42.0 45.1

r = 1 r > 1 24.1 29.7 35.7 23.9 25.9 28.5

r = 2 r > 2 10.9 15.4 19.7 10.8 13.9 15.9

Note: * (**) denotes significance at the 10% (5%) level. Critical values in column 4
from Table 1 in Osterwald-Lenum (1992), values in column 5 have been simulated
using DisCo by Johansen & Nielsen (1993). S&L test critical values are taken from
Table 1 in L̈utkepohl & Saikkonen (2000).

use the AIC, SC and HQ information criteria (see Lütkepohl (1991), Ch. 4) to determine the lag

length of the VAR process. All three criteria suggest a lag length ofp = 5 when the maximum

lag length ispmax = 8. This lag length is also confirmed by a sequence of F-tests. The reduction

of a VAR(6) to a VAR(5) cannot be rejected (F (16, 254) = 1.64[0.059]) on the 5% level while

further reduction to a VAR(4) is clearly rejected (F (16, 266) = 4.76[0.000]). In addition a

number of misspecification tests have been performed. A single equation LM-test indicates that

there is some autocorrelation left in the unemployment equation. Moreover, a vector LM-test

on the system indicates autocorrelated errors. Increasing the lag length of the VAR model does

not fix the autocorrelation problem possibly indicating that a VARMA representation would be

more appropriate. While uncorrelated errors would be desirable, they are not a precondition

for the validity of the cointegration tests (see Lütkepohl & Saikkonen (1999)). Therefore, we

continue the analysis using the VAR(5) model.

To test for cointegration means estimating the rankr of Π from the vector error correction

representation (2.2). We use two cointegration tests that explicitly take the level shifts into

account and present the results in Table 2. The first test has been proposed by Johansen &

Nielsen (1993). In their test, the distribution of the statisticLRJ&N depends on the relative

timing of the break. Therefore, we have simulated asymptotic critical values for the present case

when a step dummy enters the system in restricted form using the program DisCo developed by

Johansen & Nielsen (1993). According to the simulated critical values in Table 2 we reject the

hypothesis of no cointegration on the 5% level. Moreover, the hypothesis that the cointegration

rank is one cannot be rejected on conventional significance levels. Another test for processes

with structural shifts has been proposed by Saikkonen & Lütkepohl (2000). The idea of this test

is to estimate the deterministic part including the shift dummy by a GLS procedure, subtract it

from the original series and apply a trace test to the adjusted series. In line with results of the

Johansen & Nielsen test, the test statisticLRS&L suggests one cointegration relation.

Since the theoretical model implies up to two cointegration relations, the results in Table 2

may be just the consequence of a lack of power problem of the cointegration tests. We therefore

check, whether estimating underr = rk(Π) = 2 is a plausible alternative. Results for a model
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Table 3: Restricted cointegration analysis

gdp− e e u (w − p) s90q3 LR test

β′: -0.973 -0.146 2.387 1 0.073 –
(0.101) (0.314) (0.523) – (0.078)

H1: β′: -0.955 0 2.485 1 0.039 χ2(1) = 0.17[0.68]
(0.085) – (0.485) – (0.015)

H2: β′: -1 0 2.733 1 0.039 χ2(2) = 0.42[0.81]
– – (0.237) – (0.015)

H3: β′: -1 0 2.733 1 0.037 χ2(3) = 1.31[0.73]
– – (0.238) – (0.015)

α′: 0 0.086 -0.023 -0.252
– (0.043) (0.008) (0.050)

H4: β′: -1 0 2.67 1 0.042 χ2(4) = 5.98[0.20]
– – (0.247) – (0.016)

α′: 0 0 -0.018 -0.222
– – (0.007) (0.048)

H5: β′: -1 0 2.44 1 0.056 χ2(5) = 11.22[0.04]∗
– – (0.248) – (0.016)

α′: 0 0 0 -0.254
– – – (0.051)

Note: Standard errors in parentheses

with two cointegration vectors are given in Appendix B. It turns out, however, that the resulting

labor demand function has implausible signs on the coefficients of output (gdpt) and real wages

(wt − pt). As a consequence, our preferred specification is a model with one cointegration

relation and we continue to identify this cointegrating vector.

