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1. Introduction 

In this paper, we use the concept of second-order stochastic dominance (SSD) to construct 

portfolios. We shall see that using SSD in-sample allows us to construct portfolios that often out-perform 

competing portfolio choice methodologies out-of-sample. 

 The concept of SSD is theoretically appealing: if a return distribution  “A”  second-order 

stochastically dominates another distribution  “B”, then all risk-averse investors with increasing and 

concave utility functions will prefer  A  to  B. Thus, SSD can be used to identify dominating return 

distributions that would be preferred to the dominated distribution by all risk-averse investors in a large 

fund without needing to have detailed knowledge of their individual preferences. Importantly, the SSD 

criterion also does not focus on a limited number of moments but accounts for the complete return 

distribution, considering both gains and losses. Furthermore, tests for SSD do not need any distributional 

assumptions for their implementation.  

SSD is a powerful tool for ranking distributions. It has been used, for example, to analyze 

aggregated investor preferences and beliefs by Post and Levy (2005). De Giorgi (2005) as well as Russell 

and Seo (1980) have applied the SSD concept to a theoretical portfolio choice problem and discuss the 

properties of the SSD criterion compared to the mean-variance approach. They show that the sets of 

mean-variance efficient portfolios and SSD efficient portfolios overlap but do not coincide.  

The concept of stochastic dominance has been empirically applied to the portfolio choice problem 

by Post (2003), Kuosmanen (2004), Kopa and Post (2011) as well as Post and Kopa (2013). These 

authors test for stochastic dominance of a specified portfolio (the market portfolio) with respect to all 

other portfolios that can be constructed in a given asset span. Additionally, the test procedures of 

Kuosmanen (2004) as well as Kopa and Post (2011) identify an efficient portfolio that dominates the 

evaluated portfolio if the latter is not efficient itself.  

The main limitation of all these works is that they only analyze in-sample performance. For 

practical portfolio allocation problems, it is important to establish the out-of-sample properties of SSD-

efficient portfolios.  
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Out-of-sample stochastic dominance analysis was conducted by Meyer, Li, and Rose (2005). 

These authors consider the benefits of international portfolio diversification compared with a New 

Zealand-only portfolio. They use the concept of third-order stochastic dominance, arguing that their 

second-order stochastic dominance tests lacked power. Their in-sample portfolio choice, however, is still 

conducted using the mean-variance approach with a fixed target return. Thus, prior empirical work on 

portfolio allocation using the SSD concept has been largely restricted to in-sample analysis or did not rely 

on the SSD criterion for estimating portfolio weights themselves when considering out-of-sample 

performance.  

In this paper, we extend the above work in several ways. We propose to determine the optimal in-

sample portfolio based on the SSD criterion and use the algorithms developed in Kuosmanen (2004) as 

well as Kopa and Post (2011) to find optimal portfolio weights. We next test whether these SSD-based 

portfolios dominate the benchmark portfolio out-of-sample, where we use the non-dominance test of 

Davidson (2009). Such out-of-sample assessment allows us to properly judge the performance of different 

portfolio allocation procedures going forward. 

We also compare the performance of our SSD-based portfolios with several other competing 

portfolio choice approaches. The comparison alternatives include three mean-variance-related portfolios: 

maximum Sharpe ratio (MaxSharpe), maximum Information ratio (InformationRatio), and a portfolio 

with the minimum possible variance given the same in-sample mean return as the benchmark 

(MinVarBench). One could think of this latter portfolio as improving on the benchmark by shifting it onto 

the mean-variance efficient frontier. We also use three alternative portfolios that we describe as SSD-

related since their focus on minimizing risk is conceptually related to the SSD approach. Those SSD-

related portfolios use minimum-variance (MinVar), minimum semi-variance (MinSemivar), and 

minimum-shortfall (MinShortfall) as their portfolio construction criteria. Another comparison is an 

equally-weighted portfolio (Equal), which DeMiguel, Garlappi, and Uppal (2009) found to perform on a 

par with several more complex portfolio choice mechanisms.  
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One feature of second order stochastic dominance is that portfolios can at times not be uniquely 

ranked according to SSD. Thus, the investor needs to decide how to pick portfolios out of the set of SSD 

efficient portfolios. A further contribution of our paper is to compare some possible ways of picking one 

portfolio out of such an efficient set.  

We evaluate performance of all portfolios with respect to the market benchmark portfolio, where 

we proxy market performance by the returns on the value-weighted CRSP all-share index. The analysis is 

conducted using non-overlapping yearly windows of daily returns on Fama-French  49  industry 

portfolios from January 1927 to December 2012. In the robustness section, we also investigate monthly 

returns over this same sample period. 

To illustrate some implications of differences between these portfolio construction approaches, 

we plot in Figure 1 an example of the mean-variance location for portfolios chosen according to the 

eleven approaches mentioned above. The light grey area indicates the set of portfolios that have positive 

test statistics using Davidson (2009) with respect to the benchmark (Bench). Thus, those portfolios can 

potentially dominate Bench. The darker gray area indicates portfolios for which the hypothesis of non-

dominance over Bench is rejected at the 10% significance level. For this illustrative example, we use 

annual returns on five Fama-French industry portfolios over the complete sample period from  1927  to  

2012.1 In this particular example of in-sample analysis, MinVar, MaxSharpe, Kuosmanen, 

KP2011Power3, and KP2011Min are located on the mean-variance efficient frontier and dominate 

                                                 
1 The five Fama-French industry portfolios were obtained from the Kenneth French Data Library 

(http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html). They include Consumer products, 

Manufacturing, Hi-Tech, Health, and Other industries. With this limited number of assets, we can exhaustively test 

all possible portfolios (with weight increments of 0.05) using the Davidson (2009) non-dominance test to find the set 

that have positive and significant (at the 10% level) test statistics. 
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Bench.2 Equal and InformationRatio also dominate Bench, but they are located well inside the mean-

variance efficient frontier. Other portfolios lie in the same dominance class with Bench. Note the position 

of the MinVarBench portfolio. Bench happens to have a rather low mean return and plots below the 

mean-variance frontier obtained using just the five industry portfolios as assets. In other words, the 

location of Bench is not directly attainable using those five industry portfolios. To match the benchmark 

return and be on the mean-variance frontier, MinVarBench winds up situated to the right of Bench and 

just on the lower part of the efficient frontier.      

To preview our main results, we find that SSD-related approaches typically perform well out-of-

sample using the SSD criterion. In other words, the typical market portfolio as proxied by the benchmark 

is often not at all well-structured from a SSD perspective. Prior research indicated the market portfolio 

could frequently be dominated in-sample, but our results also suggest it is frequently dominated out-of-

sample. The minimum variance portfolio with the same mean as the benchmark also performs well. The 

equally-weighted portfolio performs worse and roughly on par with the benchmark. The portfolios based 

on the information ratio and the Sharpe ratio also tend to perform poorly. Out-of-sample, SSD-based 

portfolios generally perform well not only in terms of SSD but also on several more traditional 

performance measures including Sharpe ratio, Sortino ratio, certainty equivalent value, and turnover.  