The theoretical model suggests that this cointegration relation is either a labor demand or a

wage setting relation. We use the tools of restricted cointegration analysis to identify the cointe-

gration vector. In the first row of Table 3 we report the estimated cointegration vectorβ, where

we have normalized the real wage coefficient to unity. Associated standard errors are given in

parentheses. The vector is likely to represent a wage setting relation given the coefficient esti-

mate one with a standard error more than twice as large as the estimate itself. In a next step, we

test the exclusion ofe from β, which cannot be rejected by a corresponding Likelihood Ratio

(LR) test (χ2(1) = 0.17[0.68]). Moreover, we impose a[1,−1] relation between real wages and

productivity, which is not rejected either. The restricted cointegration vectorβ is identified as a

wage setting relation according to the theoretical model:

wt − pt = (gdp− e)t − 2.733ut − 0.039s90q3t (4.2)

The estimated wage setting relation reflects that the German labor market is not compet-

itive and outsiders influence the wage setting as the coefficient on unemployment suggests.

γ̂ = 2.733 is often interpreted as the long run elasticity of real wages with respect to unem-
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ployment. This interpretation can be problematic, nevertheless the estimated coefficient can be

compared to results from other studies. Carstensen & Hansen (2000) find for the West German

labor market a value of 1.824. In earlier studies Hansen (2000) finds a number of 1.95 for

the preunification period in Germany, while Bean, Layard & Nickell (1986) find an estimate

of 3.31. The values are not directly comparable, because estimates are derived from different

estimation methods, variables and data sets. However, the comparison gives a rough indication

that the estimatêγ is plausible. The identified cointegration vector is used to set up the VECMs

used in the structural analysis.

To reduce the number of parameters we test additional exclusion restrictions onα and give

the results in Table 3. Excludingα1 from the model is easily accepted (see H3). Testing jointly

the exclusion ofα1 andα2 cannot be rejected either (H4). However, excludingα1, α2 andα3 is

rejected by the corresponding LR test at the 5% level. Together with the rejection ofH0 : α3 = 0

(χ2(3) = 8.52[0.03]) we take this result as evidence against excludingα3. Therefore, we use

the long-run structure implied by H4 as a starting point for the subset model specification.

The wage equation (4.2) represents an equilibrium relationship. The corresponding nega-

tive adjustment coefficientα4 in the wage equation implies that excess real wages slow down

real wage growth, as one would expect from economic theory. The estimate ofα3 suggests

that excess wages drive down unemployment growth which seems implausible with standard

economic theory. Note however that this effect is relatively small. Overall, the results from

the cointegration analysis suggest that our model may be viewed as an adequate description of

the German labor market data. Therefore, we use the reduced form estimates of the implied

VECMs as a basis for the structural analysis.

5 Structural Analysis

5.1 Identification of the Labor Market VECM

In this section we derive identifying restrictions from the theoretical model and from the results

of the cointegration analysis and use estimates of the identified model to compute impulse

responses and variance decompositions for unemployment. We use both, the full SVECM and

a subset SVECM and compare the results.

We know from Section 2 that we needK(K − 1)/2 = 4(4 − 1)/2 = 6 additional linearly

independent restrictions coming from economic theory to exactly identify the structural shocks.

In addition, we know from the common trends literature that in a four-dimensional system with

one cointegration relation, only three shocks can have permanent effects. Moreover, the coin-

tegration analysis from the previous section indicates that wage setting is a stationary relation.

Our theoretical model then implies that the wage setting shockεw,t does not have permanent
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effects on the system variables which can be expressed by a zero column inC(1)A0 as

C(1)A0 =




∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0

∗ ∗ ∗ 0


 . (5.1)

If we assume constant returns to scale (ρ = 1), it is easy to see from the solution of the theoret-

ical model (3.5) that shocks to labor demand (εd), to labor supply (εs) and to wage setting (εw)

have no permanent effects on productivity which can be written as

C(1)A0 =




∗ 0 0 0

∗ ∗ ∗ ∗
∗ ∗ ∗ ∗
∗ ∗ ∗ ∗


 . (5.2)

(5.1) essentially sets up four linear equations involving all elements ofC(1). BecauseC(1)

has reduced rank (rk(C(1)) = 3), only three equations are linearly independent. Obviously,

(5.2) imposes only two independent restrictions because(C(1)A0)14 = 0 is imposed by (5.1)

already. Consequently, (5.1) and (5.2) provide only 5 linearly independent restrictions. There-

fore, we need one additional restriction. The theoretical model does not provide more long-run

restrictions than already imposed by (5.1) and (5.2). Thus, we impose one contemporaneous re-

striction, although contemporaneous restrictions may be more difficult to justify than long-run

restrictions. Nevertheless, we assume that the labor demand shockεd does not affect real wages

in the initial quarter which means

A0,42 = 0. (5.3)

(5.3) can be justified by the fact that wage contracts normally fix wages for more than one

quarter. The restrictions (5.1)-(5.3) exactly identify the model which can now be estimated by

ML as described in Section 2.

First, we estimate the standard VECM with identifying restrictions explained above. The

short-run parameters(α, Γ1, . . . , Γp−1) in this first model are unrestricted in the sense that we

do not impose zero restrictions. Using the estimatesα̂, Γ̂1, . . . , Γ̂p−1 given in Table 6 (see

Appendix C) and̃Σu, we compute the contemporaneous impact matrix as

Â0 =




1.036 −0.194 −0.149 0.158
(0.167) (0.174) (0.174) (0.193)

−0.322 1.206 0.433 −0.525
(0.261) (0.372) (0.547) (0.236)

−0.042 −0.097 0.166 0.109
(0.044) (0.092) (0.061) (0.041)

0.471 0 −0.793 1.378
(0.319) (0.411) (0.273)




× 10−2
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and the identified long-run impact matrix as

Ĉ(1)A0 =




1.157 0 0 0
(0.314)

−0.376 1.118 −0.024 0
(0.322) (0.375) (0.470)

−0.180 −0.163 0.258 0
(0.116) (0.127) (0.095)

1.651 0.450 −0.710 0
(0.574) (0.349) (0.262)




× 10−2. (5.4)

In parentheses we provide standard errors for each point estimator obtained fromM = 1000

bootstrap replications of the model. To be more precise, we denote the vector of free elements

in Â0 by

â0 = R0vec(Â0).

The bootstrap covariance matrix of this vector is then given by

Σ̂a0 = M−1

M∑
m=1

(â0,m − â0)(â0,m − â0)
′,

where â0,m indicates the estimate in them-th bootstrap replication. The standard errors are

given by the square roots of the diagonal elements ofΣ̂a0. Standard errors for (5.4) can be

computed accordingly. Using this bootstrap method should automatically account for the fact

that the restriction matrixR∗
l is stochastic. This is important because neglecting the stochastic

nature and applying standard formulas given in Amisano & Giannini (1997) may give quite

misleading estimates for the standard errors (see Vlaar (1998)).

Only a few coefficients of these matrices are significantly different from zero, indicating

substantial estimation uncertainty. The third row of the long-run impact matrix (5.4) shows the

long-run response of unemployment after a technology, a labor demand, a labor supply and a

wage shock. As imposed by (5.1) the long-run effect of a wage setting shock is zero. The long-

run responses of unemployment to the other three shocks show the expected sign, however, the

responses to technology and labor demand shocks are not significant according to a±2 standard

error criterion.

Given that many coefficient of the reduced form VECM are not significant at standard levels

(see Table 6 in Appendix C), applying some type of model reduction can be useful in the present

situation. For the purpose of estimating impulse responses, results from Brüggemann, Krolzig

& L ütkepohl (2002) and Brüggemann (2004) indicate that strategies using a ‘liberal’ model

selection criterion (e.g. AIC) are better suited than more parsimonious alternatives (e.g.PcGets

developed by Hendry & Krolzig (2001)). Therefore we use a single equation model reduction

method that has performed well in the study of Brüggemann (2004). In this method the signif-

icance of loading coefficientsα is tested within the Johansen framework, before the VECM is
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estimated. Then further restrictions onΓ1, . . . , Γp−1 are imposed by sequentially deleting vari-

ables witht-ratios smaller than a threshold value. This critical value depends on the sample size

and the reduction step and the information criterion that is used (see Brüggemann & L̈utkepohl