We discuss the methodology in Section 2, while data are described in Section 3. Empirical results 

follow in Section 4. Robustness checks are provided in Section 5 and in an Online Appendix. Section 6 

concludes. 

 

  

                                                 
2 Here, Kuosmanen is the optimal portfolio obtained by the Kuosmanen (2004) algorithm; KP2011Power3, 

KP2011Min, and KP2011Av are optimal portfolios obtained using the Kopa and Post (2011) algorithm with 

different weighting schemes, as will be detailed below.  
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(labeled KP2011), detailed below. In Kuosmanen (2004), the procedure is based on the necessary 

condition for SSD efficiency; and it measures the degree of inefficiency for the benchmark portfolio in 

terms of SSD. The objective function can be interpreted as the maximum increase of mean return that 

could be obtained by choosing a portfolio from the subset that dominates the benchmark portfolio in the 

SSD sense. The LP of Kopa and Post (2011) is based on both necessary and sufficient conditions for SSD 

efficiency. This procedure takes as an additional input a vector of weights, which characterize the 

importance of different partial cumulative returns for an investor. This allows different optimal SSD 

efficient portfolios that dominate the benchmark. Following Kopa and Post (2011), we use three 

specifications of the weight vector: (i) focusing on risk reduction (improving minimum return), (ii) 

focusing on increases in mean return, and (iii) focusing on improvement relative to some utility function, 

where we choose a power utility function with a risk aversion parameter of 3. We label these portfolios 

KP2011Min, KP2011Av, and KP2011Power3 respectively.   

We also create several competing portfolios using the same in-sample data. The first group of 

alternative portfolios, labeled SSD-related, consists of approaches minimizing some SSD-consistent risk 

measures.3 This group includes: a) the global minimum variance portfolio (MinVar), b) the global 

minimum left semi-variance portfolio (MinSemivar), and c) the minimum expected shortfall portfolio 

(MinShortfall).  

Another group of competing portfolios we label mean-variance related. This group includes three 

mean-variance type portfolios:  a) the portfolio with the highest in-sample Sharpe ratio (MaxSharpe), b) 

the portfolio with the highest information ratio (expected excess return above the benchmark divided by 

the standard deviation of this excess return) with respect to Bench (InformationRatio), and c) the 

minimum-variance portfolio which has the same mean return as Bench (MinVarBench). A practical 

                                                 
3 SSD-consistent risk measures rank portfolios the same way as the SSD criterion. That is, if A dominates B from a 

SSD perspective, A will have smaller variance, semi-variance, etc. (so, these measures are SSD consistent). On the 

other hand, measures based on the Sharpe ratio or CEV are examples which are not SSD consistent. 
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problem with these portfolios is their tendency to have unstable and sometimes extreme weights on 

individual securities due to the characteristics of mean-variance optimization coupled with estimation 

error in the parameter inputs -- see for example, Michaud (1989), Jorion (1992), as well as DeMiguel, 

Garlappi, and Uppal (2009). As a result, the mean-variance related methods frequently exhibit poor out-

of-sample performance. In response to this problem of weight instability, we include in our comparison 

group an equally weighted portfolio (Equal) which DeMiguel, Garlappi, and Uppal (2009) found to 

perform relatively well in their analysis. 

The optimal weights for all these portfolios are determined using the in-sample data from t0 - Δt 

to t0. Using those portfolio weights, we then compute the out-of-sample returns of those portfolios for the 

period t0 to t0+Δt. The performance of the portfolios is compared with the benchmark’s out-of-sample 

return based on both traditional and stochastic-dominance performance measures, all of which we discuss 

below.  

We repeat the analysis using  T  non-overlapping windows. The former out-of-sample period 

becomes the new in-sample period for portfolio weight estimation, and the performance is then measured 

for the next out-of-sample period from  t0+Δt  to  t0+2Δt. Rolling this procedure forward results in  T-1  

out-of-sample periods.  

We impose short-sale constraints in the portfolio selection process which ensures that all our 

constructed portfolios are feasible choices for delegated money management structures, where shorting is 

frequently not allowed. Thus, portfolio weights are restricted to be non-negative and sum to one for each 

of the considered portfolios. The following sub-sections address the above steps in more detail.  

   

2.1. In-sample portfolio optimization 

2.1.1.  Constructing portfolios using SSD 

Graphically, second-order stochastic dominance (SSD) implies that two cumulative distribution 

functions cross; but the area under the dominating distribution is always smaller or equal to that of the 
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dominated distribution for each threshold level  z. If those cumulative distribution functions do not cross, 

first-order stochastic dominance is observed.  

Formally, distribution  A  with cumulative distribution function  FA(y)  is said to second-order 

stochastically dominate another distribution  B  with cumulative distribution function  FB(y)  if, for all 

possible threshold levels  z, the expected losses with respect to this threshold in distribution  A  are not 

larger than that in distribution  B  with at least one strict inequality for some level of  z.  

 

( ) ( ) ( ) ( ),  z
z z

A Bz y dF y z y dF y
 

                                              (1) 

 

In constructing our SSD-based portfolio, we adopt LP algorithms developed in Kuosmanen (2004) 

plus Kopa and Post (2011). These procedures allow for testing if a benchmark portfolio return distribution 

is SSD efficient relative to a given asset span. If the benchmark is not efficient, the solution also delivers 

a vector of portfolio weights corresponding to a well-diversified SSD-efficient portfolio that second-order 

stochastically dominates the benchmark. That portfolio is optimal given the structure for choosing among 

the SSD-efficient portfolios specified by Kuosmanen (2004) or by Kopa and Post (2011), respectively. 

We use these in-sample optimal portfolios as SSD-based competing portfolios. 

We considered several other alternative approaches for constructing SSD-based portfolios, but they 

seemed to be inferior to Kuosmanen (2004) as well as Kopa and Post (2011). For example, the algorithm 

developed in Post (2008) was generating too little change in the optimal portfolio weights relative to the 

benchmark portfolio in our sample. Shalit and Yitzhaki (1994) only allowed the assessment of marginal 

investments in a stock, given a particular benchmark portfolio. We would like to investigate portfolio 

changes which are larger than purely marginal. Clark, Jokung, and Kassimatis (2011) provide an 

algorithm which uses the marginal improvements analyzed by Shalit and Yitzhaki (1994) and then moves 

in 0.1% portfolio weight reallocations towards a portfolio where no further marginal improvement exists. 
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With a substantial number of assets, their iterative approach is tedious; and we prefer the more elegant 

LP-based approaches of Kuosmanen (2004) plus Kopa and Post (2011). 

Below we formally present the LP formulations of Kuosmanen (2004) as well as Kopa and Post 

(2011), with notation changed to conform to our paper and constraints specified to match our requirement 

of non-negative weights.4 In both specifications, the asset span consists of N assets with T daily return 

observations ity  each. The vector of portfolio weights to be optimized is denoted by .  