(2001) for details). Applying this method to our SVECM model based on the long-run structure

H4 in Table 3 reduces the number of parameters by 32 and corresponding estimated are given

in Table 7 (Appendix C). Clearly, the givent-ratios cannot be interpreted in the usual way,

because they do not account for the uncertainty in the model selection process. The structural

decomposition based on this subset model is obtained as:

Â0 =




0.900 −0.190 −0.386 0.000
(0.075) (0.058) (0.065) (0.000)

−0.112 0.952 0.935 0.000
(0.143) (0.128) (0.198) (0.000)

−0.028 −0.156 0.081 0.103
(0.019) (0.025) (0.026) (0.008)

0.311 0 −1.138 0.956
(0.138) (0.193) (0.073)




× 10−2.

and

Ĉ(1)A0 =




1.154 0 0 0
(0.153)

0.097 1.102 0.411 0
(0.203) (0.138) (0.175)

−0.225 −0.283 0.190 0
(0.075) (0.050) (0.046)

1.753 0.754 −0.507 0
(0.277) (0.132) (0.121)




× 10−2. (5.5)

There is a change in sign for the estimate of(C(1)A0)23, the long-run effect of the labor

supply shock on employment. The positive coefficient estimate from the subset model is eco-

nomically more plausible and significant. In addition the point estimate of(C(1)A0)23 also

switched signs, however, it is neither in the full nor is the subset model significant. Moreover,

it is particularly interesting to compare the third row of (5.5) to the third row of (5.4). While

estimates from the subset model show the same sign and typically similar magnitudes as in the

full model, the estimated standard errors now indicate a significant long-run impact ofεd and

εs. One possible conclusion is that the subset VECM reduces uncertainty substantially. How-

ever, this conclusion seems risky as the standard errors do not account for the uncertainty of the

model selection process and, hence, are likely to understate the true estimation uncertainty.

5.2 Impulse Response Analysis

To investigate the effects of structural shocks on unemployment, we compute impulse responses

from the full SVECM as well as from a subset SVECM. We provide bootstrap confidence bands
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computed by the percentile method proposed by Hall (1992). To compute the confidence bands

we fix the estimated cointegration relation in the bootstrap.4 The left column of Figure 2 shows

the responses of unemployment to a technology, a labor demand, a labor supply and a wage

setting shock from the full SVECM together with 95% confidence intervals. A technology

shock drives unemployment down. From the upper left panel we see that this negative effect

is only borderline significant in the long-run. Adjustment to new equilibrium takes about eight

years. A labor demand shock leads to a significant drop in unemployment and adjustment takes

roughly six years. According to the bootstrap confidence bands, the effect is significant even

in the long-run. The labor supply shock has a significant positive impact on unemployment

and adjustment takes about 7 years. In the short-run, unemployment rises after a positive shock

to wages which is in line with standard theory. However, compared to the other shocks in the

system, the response is fairly small. Moreover, the wage shock has a zero long-run effect on

unemployment as imposed by (5.1).

It is interesting to note that the confidence bands for responses to labor demand and labor

supply shocks are somewhat asymmetric which indicates an asymmetric bootstrap distribution.

In such cases interpreting impulse responses with confidence bands based on asymptotic theory

would be risky because± two standard error bands are necessarily symmetric and may draw

a very misleading picture of the true dynamic interaction in the model. The asymmetry of the

confidence bands may also explain why the long-run effect of a labor demand shock appears

significant from the bootstrap exercise but is not significant based on the standard errors in (5.4).

The right column of Figure 2 plots the responses of unemployment from the subset SVECM.

For the subset VECM we provide two different intervals. The first interval (dashed line) is

based on keeping the subset restrictions fixed as given in Table 7. The second interval (dotted

line) is constructed by choosing new restrictions in each bootstrap replication. The construction

of the second interval is similar to the ‘endogenous bootstrap’ suggested by Kilian (1998) for

the choice of the VAR order and is used to account for the model selection uncertainty inherent

in the specification of the subset model.

The comparison in Figure 2 reveals that the shape of point estimates are basically unchanged,

although we have restricted 32 coefficients to zero. The subset model estimates a slightly larger

effect of the labor demand and slightly smaller effect of the labor supply shock but differences

are small enough to be neglected. Thus, the subset VECM captures the same dynamics as the

full model indicating that the restrictions are sensible. Moreover, the confidence intervals in the

subset specification are smaller than those in the full SVECM, even if model selection uncer-

tainty is accounted for. Similar to the results from the full SVECM we find a negative significant

long-run response of unemployment to shocks in labor demand and a positive response to labor

supply shocks. In contrast to the full SVECM we now also find a significant, negative long-run

impact of the technology shock on unemployment.

4Benkwitz, Lütkepohl & Wolters (2001) find only minor differences between intervals computed with a fixed

and a reestimatedβ.
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To sum up, results from both model types, full and subset, indicate that technology and labor

supply shocks are important for the determination of unemployment. In addition, we find that

labor demand shocks are also important. This contrasts the result from Carstensen & Hansen

(2000) for West Germany. They find that labor demand shocks are neither in the short-run nor

in the long-run an important source of unemployment. The impulse response analysis indicates

that adjustment is rather sluggish and takes up to 8 years. Though computed from a different

model, Carstensen & Hansen (2000) obtain a substantially faster adjustment which takes only up

to 4 years. A comparison to results from Jacobson et al. (1997) who find 1-2 years for Norway

and Schweden, and 4 years for Denmark, shows that adjustment in Germany is considerably

slower than in Scandinavian countries.

Clearly, the identifying assumptions are important in this type of empirical analysis. For

instance, the response of unemployment to wage setting shocks has been governed by imposing

the long-run zero restriction that wage shocks have no permanent effect on unemployment. But

this restriction has been derived by using the economic model and has also been compatible

with results from the cointegration analysis.

5.3 Forecast Error Variance Decomposition

To assess the importance of different shocks we compute the forecast error variance decom-

position (see e.g. Hamilton (1994, Section 11.5) for details) for unemployment from the full

and the subset SVECM and present the results in graphical form. Panel (a) in Figure 3 shows

the variance decomposition for unemployment, i.e. the proportion of forecast error variance in

unemployment,h periods ahead accounted for by the structural shocksεgdp, εd, εs andεw. One

finding is that labor demand, labor supply and wage setting shocks are important for the short-

run determination of unemployment. Note, however, that for very short forecasting horizons

the impact of technology and labor demand shocks is relatively small. With increasing horizon

h the technology shock becomes more, while shocks to wage setting become less important. In

the long-run (after 80 quarters) technology (≈ 30%), labor demand (≈ 20%) and labor supply

shocks (≈ 45%) are all important determinants of unemployment. Again, this contrasts with

results from Carstensen & Hansen (2000) for West Germany. In their study labor demand is a

stationary relationship and hence, they impose a zero long-run effect of labor demand shocks.

Panel (b) of Figure 3 shows the variance decomposition obtained from the subset model. We

find that the labor demand shockεd now accounts for 45% of the variance in unemployment

in the long-run, hence, is more important than in the VECM(5) model. At the same time, the

importance of the labor supply shock accounts for only about 17% of the variance, i.e. is less

important as in the VECM(5) model. Although there are some differences, it not clear whether

these differences are significant. Nevertheless, the main conclusion is robust across different

model specifications: Unemployment is determined by a mixture of technology, labor demand

and labor supply shocks in the long-run.
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5.4 Historical Decomposition of Forecast Errors

From (2.4) it is obvious that the reduced form forecast errors can be expressed as linear com-

binations of structural shocks. Therefore, an alternative way of assessing the importance of

different shocks over time is to evaluate the portion of the forecast error attributable to each

of the structural shocks (see e.g. King et al. (1991)). In other words, the forecast errors are

decomposed into different structural components. In the SVAR literature this type of analysis is

sometimes called historical decomposition. Clearly, in comparison with the FEVD the advan-

tage of the historical decomposition is its ability to reveal the relative importance of shocks in

different periods of the sample. In contrast to the FEVD, however, this technique only provides

insights on a specific forecasting horizon.