We implement the following LP procedure of Kuosmanen (2004): 
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Where we use ,Bench ty  to denote the benchmark portfolio return at time t, and W is a doubly 

stochastic matrix. The vector of optimal portfolio weights *  from the above procedure is used to 

construct the SSD-based portfolio Kuosmanen.5 Note that the procedure of Kuosmanen (2004) does not 

require the benchmark returns to be attainable in the asset span of the given N assets. 

 We use the following dual formulation of the LP from Kopa and Post (2011): 
                                                 
4 Kuosmanen (2004) also provides a simplified version of the LP problem which uses only positive weights. We 

report here the general version, in which various linear constraints on the weight vector can be incorporated. 

5 The above LP algorithm, generally, tests only for the necessary condition of SSD. We also implement the 

sufficient test for SSD as in Kuosmanen (2004), equation (3), and obtain identical results for all cases in our sample.  
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Compared to Kuosmanen (2004), the procedure of Kopa and Post (2011) technically implies that the 

benchmark portfolio is attainable using the given asset span. It takes as an input a vector of benchmark 

portfolio weights   In our current setting, the benchmark portfolio (CRSP all-share index) may not be 

directly attainable within our asset span (Fama-French 49 industry portfolios). To address this situation, 

we include the benchmark return ( ,Bench ty ) as an additional asset (N+1) in the LP procedure. The vector 

of the weights  now has  the length of (N+1), and we restrict the weight on the benchmark asset N+1  to 

be zero in the optimal portfolio. Finally, the matrix of returns on all assets is sorted such that the 

benchmark returns are in ascending order ( 1,,  sBenchsBench yy ).    

In Equation (3), w = {ws}, s = 1,..,T is a vector of the weights assigned to each cumulative return 

while constructing the optimal portfolio. 

We consider three choices of the w vector, such that the optimal portfolio is:  

(i) focusing on risk reduction; denoted KP2011Min  
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(ii) focusing on an increase in average return; denoted KP2011Av 
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(iii) focusing on improvement relative to the power utility function with a risk aversion 

parameter of 3; denoted KP2011Power3 
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2.1.2. Constructing competing portfolios  

In constructing competing portfolios, we start with a group of portfolios based on risk measures 

consistent with SSD, such as left semi-variance (MinSemivar) and expected shortfall (MinShortfall) -- see 

for example Porter (1974), Fishburn (1977), and Ogryczak and Ruszczynski (1999). For MinSemivar, the 

portfolio weights are chosen to minimize the in-sample left semi-variance subject to the short-sale 

constraint. MinShortfall chooses weights (subject to the short-sale constraint) that minimize the expected 

shortfall below the  5%  quantile of the in-sample portfolio returns. The minimum variance portfolio is 

always SSD efficient and cannot be dominated in-sample, see Russell and Seo (1980). Consequently, we 

also include the global minimum-variance portfolio with short-sale constraints (MinVar) in our set of 

alternative portfolios.      

We next consider the mean-variance related group of portfolio choices. We compute the 

maximum Sharpe ratio portfolio (MaxSharpe), where we proxy for the risk-free rate by using returns on 



13 
 

the 90-day Treasury bill. The maximum Information ratio portfolio (InformationRatio) is computed by 

choosing weights that maximize the difference between in-sample mean returns for that portfolio and 

Bench, scaled by standard deviation of the tracking error between this portfolio and Bench. When finding 

the optimal weights for these portfolios, we include short-sale constraints, which has the added benefit of 

reducing the sensitivity of mean-variance optimization to estimation errors, outliers, and mistakes in the 

data – see Jagannathan and Ma (2003) who use short-sale constraints in combination with a minimum-

variance portfolio.  

To stabilize estimated weights, different approaches have been used by various authors. Kan and 

Zhou (2007), for example, use a mixture of mean-variance and minimum-variance portfolios. Following 

this path, we construct another alternative portfolio (MinVarBench), in which the variance is minimized 

while the mean is restricted to equal the in-sample mean for Bench.  

Other techniques to improve mean-variance portfolio construction exist; and DeMiguel, Garlappi 

and Uppal (2009) compare the performance of  14  different models with the naive equally-weighted 

scheme. They find that none of the advanced models consistently outperforms the simple equally-

weighted strategy out-of-sample based on three comparison criteria: the out-of-sample Sharpe ratio, the 

certainty-equivalent return for a mean-variance investor, and turnover measured as trading volume. This 

is in line with Martellini and Ziemann (2010), who argue that estimation errors often offset the benefits of 

rather complicated optimal portfolio choice approaches. Moreover, the equally-weighted portfolio 

allocation strategy is preference free, delivers a reasonable level of diversification, and does not rely on 

any estimation (thus, it does not incorporate estimation errors). This led us to include the equally-

weighted portfolio (Equal) as a competing portfolio in our analysis. 

 

2.2. Out-of-sample portfolio performance assessment 

2.2.1.  Stochastic-dominance related criteria 

A number of statistical tests for stochastic dominance have been developed -- see for example, 

Anderson (1996), Kaur, Prakasa Rao, and Singh (1994), Davidson and Duclos (2000), Barrett and Donald 
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(2003), Linton, Maasoumi, and Whang (2003), and Davidson (2009). The main differences among these 

tests are the way the null hypothesis is formulated, the type of test statistic employed, the ability of the 

test to handle correlated samples, and the approach to computing p-values. 

For the purpose of this paper, the most appealing test specification is the one of Davidson (2009). 

First, the test allows for correlated samples. This is an important limitation for most existing tests of 

stochastic dominance, which can deal only with uncorrelated samples. When comparing portfolios that 

consist of the same assets (but in different proportions), we have to consider correlated samples. The test 

of Davidson and Duclos (2000) can also handle correlated samples but can only be evaluated at a fairly 

low number of returns (about 20) and not over the complete return distribution. 

Second, the Davidson (2009) test starts with the null hypothesis of non-dominance for one 

distribution over another, whereas the majority of other tests have as their null hypothesis dominance -- 

see, e.g., Anderson (1996), Davidson and Duclos (2000), plus Barrett and Donald (2003). Rejecting the 

null of dominance by the first distribution does not then imply dominance by the second distribution, 

since it can also happen that the test fails to rank those distributions. However, rejecting the null of non-

dominance delivers an unambiguous result of dominance. This formulation of the null hypothesis is also 

used by Kaur, Prakasa Rao, and Singh (1994); however, their approach cannot cope with correlated 

samples. We thus rely on the Davidson (2009) test to establish the dominance relation between different 

portfolio return distributions in our out-of-sample tests.  

As the true return generating process is not known, one cannot directly compute and compare the 

integrals from Equation (1). Rather, one has to use their sample counterparts. Following Davidson (2009), 

we label the sample counterparts of the integrals from Equation (1) as ( )S
KD z , where K denotes the two 

sample distributions (A or B) that are being compared, and S denotes the degree of stochastic dominance, 

with S=2 for SSD. We will refer to ( )S
KD z as a dominance function:    
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1
,

1

1
( ) (max( ,0))

( 1)

KN
S S
K i K

iK

D z z y
S N





 
  ,                                                  (7) 

 

where NK is a number of observations in distribution sample K, yi,K is the i-th observation in this sample, 

and z is the threshold of interest.  