We give the historical decomposition of unemployment based on our SVECM in the left

column of Figure 4, where the unemployment forecast errors at a one year horizon,h = 4,

(dotted line) are plotted together with the respective portion attributable to each of the structural

shocks (solid lines). The plots illustrate the explanatory power of labor supply shocks (εs) at

the one year horizon over the entire sampling period. In contrast the role played by technology

shocks (εgdp) is negligible at this horizon. In addition, labor demand (εd) and wage setting

shocks (εw) seem to be typically less important than the supply shocks although they played

some role in the period after the first oil shock. It is also interesting to note that shocks to wage

setting have some explanatory power for the time after German reunification.

The right column of Figure 4 shows the decomposition based on the subset SVECM. The

role indicated for technology and wage shocks is virtually unchanged by using the subset re-

strictions. However, using the subset model indicates a more important role of the labor demand

shock. Especially for the period before German reunification the forecast errors in unemploy-

ment are governed by labor demand shocks (at the four year horizon). In comparison with

results from the full SVECM the labor supply shocks are now less important. Note that these

results are in line with FEVD results obtained earlier forh = 4 .

6 Conclusion

In this paper we have analyzed German labor market data to investigate the main sources of

persistently high unemployment. For this purpose we have used the framework of structural

vector error correction models. A cointegration analysis has shown that hourly real wages,

productivity and unemployment are cointegrated and form a sensible wage setting relation.

Based on the corresponding VECM we have identified structural shocks and analyzed their

effects and importance for German unemployment by impulse response analysis, forecast error

variance and historical decompositions. In addition to the SVECM we have also analyzed a

subset SVECM with restrictions on the reduced form parameters.

We have found from the structural analysis that technology, labor demand and labor supply
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shocks are all important determinants for unemployment in the long-run. For shorter horizons,

however, the historical decomposition revealed that wage shocks have played some role in the

period after the first oil price shock and after German reunification. In contrast, technology

shocks are not particularly important in the short-run.

Results from the impulse response analysis indicate rather sluggish adjustment to a new labor

market equilibrium which takes up to eight years supporting the conventional wisdom that the

German labor market is rather sluggish. Using a subset SVECM changes some of the results:

The confidence intervals obtained from the subset model have typically been smaller than those

from the full VECM even when model selection uncertainty has been accounted for. Thus,

by using the subset model a clear significant negative long-run effect of technology shocks on

unemployment can be observed. Moreover, the subset model has indicated that labor demand

shocks have been more important for unemployment than suggested by the full SVECM.

Overall, the empirical analysis does not suggest that unemployment in Germany is mostly

driven by one single factor. Instead, the results indicate that a number of demand and supply

factors are important and therefore a mixture of demand and supply side management policies

can be regarded as a promising strategy to reduce unemployment.
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h

Figure 2: Responses of unemployment in SVECM(5) and subset VECM.
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(a) SVECM(5) (b) Subset SVECM (TP-AIC∗)

h h

Figure 3: Variance decompositions of unemployment in full SVECM and subset SVECM.

(a) SVECM(5) (b) Subset VECM (TP-AIC∗)
εgdp

εd

εs

εw

εgdp

εd

εs

εw

Figure 4: Historical decompositions of unemployment in full SVECM and subset SVECM.
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A Data Sources

All series in this paper are quarterly data and have been constructed from the Deutsches Institut

für Wirtschaftsforschung (DIW) database. The data refer to West Germany until 1990:2 and the

unified Germany afterwards. West German (unified German) series have a WH (GH) prefix in

the DIW database codes, which are omitted from the following list.

1. gdp: Real gross domestic product GDP, DIW code: 12011.gdp is log(GDP).

2. p: GDP price deflator (1991 = 100), DIW code: 12011X.p is log(GDP price deflator).

3. e: Employment in hours in, DIW code: 1101.e is log(Employment in hours).

4. u: The unemployment series is constructed dividing the number of unemployed by the

sum of people in employment and unemployment. DIW code:u = 1110/(1110 + 1102).

5. w: We use the net nominal wage bill (DIW code: 2005) and divide by the hours in em-

ployment (DIW code 1101) to compute the nominal hourly wages.w is log(2005/1101).

From these series we construct

yt = [(gdp− e)t, et, ut, (w − p)t]
′

that is used in the analysis.

B Two Cointegrating Vectors

In this section we allow for the possibility of two cointegrating vectors, to check whether this

is a plausible alternative to the model used in the text. For this purpose we assume thatr = 2

and present results from the restricted cointegration analysis in Table 4. First, we impose just

identifying restrictions by excludinget from the first andut from the second cointegration vector

and normalizing on (wt−pt). The coefficients of the wage setting relation closely resemble those

from the text when we restrict the coefficient on productivity to be -1. If we rewrite the second

cointegration vectorβ2 in form of the labor demand function (3.2) we get

et = −1.118gdpt + 1.199(wt − pt) + .555s90q3t,

which has implausible signs ongdpt and (wt − pt). We therefore regard a model with one

cointegrating vector as the preferred specification. Nevertheless, we compute identified impulse

responses and the FEVD of unemployment under the assumptionr = 2. Of course, we have to

adjust our identification scheme from the text accordingly. Withr = 2 only k = K − r shocks

have permanent effects. Moreover, to identify the two permanent shocks we needk(k−1)/2 =
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1 additional restriction and again assume constant returns to scale. These two restriction sets

can be written as:

C(1)Ā0
−1

=




∗ 0 0 0

∗ 0 ∗ 0

∗ 0 ∗ 0

∗ 0 ∗ 0


 . (B.1)

To identify the two transitory shocks we imposesr(r − 1)/2 = 1 restriction on the contempo-

raneous impact matrix. In particular, we choose the same restriction as in the Section 5:

(Ā0
−1

)42 = 0. (B.2)

Note that this restriction was needed in Section 5 to identify the permanent shocks. Here,

however, it identifies the transitory shocks. The impulse responses are depicted in Figure 5.

Compared to the preferred model, the responses of unemployment to a productivity, a labor

supply, and a wage shock are virtually unchanged. As imposed the labor demand shock has

now a zero long run impact on unemployment. Unemployment responds positively to a positive

shock in labor demand in the short run, which is somewhat puzzling and might be due to the

implausible signs of the identified labor demand relation. The result from the FEVD in Table

5 basically reflects the imposed restrictions: Labor demand and wage setting shocks are not an

important source of unemployment in the long run.
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Table 4: Restricted Cointegration Analysis,r = 2

gdp− e e u (w − p) s90q3 LR-test

β′1 -0.978 0 2.608 1 0.038 –
(0.082) – (0.431) – (0.015)

β′2 -0.921 -1.726 0 1 0.453
(0.184) (0.575) – – (0.141)

H1:

β′1 -1 0 2.730 1 0.038
– – (0.237) – (0.015)

β′2 -0.932 -1.766 0 1 0.463
(0.183) (0.585) – – 0.143

χ2(1) = 0.04[0.84]

Note: Standard error in parentheses

Table 5: Variance decomposition of unemployment,r = 2

Full VECM

h εgdp εd εs εw

1 0.043 0.107 0.697 0.152

2 0.136 0.135 0.611 0.118

3 0.232 0.132 0.531 0.105

4 0.306 0.127 0.485 0.082

5 0.321 0.135 0.482 0.061

6 0.347 0.128 0.475 0.049

7 0.374 0.119 0.462 0.045

8 0.398 0.108 0.456 0.038

10 0.416 0.090 0.465 0.029

30 0.376 0.041 0.570 0.013

50 0.337 0.029 0.625 0.009

70 0.316 0.022 0.655 0.007

80 0.308 0.020 0.666 0.006
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Response to technology shockεgdp Response to labor demand shocksεd

Response to labor supply shocksεs Response to wage setting shocksεw

Figure 5: Responses of unemployment in full SVECM,r = 2.
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C VECM Estimates

Estimated coefficients of the full VECM and the subset VECM for the model with one cointe-

gration vector are listed in Table 6 and Table 7.