The set of thresholds {z} includes all unique observations from both samples {yi,A} and {yi,B} 

lying in the joint support of those samples, where we trim the  5%  highest and lowest observations.6  For 

each level of  z,  the standardized difference between the two dominance functions is computed: 

 

 1/2

( ) ( )
( )
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The final test statistic is obtained as: 

                                                          

                                                               * min ( )
z

t t z                                                        (9) 

 

which is asymptotically normally distributed. For small samples, Davidson (2009) describes a bootstrap 

algorithm to obtain the p-values.7 

                                                 
6 One needs to trim the set of thresholds in order to achieve higher power of the test. The test of stochastic 

dominance is then restricted to the chosen interior interval of the joint support. We investigate smaller and larger 

levels of trimming in the robustness section.  

7 Applying dominance tests to time series data, one needs to be concerned about test performance if there is time 

dependence in the data, such as autocorrelation in returns or GARCH effects in volatility. Unfortunately, no test so 

far explicitly accounts for such time-series effects.  Nolte (2008) shows that the Davidson SSD test loses power if 

the data are strongly serially correlated. As we will document below, serial correlation is not pronounced in the data 
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The results described below entail  T-1  yearly periods of in-sample fitting for all portfolios of 

interest with corresponding out-of-sample performance comparisons based on the SSD criterion. There is 

no established way to aggregate  T-1  values of the Davidson (2009) test statistics in order to obtain a 

unique measure of portfolio quality. To provide a sense for the distribution of those T-1 test statistics, we 

report quartile p-values from that distribution, with the underlying tests using the null hypothesis that the 

competing portfolio does not SSD the benchmark.8  

 

2.2.2.  Other portfolio performance criteria 

In order to assess the performance of the competing portfolios along other dimensions, we 

compute several standard descriptive statistics of portfolio performance. In particular, we compute mean 

and median returns, return standard deviation, skewness, and kurtosis, as well as minimum and maximum 

returns over the sample period. We report the Sharpe ratio for each of the portfolios, using the 3-month T-

bill rate as the risk-free rate. Two measures capture the left tail risk: the sample  5%  value at risk, 

VaR(5%); and the sample expected shortfall, Shortfall(5%), which is measured as average return 

conditional on it being below VaR(5%). We also include several additional performance measures: 

certainty equivalents with various risk-aversion parameters (CEV1, CEV3, and CEV5), the Sortino ratio, 

and turnover (Turnover).  

                                                                                                                                                             
used for the current study. Nolte also shows that the Davidson test performs well in the presence of GARCH effects. 

Thus, we feel comfortable using the Davidson approach. 

8 We also report in an Online Appendix compute three additional summary characteristics regarding out-of-sample 

stochastic dominance: (1) the number of cases in which a given portfolio choice approach provides portfolios that 

dominate the benchmark out-of-sample (N+), (2) the number of cases in which those portfolios belong to the same 

dominance class as the benchmark (N0), and (3) the number of cases in which those portfolios are dominated by the 

benchmark (N–). 
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CEV1, CEV3, and CEV5 are defined as the inverse of the expected utility function, where we 

proxy for expected utility using the average of realized values. The utility function is constant relative risk 

aversion with a risk aversion parameter  of  1, 3, and 5 respectively: 
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where  Tr  in equation (10) is the total number of return observations in all out-of-sample periods. 

The Sortino ratio is the portfolio mean excess return above the risk-free rate divided by the left 

semi-deviation of the returns.  

Turnover serves as a proxy for exposure to transaction costs associated with portfolio rebalancing. 

It is computed as the average absolute change summed across all N portfolio weights:  
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where  wit   is the optimal portfolio weight of the asset  i  in year t. Our measure of turnover is based on 

DeMiguel, Garlappi, and Uppal (2009) where the main difference is that we scale the measure by 0.5. 

This insures that selling the complete portfolio and buying a new one results in a turnover of 100%. 

The analysis is performed using the daily observations for the out-of-sample portfolios over all  

T-1  years.  We also aggregate the daily returns within each year to obtain one-year return estimates and 

re-compute all the performance measures based on those  T-1  yearly returns. 
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3. The data 

We utilize daily return data for the Fama and French  49  industry portfolios.9  The daily returns 

start as early as June 1926, and we choose the first observation from January 1927 as the starting day of 

our sample. The last observed return in December 2012 is the end date of the sample. Thus, we have  86  

years of data (22,731 daily return observations), which results in  85  annual out-of-sample periods for our 

main analysis.10  The average daily return across industry portfolios ranges from  0.03%  to 0.08%. The 

daily returns on all the industry portfolios exhibit excess kurtosis (with mean/median being 49.03/21.19) 

and are thus not normally distributed. This is a potential issue for mean-variance-related approaches but 

not for the SSD-related alternatives, which consider the entire distribution and not just the first two 

moments. The serial correlation in the returns is not strongly pronounced with the mean (median) across 

industries being  3.52%  (4.55%). The maximum serial correlation of  17.52%  is documented for the 

Healthcare industry, whereas the minimum of  -18.46% corresponds to the Business Services industry. 

Thus, serial correlation should not introduce any problems in our out-of-sample SSD tests. 

The benchmark portfolio represents the stock market, and we use daily returns on the CRSP 

value-weighted all-share index as its proxy. It has a 0.04%  mean daily return and a  1.07%  daily 

standard deviation over the entire period. 

 

 

 

 

 

                                                 
9 The data were downloaded from the data library of Kenneth French at: 

 http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html 

10 The risk-free rate for this period is the sequence of yields on 3-month Treasury bills, which are also obtained from 

the Kenneth French data library. 
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4. Empirical results 

In our main tests, we use one-year estimation and forecast windows. With  86  years of data and 

the first year used for the initial estimation, we obtain  85  non-overlapping estimates for out-of-sample 

portfolio performance.11   

 

4.1. Out-of-sample portfolios: descriptive statistics of the returns 

  Table 1 reports descriptive statistics for the returns delivered by the alternative portfolio strategies 

as well as Bench.  

Table 1. Descriptive Statistics of Portfolio Performance 

This table reports descriptive statistics for the portfolios chosen by competing strategies based on annual 

percentage returns. The statistics are computed using  85  yearly returns from 1928 thru 2012.  

Mean Median STD Min Max Skewness Kurtosis 

Bench 11.38 14.36 20.40 - 44.14 56.89 - 0.41 2.98 

SSD-Related 

Kuosmanen 12.16 12.20 19.59 - 41.50 88.67   0.14 5.32 

KP2011Av 14.77 16.07 22.05 - 37.60 89.70   0.25 4.03 

KP2011Min 14.93 16.75 22.34 - 36.91 92.21   0.31 4.13 

KP2011Power3 14.96 17.52 22.32 - 37.59 90.42   0.25 4.04 

MinShortfall 10.60 10.02 17.97 - 40.92 68.81   0.03 3.94 

MinVar  10.67 12.91 17.61 - 42.19 70.59 - 0.12 4.30 

MinSemivar 10.52 11.67 17.76 - 40.02 63.70 - 0.03 3.68 

Equal 13.58 14.97 22.88 - 41.08 90.46   0.07 3.77 

Mean-Variance-Related 

MinVarBench 11.64 12.56 18.41 - 47.21 77.76 - 0.10 4.86 

MaxSharpe 17.15 16.88 27.02 - 47.34 134.31   0.88 6.41 

InformationRatio 11.90 15.16 20.04 - 41.53 51.84 - 0.41 2.89 

 

Compared to Bench, the Kuosmanen portfolio performs nicely along multiple dimensions. It 

improves the mean return somewhat (12.16% vs. 11.38%) and reduces the standard deviation (19.59% vs. 

20.40%). Kuosmanen also managed to reduce the maximum loss (minimum annual return of  -41.50%) 

while also allowing large gains (maximum return of  88.67%). This occurs because the Kuosmanen 

                                                 
11 There is an implicit assumption here that target portfolio weights are adjusted annually and that portfolios are 

rebalanced on a daily frequency back to the fixed weights. 
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approach tries to structure a portfolio that will avoid large negative returns and tend to have positive 

skewness. MinVar, MinSemivar, and MinShortfall reduce portfolio return standard deviation even 

further; however, this also lowers their mean returns somewhat.  

The three KP2011 portfolios have higher mean returns than Bench (14.77% to 14.96% vs. 

11.38%), but also higher return standard deviations (22.05% to 22.34% vs. 20.40%). They have positive 

skewness and achieve the best minimum returns (-36.91% to -37.60%).  

The simple equally-weighted portfolio in our sample delivered a higher mean and standard 

deviation as compared to Bench, and its minimum return is comparable with the one of Kuosmanen. 

Turning to the mean-variance related strategies, we can see MinVarBench performs well along 

multiple dimensions. It has similar mean return and lower standard deviation than Bench. It has, however, 

a worse minimum return of -47.21% per year compared to -44.14% for Bench, -41.50% for Kuosmanen, 

and -36.91% for KP2011Min. 

MaxSharpe delivers the highest mean return (17.15%), but the associated costs are the highest 

STD (27.02%) as well as the worst minimum return (-47.34%). The InformationRatio performs slightly 

better than Bench with somewhat higher mean and lower STD. The differences are, however, marginal.  

 

4.2. Out-of-sample portfolios: portfolio performance and risk measures   

Columns (1) to (3) of Table 2 report the quartiles from the distribution of p-values across 85  

years for the null hypothesis that the portfolio in question does not dominate the benchmark.12,13  Columns 

(4) to (11) of Table 2 report several other measures of portfolio performance: the Sharpe ratio, the Sortino 

ratio, VaR(5%), Shortfall(5%), certainty equivalents (CEV1, CEV3, CEV5),  and Turnover.  
                                                 
12 The 85 p-values are considered (one for each forecast window) from 1928 – 2012 using daily returns when 

reporting the percentiles. The interested reader can also find results on the number of periods during which the 

alternative portfolios dominate (are dominated by) the benchmark in the Online Appendix Table A1.  

13 Note, that the p-value distribution reflects both the actual performance of the portfolios according to the SSD 

criterion as well as the power of the Davidson (2009) test.  
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We see in Columns (1) to (3) of Table 2 that the SSD-related portfolios demonstrate a substantial 

range of performance. MinVar  has the best median p-value of 0.231. The three KP2011 portfolios have 

the highest median p-values within the SSD-related group of portfolios, ranging from 0.608 to 0.686. 

Other SSD-related portfolios have median p-values around 0.30. Similarly, the 25th percentile of the 

distribution of the p-values lies below 0.10 for all SSD-related strategies except for the KP2011 

portfolios. This indicates that the hypothesis of non-dominance over Bench can be rejected for at least  

25% of yearly tests for all the SSD-related portfolio choice techniques except the three KP2011 strategies.  

The high standard deviations of KP2011 portfolios that we saw in Table 1 are a major cause for their 

relative weak out-of-sample performance with respect to the SSD criteria.  

The equally-weighted portfolio performs poorly in the SSD sense and has a median p-value of 

0.934 with the 25th percentile being 0.647. MaxSharpe and InformationRatio also have weak 

performances with the median p-values being 0.952 and 0.967 with 25th percentiles being 0.357 and 

0.860, respectively. The generally weaker performance of the mean-variance-related strategies appears to 

be due to unstable and extreme weights generated by the mean-variance optimization approach.   
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Table 2. Out-of-Sample Performance of the Alternative Portfolios 
Columns (1) – (3) report quartile p-values from the distribution of p-values across 85 out-of-sample periods with the underlying tests having the 

null hypothesis that the alternative portfolio does not SSD Bench. Columns (4) – (11) report other portfolio performance measures as indicated. 

Those statistics are computed using  85  yearly returns from 1928 to 2012.  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) 
25% 

p-value 
Median 
p-value 

75% 
p-value 

Sharpe 
ratio 

Sortino 
ratio 

VaR(5%) 
Shortfall 

(5%) 
CEV1 CEV3 CEV5 Turnover 

Bench -- -- -- 0.38 0.54 -28.18 -36.43 9.34 4.51 -1.34 0.00 

SSD-Related       

Kuosmanen 0.062 0.282 0.708 0.44 0.58 -23.59 -33.27 10.38 6.26 1.12 0.65 

KP2011Av 0.163 0.609 0.988 0.51 0.65 -22.56 -30.81 12.61 7.98 2.91 0.81 

KP2011Min 0.216 0.686 0.990 0.51 0.64 -23.15 -30.67 12.74 8.06 2.99 0.82 

KP2011Power3 0.208 0.608 0.985 0.51 0.65 -22.56 -31.28 12.76 8.00 2.78 0.81 

MinShortfall 0.050 0.304 0.703 0.39 0.52 -18.68 -28.74 9.05 5.75 1.94 0.50 

MinVar  0.052 0.231 0.617 0.40 0.52 -20.01 -29.64 9.09 5.82 1.80 0.41 

MinSemivar 0.037 0.295 0.581 0.39 0.55 -19.93 -29.07 9.19 5.77 1.66 0.53 
Equal 0.647 0.934 0.999 0.44 0.57 -28.54 -36.68 11.17 5.71 -0.57 0.00 

Mean-Variance-Related       

MinVarBench 0.024 0.199 0.555 0.44 0.59 -21.17 -32.40 10.02 6.14 0.89 0.55 

MaxSharpe 0.357 0.952 1.000 0.50 0.61 -26.93 -37.51 14.12 7.59 -0.05 0.87 

InformationRatio 0.860 0.967 1.000 0.42 0.57 -27.27 -34.93 9.96 5.40 -0.03 0.29 
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Although within the mean-variance-related group, MinVarBench performs very well in the SSD 

sense. Its median p-value of 0.199 and 25th percentile of 0.024 are the smallest among all the strategies we 

tested. MinVarBench is often located in the SSD efficient set and thus behaves in much the same way as 

the SSD-related strategies. Consequently, its good performance on SSD tests is not surprising.  