Table 6: OLS estimates of Full VECM
∆(gdp− e)t ∆et ∆ut ∆(w − p)t

ect−1 -0.031 0.104 -0.022 -0.273
(-0.855) (2.150) (-2.819) (-4.837)

∆(gdp− e)t−1 -0.124 -0.102 -0.111 -0.252
(-1.095) (-0.680) (-4.716) (-1.445)

∆(gdp− e)t−2 -0.054 -0.163 -0.103 0.109
(-0.450) (-1.035) (-4.119) (0.592)

∆(gdp− e)t−3 -0.115 0.131 -0.079 -0.002
(-0.986) (0.846) (-3.241) (-0.008)

∆(gdp− e)t−4 0.370 0.125 -0.065 -0.095
(3.367) (0.861) (-2.826) (-0.562)

∆et−1 0.157 -0.397 -0.031 0.006
(2.096) (-4.019) (-1.970) (0.050)

∆et−2 -0.064 0.014 -0.036 -0.136
(-0.814) (0.139) (-2.212) (-1.123)

∆et−3 -0.106 0.147 -0.021 -0.266
(-1.410) (1.486) (-1.343) (-2.301)

∆et−4 0.185 0.191 0.019 0.071
(2.547) (1.986) (1.224) (0.633)

∆ut−1 0.979 -1.835 0.299 0.791
(2.341) (-3.319) (3.426) (1.227)

∆ut−2 -0.513 0.295 0.102 0.556
(-1.168) (0.509) (1.117) (0.822)

∆ut−3 -0.270 0.425 -0.107 -1.347
(-0.648) (0.773) (-1.228) (-2.100)

∆ut−4 0.499 -0.294 0.537 0.260
(1.196) (-0.533) (6.166) (0.404)

∆(w − p)t−1 0.017 0.012 0.022 -0.308
(0.267) (0.147) (1.649) (-3.163)

∆(w − p)t−2 -0.123 0.361 0.027 -0.702
(-1.965) (4.354) (2.040) (-7.264)

∆(w − p)t−3 -0.020 0.129 0.007 -0.465
(-0.292) (1.404) (0.485) (-4.329)

∆(w − p)t−4 0.014 0.129 0.017 0.159
(0.196) (1.370) (1.119) (1.450)

Note: t-ratios in parentheses
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Table 7: EGLS estimates of TP-AIC∗ subset VECM
∆(gdp− e)t ∆et ∆ut ∆(w − p)t

ect−1 -0.025 -0.230
(-4.294) (-6.069)

∆(gdp− e)t−1 -0.274 -0.122 -0.197
(-2.973) (-6.450) (-2.398)

∆(gdp− e)t−2 -0.174 -0.114
(-2.809) (-5.737)

∆(gdp− e)t−3 -0.079
(-3.998)

∆(gdp− e)t−4 0.503 -0.075
(8.175) (-6.382)

∆et−1 0.205 -0.448 -0.040
(6.663) (-7.521) (-3.122)

∆et−2 -0.042 -0.172
(-3.051) (-2.949)

∆et−3 -0.024 -0.175
(-2.026) (-3.190)

∆et−4 0.242 0.080 0.155
(5.380) (1.856) (2.573)

∆ut−1 0.766 -1.226 0.266
(2.891) (-3.548) (3.774)

∆ut−2 0.141 0.980
(2.078) (2.109)

∆ut−3 -0.115 -0.890
(-1.572) (-1.943)

∆ut−4 0.520
(7.338)

∆(w − p)t−1 0.016 -0.291
(2.003) (-4.810)

∆(w − p)t−2 -0.113 0.277 0.019 -0.657
(-4.005) (7.032) (2.530) (-9.140)

∆(w − p)t−3 -0.358
(-4.950)

∆(w − p)t−4 0.222
(2.945)

Note: t-ratios in parentheses. Estimates for deterministic

terms (constant, seasonal dummies,i90q3) are not listed.
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