 We now turn to the other, more traditional performance measures displayed in Columns (4) to 

(11) of Table 2.  We see that, compared to Bench,  Kuosmanen has higher realized values for the Sharpe 

ratio and Sortino ratio, lower VaR(5%) and Shortfall(5%), as well as better CEV values. Only for 

Turnover, where Bench by definition has none, does Kuosmanen fail to out-perform Bench. Due to their 

basic character of risk avoidance, MinVar, MinSemivar, and MinShortfall perform better than 

Kuosmanen based on left tail risk measures (VaR and expected Shortfall) as well as CEV5. Also, their 

Turnover values are somewhat lower than Kuosmanen. However, these approaches do not perform as 

well as Kuosmanen in terms of Sharpe and Sortino ratios or CEV1 and CEV3. The three KP2011 

portfolio strategies out-perform Kuosmanen (and Bench) on all the traditional performance measures we 

examined except Turnover. They also out-perform MinVar, MinSemivar, and MinShortfall in terms of 

Sharpe and Sortino ratios as well as CEV values but not Var(5%), Shortfall(5%), or Turnover. 

 Compared with Bench, the equally-weighted portfolio in our sample delivered higher Sharpe and 

Sortino ratios (similar to Kuosmanen) as well as better CEV values. However, the equal-weighted 

portfolio had quite similar Var(5%) and Shortfall(5%) values to Bench as well as the same zero Turnover.  

Turning to the mean-variance related strategies, we again see that MinVarBench performs 

similarly to the SSD-related group of portfolios, with results that are fairly close to those of Kuosmanen. 

MaxSharpe delivers relatively high out-of-sample Sharpe and Sortino ratios plus the highest CEV1 value 

(14.12). However, MaxSharpe does not perform well in terms of left tail risk measures (VaR and 

expected Shortfall) or CEV5. It also has the largest Turnover measure, indicating that the portfolio 

weights are not stable. The InformationRatio strategy performs similarly to Equal but with somewhat 

better performance on Var(5%), Shortfall(5%), and CEV5 while somewhat poorer values on Sharpe ratio, 

CEV1 and CEV3. 
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 As indicated above, the SSD-related approaches as well as MinVarBench are generally 

performing well in terms of SSD as well as traditional performance measures. There is definitely variation 

in performance, with for example, the three Kopa2011 strategies not doing as well on SSD tests but better 

on Sharpe and Sortino ratios as well as CEV values. MinVar, MinSemivar, and MinShortfall tend to 

perform best on measures that are sensitive to minimizing left-tail risk but not as well on measures where 

higher mean returns receive more weight. In contrast,  Max Sharpe, InformationRatio, and Equal tend to 

perform poorly on the SSD tests as well as measures that are sensitive to minimizing left-tail risk but do 

much better on measures where higher mean returns receive more weight.  

The performance of Equal seems particularly instructive since it is not subject to estimation error 

problems and is also not specifically designed for a mean-variance environment. It does not perform well 

on SSD tests or measures that are sensitive to minimizing left-tail risk, presumably because it does not 

give any weight to reducing variance or left-tail risk. The equally-weighted portfolio performs better, but 

not spectacularly well, on measures such as the Sharpe and Sortino ratios that give more weight to mean 

returns. In effect, using equal weights is an attempt to avoid estimation errors and optimization 

procedures that may put extreme weights on some securities. However, that approach ignores information 

in the return sample that may allow construction of portfolios that exhibit desirable persistence in 

performance on at least some dimensions. In our tests, the SSD-related strategies as well as MinVarBench 

look promising for creating portfolios that perform well out-of-sample.  

 

5. Robustness  

In this section, we discuss robustness checks regarding methodological changes. We also 

investigate performance of the eleven alternative portfolio construction approaches using monthly returns. 

Having many fewer data points in an annual period, leads us to lengthen the in-sample estimation period 

and to adjust the out-of-sample performance assessment procedure as discussed below.  
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5.1.  Methodological robustness checks with daily data 

 To explore robustness, we increased trimming levels for the z-interval to  10%  and lowered them 

to 1% as well as using quarterly and two-year period lengths for estimation and forecast windows. A brief 

summary is provided below, with full results in the Online Appendix.  

 In Online Appendix Table A2 Column (1), we see that lowering tail trimming from  5%  to 1% 

substantially increases the median p-values relative to those in Table 2 of the main paper. For example, 

the p-value for Kuosmanen increases from  0.282  (with  5%  trimming in Table 2) to  0.611  here with  

1%  trimming. All the portfolio choice strategies have such increases because the reduced tail trimming 

decreases the power of the Davidson (2009) test. In Column (2) of Table A2, we see the opposite effect 

(decreased median p-values) when the trimming is increased to 10%. Note that results for MinVarBench 

and MinVar are now indicating rejection of non-dominance for those strategies over Bench in at least half 

the yearly test periods at the 5% and 6% levels, respectively. The rejection of non-dominance over Bench 

is only slightly weaker for Kuosmanen, Minshortfall, and MinSemivar.  

 Using two-year estimation and forecast windows instead of one-year windows cuts the number of 

out-of-sample periods in half but lengthens each test period. Strategies with relative low median p-values 

in Table 2 exhibit still lower median p-values with the two-year window, see Online Appendix Table A2 

Column (3). In that column, we also see increases in the median p-values of strategies that had relatively 

high values in Table 2; however, there is little effect on ranking across the alternative strategies.  

 With quarterly estimation and forecast windows, median p-values generally increase with the 

notable exception of KP2011Min, see Online Appendix Table A2 Column (4).14  The shorter window 

seems to hamper the strategies’ performance as well as power of the Davidson test. Kuosmanen is 

particularly hard hit with its median p-value surging to 0.971. MinVar and MinVarBench hold up better, 

but their p-values both increase to approximately 0.35.  

 

                                                 
14 As the number of observations declines to about 62 per period for this table, we computed bootstrapped p-values 

to determine stochastic dominance as described in Davidson (2009).  
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5.2.  Monthly returns 

With daily returns, the data (49 industry portfolios) exhibited substantial excess kurtosis and non-

normality. With monthly returns, those industry portfolios have closer to normal distributions but still 

exhibit substantial excess kurtosis. For the complete 86 year period, mean/median kurtosis of monthly 

returns for the 49 industry portfolios is 14.58/9.54 compared to 49.03/21.19 with daily returns. Using 

monthly returns, we also have many fewer data points in an annual estimation period (12 monthly returns 

versus roughly 260 daily returns). Clearly, 12 data points is not going to provide a decent estimate of the 

underlying return distribution. Also, some of the approaches (e.g. Kuosmanen and KP2011Av) are 

effectively focused on maximizing the mean return among the set of portfolios that SSD dominate the 

benchmark in-sample. When the number of observations is relatively small, the estimated mean is not 

very reliable and the procedures tend to find weights which do not perform well out-of-sample and are not 

very stable across estimation periods.15  We ultimately opted to use 20 years (240 monthly observations) 

as the in-sample estimation period when working with monthly data. With 240 observations, we have a 

similar number of in-sample data points as when we used one year of daily data (roughly 260 

observations). 

 For our analysis with monthly return data, we used a rolling-window procedure. The first 20-year 

period was used to estimate the weights for each of the alternative portfolio construction approaches, and 

the performance of each approach was observed during the following year. We then moved forward one 

year,  re-estimated the weights using 20 years of data (19 from the previous in-sample period plus one 

new year) and observed performance during the following year. This process continued through all the 
                                                 
15  In exploring this issue, we conducted a simulation study in which the mean returns of all assets matched the 

average risk-free rate over the corresponding period. In this setting, Kuosmanen, KP2011Av and KP2011Power3 

deliver similar SSD performances to those of other SSD-related portfolio strategies that do not require estimation of 

a mean. We conclude that difficulties in obtaining precise mean estimates in short samples and the corresponding 

over-fitting are relevant issues for these strategies. To mitigate this problem, a sufficiently long time series of data is 

needed.      
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available data. This resulted in 66 years of out-of-sample performance measurements for each approach.16  

We conducted the Davidson (2009) SSD test for non-dominance using the full 66-year period. Results can 

be found in Online Appendix Table A3, with most approaches in the same dominance class as Bench. The 

one exception is MaxSharpe, which is dominated by Bench with a p-value of 0.02. The lowest  p-value 

for the null of non-dominance of an alternative portfolio over Bench is 0.16, which is achieved by 

MinShortfall. Being unable to detect stochastic dominance in this setting is not surprising. Since the 

optimal portfolio weights are estimated using 20 years of history, they do not focus on recent return 

dynamics and are likely to include structural breaks. Consequently, using monthly returns with a 20-year 

calibration period does not seem to be a good way to implement the SSD models we examined.   

Table A4 in the Online Appendix contains results with monthly data for the other performance 

measures over the 66 out-of-sample years. Kuosmanen, MinShortfall, MinVar, MinSemivar, and 

MinVarBench all reduced return standard deviation relative to Bench. Not surprisingly, MinVar had the 

lowest standard deviation; and MinShortfall had the best shortfall performance out-of-sample. 

Interestingly, MinShortfall had the best CEV3 and Sharpe ratio performance, with MinVar being second 

best in those categories and having the highest Sortino ratio. The three KP2011 portfolios have slightly 

higher mean returns and somewhat higher standard deviation values relative to Bench (similar to what we 

saw previously in Table 2); however, those portfolios do not exhibit the marked improvement over Bench 

in terms of Sharpe ratios, Sortino ratios, and CEV values that we saw previously. MaxSharpe generally 

did not perform well out-of-sample, with a lower mean return and higher STD than Bench. In fact, 

MaxSharpe had the lowest Sharpe ratio, Sortino ratio, and CEV values out-of-sample. InformationRatio 

and Equal performed roughly on a par with Bench. 

 

                                                 
16 Note, this approach is somewhat different from the one used in the main body of the paper with daily returns. 

Here we are not able to reliably apply our usual non-dominance test for every year, as we have only 12 monthly 

return observations per year. 
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6. Concluding comments  

 There is much to be said in favor of using SSD to measure portfolio performance and also to 

choose portfolios. This is particularly relevant for delegated fund management with heterogeneous 

investors. All risk-averse investors would prefer a dominating portfolio to a dominated benchmark. An 

important question is how to choose among SSD efficient portfolios. We compare the methods of 

Kuosmanen (2004) as well as Kopa and Post (2011) with other SSD-related choices such as the 

minimum-variance portfolio. Kuosmanen (2004) finds the portfolio with the highest in-sample mean 

which dominates a benchmark in the SSD sense, if that is possible. The procedure of Kopa and Post 

(2011) allows for different SSD efficient portfolios depending on the specified preferences. 

            Several SSD-related portfolio strategies (Kuosmanen, MinShortfall, MinVar, and MinSemivar) 

perform well out-of-sample in terms of not only dominating the benchmark (using the SSD criterion) but 

also in terms of traditional performance measures. MinShortfall, MinVar, and MinSemivar do particularly 

well on measures focusing on risk reduction such as VaR(5%) and Shortfall(5%). The three KP2011 

portfolio strategies do not perform as strongly in the SSD tests but do very well in terms of Sharpe and 

Sortino ratios as well as CEV values.  A strategy that minimized variance while being constrained to 

matching the mean benchmark return (calibrated in-sample) performs roughly on a par with the SSD-

related strategies. 

 The benchmark is the value-weighted market portfolio. It is frequently dominated out-of-sample 

by the SSD-related portfolio strategies. Moreover, those strategies also frequently out-perform that 

benchmark on a variety of other dimensions. One interesting measure is CEV3. In Table 2 using our main 

runs, the SSD-related approaches have CEV3 results which improve over that of the benchmark by a 

range of 28% to 79%. With a greater level of risk aversion (CEV5), the situation is even more striking as 

the CEV5 of Bench is negative, indicating an individual with that utility function would pay not to invest 

in Bench.   

The other portfolio strategies we tested (MaxSharpe, Information Ratio, and Equal) typically had 

a poor out-of-sample performance on dominance tests. Using traditional performance measures, 
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MaxSharpe did reasonably well out-of-sample in terms of Sharpe Ratio and CEV3  but still slightly 

underperformed the three KP2011 portfolios on those measures. On the other hand, MaxSharpe had the 

highest STD as well as the worst Min and Shortfall(5%). Intuitively, MaxSharpe has a propensity to find 

weights that accept more risk while seeking higher returns. When those weights do not generate high 

returns, the results can be quite poor. InformationRatio and the equal-weighted portfolio tended to 

perform on traditional measures slightly better than the benchmark. However, those two strategies 

frequently did less well than the SSD-related strategies.  

 Our robustness results indicate that power of the Davidson (2009) test does depend importantly 

on the trimming level. Also, using a quarterly estimation window does not seem to work well and harms 

the out-of-sample performance of the SSD-related approaches, with the notable exception of KP2011min.  

Using a two-year widow seemed to improve performance on the out-of-sample dominance tests for 

portfolio choice strategies that were doing well with the one-year window.  

The concept of SSD-based portfolio choice is appealing theoretically, and there are several 

procedures allow for testing the in-sample SSD efficiency of a benchmark. Kuosmanen (2004) as well as 

Kopa and Post (2011) also deliver an optimal portfolio that dominates a benchmark portfolio in-sample. 

Interestingly, the out-of-sample performance of these portfolios is similar to relatively simple portfolio 

choice techniques that focus on risk reduction – in particular, MinVar and MinVarBench. The latter 

portfolio is constructed to minimize variance (in-sample) while matching the benchmark’s mean return. 

As long as that benchmark mean return is not too extreme, MinVarBench will have a substantial emphasis 

on risk reduction, behaving much like MinVar and the other SSD-related approaches. It appears there is 

performance persistence regarding risk reduction captured by all these portfolios.  

One reason why the more complex SSD-based approaches we tested do not outperform simpler 

ones out-of-sample may be that they are not designed to find a robust SSD efficient portfolio. Their 

primary goal is to test for in-sample efficiency of a benchmark. The optimal dominating portfolio is a 

“by-product” of that test. Developing advanced techniques of finding robust SSD-efficient portfolios 

seems to be an important avenue for future research.  
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In this appendix, we present tables with the additional results mentioned in the section 4.2 and the 

robustness section 5.1 of the main paper.   

 

Table A1. Out-of-Sample Performance of the Alternative Portfolio Choice Strategies 
 

This table reports the number out of  85  forecast windows from 1928 – 2012, where the 

considered portfolios second-order stochastically dominate the benchmark (N+), are dominated by the 

benchmark (N-), or lie in the same dominance class (N0). The alternative portfolios are constructed using 

the Fama-French 49 industry portfolios as assets. The last column reports the median p-values for the null 

hypothesis that the portfolio in question does not dominate the benchmark. 

 

N+ N- N0 Median p-Value 
# % # % # % 

SSD-Related 
Kuosmanen 27 32 56 66 2 2 0.282 

KP2011Av 18 21 65 76 2 2 0.609 
KP2011Min 14 16 69 81 2 2 0.686 

KP2011Power3 16 19 67 79 2 2 0.608 
MinShortfall 27 32 58 68 0 0 0.304 

MinVar  30 35 55 65 0 0 0.231 
MinSemivar 29 34 56 66 0 0 0.295 

Equal 8 9 70 82 7 8 0.934 
Mean-Variance-Related 

MinVarBench 29 34 56 66 0 0 0.199 
MaxSharpe 11 13 66 78 8 9 0.952 

InformationRatio 0 0 80 94 5 6 0.967 
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Table A2. Out-of-Sample Performance of the Alternative Portfolios: Robustness 
 

The table reports the median from the distribution of p-values obtained testing the null hypothesis that the 

portfolio in question does not dominate the benchmark over forecast windows from 1928 – 2012 using 

daily returns. In columns (1) and (2) there are 85 annual forecast windows. In column (3), there are 42 

biannual forecast windows; and column (4) is based on 343 quarterly forecast windows. The alternative 

portfolios are constructed using the Fama-French 49 industry portfolios as assets. In Column (1), we trim 

the 1% highest and 1% lowest observations when conducting the out-of-sample SSD tests. In column (2), 

we trim the 10% highest and 10% lowest observations when conducting these tests. In column (3), we use 

two-year estimation and forecast periods; and in column (4), we use quarterly estimation and forecast 

periods. 

 
 

  

(1) 
1% Tail 

Trimming

(2) 
10% Tail 
Trimming

(3) 
2-year 

estimation

(4) 
Quarterly 
estimation 

SSD-Related 
Kuosmanen 0.611 0.103 0.198 0.971 

KP2011Av 0.802 0.517 0.767 0.972 
KP2011Min 0.822 0.583 0.761 0.495 

KP2011Power3 0.802 0.523 0.839 0.969 
MinShortfall 0.556 0.103 0.171 0.482 

MinVar  0.516 0.057 0.131 0.349 
MinSemivar 0.514 0.112 0.180 0.472 

Equal 0.965 0.887 0.966 0.890 
Mean-Variance-Related     

MinVarBench 0.501 0.052 0.112 0.350 
MaxSharpe 0.970 0.913 1.000 0.864 

InformationRatio 0.975 0.967 0.930 0.929 
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Table A3. Out-of-Sample Performance of the Alternative Portfolios with Monthly Returns 
 

This table reports p-values for the SSD tests of non-dominance by the alternative portfolios over 

Bench, and Bench over the alternative portfolios using monthly returns during 1947 – 2012. The 

alternative portfolios are constructed using the Fama-French 49 industry portfolios as assets. We use 20-

year rolling estimation windows with 1 year out-of-sample forecasts.  

 

 
Alt. does not 
dominate Bench 

Bench does not 
dominate Alt. 

SSD-Related   
Kuosmanen 0.74 1.00 

KP2011Av 0.89 0.60 
KP2011Min 0.93 0.49 

KP2011Power3 0.84 0.74 
MinShortfall 0.16 1.00 

MinVar 0.34 1.00 
MinSemivar 0.33 1.00 

Equal 1.00 0.78 
Mean-Variance-Related  

MinVarBench 0.42 1.00 
MaxSharpe 1.00 0.02 

InformationRatio 0.70 0.86 
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Table A4. Descriptive Statistics of Portfolio Performance, Monthly Returns 

This table reports descriptive statistics and traditional performance measures for the competing portfolio-choice strategies based on annual 

percentage returns. The alternative portfolios are constructed using the Fama-French 49 industry portfolios as assets. We use 20-year rolling 

estimation windows with 1 year out-of-sample forecasts. The statistics are computed using  66  yearly returns from 1947 to 2012.  

 

Mean Median STD Min Max Skew-
ness 

Kurto-
sis 

Sharpe 
ratio 

Sortino 
ratio 

VaR 
(5%) 

Shortfall
(5%) 

CEV1 CEV3 CEV5 Turnover 

Bench 9.42 7.31 16.31 -38.21 50.18 -0.01 3.07 0.35 0.44 -13.51 -26.44 8.17 5.49 2.42 0.00 

SSD-Related    

Kuosmanen 8.82 8.71 15.06 -28.81 55.51 0.36 3.77 0.34 0.42 -14.80 -22.53 7.79 5.71 3.53 0.28 

KP2011Av 9.73 7.61 17.65 -33.94 71.57 0.69 4.65 0.35 0.41 -17.50 -25.14 8.37 5.64 2.81 0.26 

KP2011Min 9.96 7.51 17.93 -35.03 71.39 0.63 4.46 0.35 0.42 -17.39 -25.84 8.55 5.71 2.72 0.27 

KP2011Power3 9.59 8.02 17.37 -33.85 71.48 0.65 4.65 0.34 0.41 -17.65 -25.10 8.27 5.60 2.81 0.26 

MinShortfall  9.88 9.86 15.01 -31.01 55.51 0.30 3.49 0.42 0.47 -13.91 -18.96 8.53 6.80 3.49 0.14 

MinVar  9.24 8.62 13.92 -30.62 44.95 0.08 3.28 0.40 0.50 -13.76 -20.94 8.86 6.49 4.64 0.09 

MinSemivar 9.62 9.27 15.35 -38.32 50.77 0.06 3.32 0.39 0.48 -14.23 -20.75 8.35 6.20 4.49 0.20 

Equal 10.22 7.61 17.17 -39.05 53.53 0.18 3.40 0.38 0.46 -15.19 -26.81 8.88 6.00 2.70 0.00 

Mean-Variance-Related    

MinVarBench 9.07 8.58 14.33 -30.10 59.53 0.33 4.17 0.38 0.45 -14.76 -21.23 8.14 6.23 4.21 0.16 

MaxSharpe 8.47 4.18 17.57 -30.41 67.72 0.64 3.85 0.28 0.33 -19.12 -23.30 7.11 4.47 1.90 0.28 

InformationRatio 9.58 8.07 16.23 -38.22 52.40 0.09 3.31 0.37 0.45 -14.44 -25.63 8.36 5.75 2.75 0.10 

 


